Semiprobabilistisches Sicherheitskonzept: Unterschied zwischen den Versionen

Aus Wissen Wiki
Zur Navigation springen Zur Suche springen
K
Zeile 218: Zeile 218:
| mit
| mit
|-  
|-  
|<math> \mathsf {E_{d}\ } </math> || || Bemessungswert der Einwirkungen auf Gebrauchstauglichkeitsniveau  
|E<sub>d</sub> || || Bemessungswert der Einwirkungen auf Gebrauchstauglichkeitsniveau  
|-
|-
|<math> \mathsf {C_{d}\ } </math> || || Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
|C<sub>d</sub> || || Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
|}
|}


Zeile 256: Zeile 256:
|- align="center"  
|- align="center"  
| align="left" |ständige und vorübergehende <br /> Bemessungssituation
| align="left" |ständige und vorübergehende <br /> Bemessungssituation
| <math>\gamma\ </math><sub>G,j;sup</sub> &middot; G <sub>k,j;sup</sub> || <math>\gamma\ </math><sub>G,j;inf</sub> &middot; G  <sub>k,j;inf</sub>
| γ<sub>G,j;sup</sub> &middot; G <sub>k,j;sup</sub> || γ<sub>G,j;inf</sub> &middot; G  <sub>k,j;inf</sub>
| <math>\gamma\ </math><sub>Q,1</sub> &middot; Q <sub>k,1</sub> ||  colspan="2" | <math>\gamma\ </math><sub>Q,i</sub> &middot; ψ<sub>0,i</sub> &middot; Q <sub>k,i</sub>
| γ<sub>Q,1</sub> &middot; Q <sub>k,1</sub> ||  colspan="2" | γ<sub>Q,i</sub> &middot; ψ<sub>0,i</sub> &middot; Q <sub>k,i</sub>
|-
|-
| &nbsp;<math>\gamma\ </math><sub>G,j;sup</sub> &nbsp;= &nbsp;1,35<br />
| &nbsp;γ<sub>G,j;sup</sub> &nbsp;= &nbsp;1,35<br />
(<math>\gamma\ </math><sub>G,j;sup</sub> &nbsp;= &nbsp;1,10 (1,35) )<br />
(γ<sub>G,j;sup</sub> &nbsp;= &nbsp;1,10 (1,35) )<br />
&nbsp;<math>\gamma\ </math><sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;1,00<br />
&nbsp;γ<sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;1,00<br />
(<math>\gamma\ </math><sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;0,90 (1,15) )<br /> <br />
(γ<sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;0,90 (1,15) )<br /> <br />
<math>\gamma\ </math><sub>Q,1</sub> &nbsp;= &nbsp;1,50 (0) <br />
γ<sub>Q,1</sub> &nbsp;= &nbsp;1,50 (0) <br />
<math>\gamma\ </math><sub>Q,i</sub> &nbsp;= &nbsp;1,50 (0) <br />
γ<sub>Q,i</sub> &nbsp;= &nbsp;1,50 (0) <br />
ψ<sub>Q,i</sub>
ψ<sub>Q,i</sub>
| colspan="5" | für STR/GEO: bei ungünstiger Wirkung <br />
| colspan="5" | für STR/GEO: bei ungünstiger Wirkung <br />
Zeile 289: Zeile 289:
| align="left"| Erbeben  
| align="left"| Erbeben  
| G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub> || -  
| G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub> || -  
| <math>\gamma\ </math><sub>f</sub> &middot; Q <sub>Ek</sub> oder A <sub>Ed</sub>
| γ<sub>f</sub> &middot; Q <sub>Ek</sub> oder A <sub>Ed</sub>
| ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
| ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
|- class="hintergrundfarbe1"
|- class="hintergrundfarbe1"
Zeile 308: Zeile 308:
|-
|-
| colspan="6" width="800px"| Anmerkung:<br />
| colspan="6" width="800px"| Anmerkung:<br />
Für die außergewöhnliche Bemessungssituation und Erdbeben im Grenzzustand der Tragfähigkeit, sowie Nachweise im Grenzzustand der Gebrauchstauglichkeit werden die Teilsicherheitsbeiwerte mit <math>\gamma\ </math><sub>G,j</sub> = 1,0 berücksichtigt.
Für die außergewöhnliche Bemessungssituation und Erdbeben im Grenzzustand der Tragfähigkeit, sowie Nachweise im Grenzzustand der Gebrauchstauglichkeit werden die Teilsicherheitsbeiwerte mit γ<sub>G,j</sub> = 1,0 berücksichtigt.
|}
|}
'''Tab. 1.1:''' empfohlene Teilsicherheitsbeiwerte nach [[EN 1990]]:2002 (Zusammenfassung)
'''Tab. 1.1:''' empfohlene Teilsicherheitsbeiwerte nach [[EN 1990]]:2002 (Zusammenfassung)
Zeile 372: Zeile 372:
|'''k'''<sub>mod</sub> || || Modifikationsbeiwert zur Berücksichtigung der Lasteinwirkungsdauer und der Nutzungsklasse, siehe Tab. 1.8 und 1.9
|'''k'''<sub>mod</sub> || || Modifikationsbeiwert zur Berücksichtigung der Lasteinwirkungsdauer und der Nutzungsklasse, siehe Tab. 1.8 und 1.9
|-
|-
|<math> \mathsf {\gamma_{M} } </math> || || Teilsicherheitsbeiwert einer Baustoffeigenschaft, siehe Tab. 1.6 und 1.7
|'''γ'''<sub>M</sub> || || Teilsicherheitsbeiwert einer Baustoffeigenschaft, siehe Tab. 1.6 und 1.7
|}
|}


