Bauphysik Studie: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
K
(21 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 22: Zeile 22:
=== Kondensation - Taupunkt - Tauwassermenge ===
=== Kondensation - Taupunkt - Tauwassermenge ===


{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{| align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1"  
| colspan="2" style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;"| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
| colspan="2" style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;"| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
|-
|-
Zeile 61: Zeile 61:


==== Feuchtebelastung durch Diffusion ====
==== Feuchtebelastung durch Diffusion ====
{| align="right" widht="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; class="rahmenfarbe1"
{| align="right" widht="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 0px 5px 5px;" class="rahmenfarbe1"
| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
|}
|}
Zeile 80: Zeile 80:


==== Feuchtebelastung durch Konvektion ====  
==== Feuchtebelastung durch Konvektion ====  
{|align="right"  width="800px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; class="rahmenfarbe1" id="ganz_oben"  
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" id="ganz_oben"  
|+ id="Ü-id" | '''Feuchteeintrag in die Konstruktion durch Undichtheiten in der Dampfsperre'''
|+ id="Ü-id" | '''Feuchteeintrag in die Konstruktion durch Undichtheiten in der Dampfsperre'''
|- id="K-id"
|- id="K-id"
| colspan="3" |  '''3. Feuchtigkeitsmenge durch Konvektion'''
| '''3. Feuchtigkeitsmenge durch Konvektion'''
|-
| [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01-3.jpg|center|400px]]
|} 
Durch [[Konvektion]], also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen (siehe Abb. 3).
 
Durch Leckagen in Konstruktionen mit äußeren diffusionsdichten Bauteilschichten eingedrungene Feuchtigkeit kann schnell zu einem Bauschaden führen. Konvektive Feuchteeinträge können wegen ihrer hohen Feuchtelast aber
auch für außen diffusionsoffene Bauteile gefährlich werden, v. a. wenn bereits [[Tauwasser]] ausgefallen und es im winterlich kalten Klima zur Bildung von Eisschichten z. B. an der Unterdeckung gekommen ist.
{|align="right"  valign="bottom" width="460px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding:5px 0px 5px 5px;" class="rahmenfarbe1"
|-
| colspan="3" |  Legende zur Abb. 3 <br /> <br />
|-
|-
| rowspan="11" width=50%"| [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01-3.jpg|center|400px]]
| colspan="2" | '''Feuchtetransport'''  
| colspan="2" | '''Feuchtetransport'''  
|-
|-
| durch Dampfsperre: || 0,5 g/(m² · 24 h)
| durch Dampfsperre: <br /> durch 1 mm Fuge: || 0,5 g/(m² · 24 h) <br /> 800 g/(m · 24 h)
|-
| durch 1 mm Fuge: || 800 g/(m · 24 h)  
|-  
|-  
| '''Erhöhung Faktor:''' ||  '''1.600'''  
| '''Erhöhung Faktor:''' ||  '''1.600'''  
|-
|-
| '''Randbedingungen'''
| <br /> Randbedingungen  
|-
|-
| Dampfbremse sd-Wert: || 30 m  
| Dampfbremse sd-Wert: || 30 m  
|-
|-
| Innentemperatur: ||  +20 °C  
| Innentemperatur: <br /> Außentemperatur: ||  +20 °C <br /> 0 °C
|-
| Außentemperatur: || 0 °C
|-
|-
| Druckdifferenz: || 20 Pa (entsprechend Windstärke 2-3)
| Druckdifferenz: || 20 Pa (entsprechend Windstärke 2-3)
Zeile 106: Zeile 111:
| Messung: || [[Institut für Bauphysik]], Stuttgart <ref name="Qu_04" />
| Messung: || [[Institut für Bauphysik]], Stuttgart <ref name="Qu_04" />
|}   
|}   
 
<br clear="all" />
Durch [[Konvektion]], also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen (siehe Abb. 3).
 
Durch Leckagen in Konstruktionen mit äußeren diffusionsdichten Bauteilschichten eingedrungene Feuchtigkeit kann schnell zu einem Bauschaden führen. Konvektive Feuchteeinträge können wegen ihrer hohen Feuchtelast aber
auch für außen diffusionsoffene Bauteile gefährlich werden, v. a. wenn bereits [[Tauwasser]] ausgefallen und es im winterlich kalten Klima zur Bildung von Eisschichten z. B. an der Unterdeckung gekommen ist. <br clear="all" />


==== Konstruktiv bedingte Feuchtigkeit - Flankendiffusion ====  
==== Konstruktiv bedingte Feuchtigkeit - Flankendiffusion ====  
Zeile 184: Zeile 185:
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem sehr niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese »intelligenten« Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima diffusionsdichter und schützen die Konstruktion vor Feuchtigkeitseintrag. <br />
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem sehr niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese »intelligenten« Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima diffusionsdichter und schützen die Konstruktion vor Feuchtigkeitseintrag. <br />
Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen dadurch die Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen dadurch die Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
{| align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
{| align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 0px 5px 5px;" class="rahmenfarbe1"
| colspan="3" | '''6. Das Funktionsprinzip feuchtevariabler Bahnen'''  
| colspan="3" | '''6. Das Funktionsprinzip feuchtevariabler Bahnen'''  
|-
|-
Zeile 227: Zeile 228:
verschärft. <br />
verschärft. <br />
Durch die Europäisch Technische Bewertung (ETA-18/1146) verfügen INTELLO und INTELLO PLUS über den nach [[DIN 68800-2]] für Dampfbremsen mit feuchtevariablem  Diffusionswiderstand geforderten Nachweis der Alterungsbeständigkeit.
Durch die Europäisch Technische Bewertung (ETA-18/1146) verfügen INTELLO und INTELLO PLUS über den nach [[DIN 68800-2]] für Dampfbremsen mit feuchtevariablem  Diffusionswiderstand geforderten Nachweis der Alterungsbeständigkeit.
<br />


==== Hoher Diffusionswiderstand im Winter ====
==== Hoher Diffusionswiderstand im Winter ====
Zeile 235: Zeile 238:
Der hohe [[sd-Wert|s<sub>d</sub>-Wert]] ist auch bei außen planmäßig diffusionsoffenen Dächern von Vorteil, wenn es z. B. durch Reif- und Eisbildung an einer eigentlich diffusionsoffenen [[Unterdeckbahn]] zur Bildung einer Dampfsperre kommt (siehe Abb. 9).
Der hohe [[sd-Wert|s<sub>d</sub>-Wert]] ist auch bei außen planmäßig diffusionsoffenen Dächern von Vorteil, wenn es z. B. durch Reif- und Eisbildung an einer eigentlich diffusionsoffenen [[Unterdeckbahn]] zur Bildung einer Dampfsperre kommt (siehe Abb. 9).
<br clear="all" />
<br clear="all" />
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 0px 5px 5px;" class="rahmenfarbe1"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | ''' s<sub>d</sub>-Wert-Verhalten von Dampfbremsen''' <br /> Je größer die Variabilität des Diffusionswiderstandes zwischen Winter und Sommer ist, umso mehr Sicherheit bietet die Dampfbremse. <br />
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | ''' s<sub>d</sub>-Wert-Verhalten von Dampfbremsen''' <br /> Je größer die Variabilität des Diffusionswiderstandes zwischen Winter und Sommer ist, umso mehr Sicherheit bietet die Dampfbremse. <br />
|-
|-
Zeile 287: Zeile 290:
==== Berechnung nach Glaser ====
==== Berechnung nach Glaser ====
Das [[Glaser-Verfahren]] ist ein vereinfachtes, stationäres Nachweisverfahren für eine feuchteschutztechnische Abschätzung von Bauteilen. Dies erfolgt durch Betrachtung des auftretenden Diffusionstransports bei stationären Zuständen unter pauschalen Randbedingungen. Bei dieser Art von Nachweis handelt es sich um »ein modellhaftes Nachweis- und Bewertungsverfahren als Hilfsmittel für den Fachmann zur Beurteilung des klimabedingten Feuchteschutzes. Es bildet nicht die realen physikalischen Vorgänge in ihrer tatsächlichen zeitlichen Abfolge ab« (aus: [[DIN 4108-3]]). <br />
Das [[Glaser-Verfahren]] ist ein vereinfachtes, stationäres Nachweisverfahren für eine feuchteschutztechnische Abschätzung von Bauteilen. Dies erfolgt durch Betrachtung des auftretenden Diffusionstransports bei stationären Zuständen unter pauschalen Randbedingungen. Bei dieser Art von Nachweis handelt es sich um »ein modellhaftes Nachweis- und Bewertungsverfahren als Hilfsmittel für den Fachmann zur Beurteilung des klimabedingten Feuchteschutzes. Es bildet nicht die realen physikalischen Vorgänge in ihrer tatsächlichen zeitlichen Abfolge ab« (aus: [[DIN 4108-3]]). <br />
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding:5px 0px 5px 5px;" class="rahmenfarbe1"
| colspan="4" | '''Randbedingungen Glaser-Verfahren '''
| colspan="4" | '''Randbedingungen Glaser-Verfahren '''
|-
|-
Zeile 477: Zeile 480:


==== Klimadaten Standort Davos ====
==== Klimadaten Standort Davos ====
Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 20 - 23)
Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 20 - 23)  
 
Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Innenraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein. In nordgeneigten [[Dach|Dächern]] sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine [[Rücktrocknungspotenzial|Rückdiffusion]] möglich. Bei südgeneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht. <br />
Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.
 
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| colspan="4" | ''' Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies'''
| colspan="4" | ''' Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies'''
Zeile 490: Zeile 489:
| 23. Dachoberflächentemperatur<br /> Kiesdach [[Bild:BPhys GD 2Studie 23 Dachofl Kies.jpg|center|240px|23. Dachoberflächentemperatur<br /> Kiesdach]]
| 23. Dachoberflächentemperatur<br /> Kiesdach [[Bild:BPhys GD 2Studie 23 Dachofl Kies.jpg|center|240px|23. Dachoberflächentemperatur<br /> Kiesdach]]
|}
|}
Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Innenraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein. In nordgeneigten [[Dach|Dächern]] sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine [[Rücktrocknungspotenzial|Rückdiffusion]] möglich. Bei südgeneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht.
Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.
<br clear="all" />
<br clear="all" />


Zeile 771: Zeile 772:
|[[Bild:Pc_00_WISSEN_2012_03.2_Studie.png|right|70px|verweis=http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf]]
|[[Bild:Pc_00_WISSEN_2012_03.2_Studie.png|right|70px|verweis=http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf]]
|}
|}
:Umfang: 24 Seiten
: PDF, 20 Seiten, DIN A4: '''[http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf  Download]'''<br clear="all" />
:Format: DIN A4
:Datei: PDF ca. 2 MB
:'''[http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf  Download]'''<br clear="all" />


{{NAV Bphys gd1}}
{{NAV Bphys gd1}}


[[Kategorie:Bauphysik]][[Kategorie:Qualitätssicherung]][[Kategorie:Glossar]]
[[Kategorie:Bauphysik]][[Kategorie:Qualitätssicherung]][[Kategorie:Glossar]]

Navigationsmenü