Der Modifikationsbeiwert ist ein Sicherheitsfaktor, der den Einfluss des Tragverhaltens durch unterschiedliche Feuchtegehalte und die Dauer der Lasteinwirkung berücksichtigt. Der Sicherheitsfaktor <math>\gamma\ </math><sub>M</sub> ist der Teilsicherheitsbeiwert der Baustoffeigenschaften mit Berücksichtigung der Modellunsicherheiten und Größenabweichungen (Streuungen).
Der Modifikationsbeiwert ist ein Sicherheitsfaktor, der den Einfluss des Tragverhaltens durch unterschiedliche Feuchtegehalte und die Dauer der Lasteinwirkung berücksichtigt. Der Sicherheitsfaktor γ<sub>M</sub> ist der Teilsicherheitsbeiwert der Baustoffeigenschaften mit Berücksichtigung der Modellunsicherheiten und Größenabweichungen (Streuungen).


====Einwirkungen und Umgebungseinflüsse====
====Einwirkungen und Umgebungseinflüsse====
Zeile 474: Zeile 474:
{| cellpadding="3" cellspacing="0" rules="all" class="rahmenfarbe1" style="background: #ffffff;"  
{| cellpadding="3" cellspacing="0" rules="all" class="rahmenfarbe1" style="background: #ffffff;"  
|- class="hintergrundfarbe1"  
|- class="hintergrundfarbe1"  
| Grenzzustand der Tragfähigkeit  || align="center" | <math> \gamma\ </math><sub>M</sub>
| Grenzzustand der Tragfähigkeit  || align="center" | γ<sub>M</sub>
|-
|-
| colspan="2" | Grundkombination
| colspan="2" | Grundkombination
Zeile 485: Zeile 485:
| Allgemein || align="center" | 1,00
| Allgemein || align="center" | 1,00
|- class="hintergrundfarbe1"  
|- class="hintergrundfarbe1"  
| Grenzzustand der Gebrauchstauglichkeit  || align="center" | <math> \gamma\ </math><sub>M</sub>
| Grenzzustand der Gebrauchstauglichkeit  || align="center" | γ<sub>M</sub>
|-
|-
| Allgemein || align="center" | 1,00
| Allgemein || align="center" | 1,00
Zeile 496: Zeile 496:
{| cellpadding="3" cellspacing="0" rules="all" class="rahmenfarbe1" style="background: #ffffff;"  
{| cellpadding="3" cellspacing="0" rules="all" class="rahmenfarbe1" style="background: #ffffff;"  
|- class="hintergrundfarbe1"  
|- class="hintergrundfarbe1"  
| Grenzzustand der Tragfähigkeit || align="center" | <math> \gamma\ </math><sub>M</sub>
| Grenzzustand der Tragfähigkeit || align="center" | γ<sub>M</sub>
|-
|-
| colspan="2" | ständige und vorübergehende Bemessungssituation
| colspan="2" | ständige und vorübergehende Bemessungssituation
Zeile 509: Zeile 509:
| Allgemein || align="center" | 1,00
| Allgemein || align="center" | 1,00
|- class="hintergrundfarbe1"  
|- class="hintergrundfarbe1"  
| Grenzzustand der Gebrauchstauglichkeit || align="center" | <math> \gamma\ </math><sub>M</sub>
| Grenzzustand der Gebrauchstauglichkeit || align="center" | γ<sub>M</sub>
|-
|-
| Allgemein || align="center" | 1,00
| Allgemein || align="center" | 1,00
Zeile 694: Zeile 694:


Anmerkung [[DIN 1052]]:2008<br />
Anmerkung [[DIN 1052]]:2008<br />
Ist der ständige Lastanteil > 70 % der Gesamtlast soll die Steifigkeit Druck beanspruchter Bauteile um den Faktor 1 / (1+'''k'''<sub>def</sub>) abgemindert werden. Bei Tragwerken aus Bauteilen mit unterschiedlichen zeitabhängigen Verformungsverhalten sollen die Steifigkeiten der einzelnen Bauteile um den Faktor&nbsp;1&nbsp;/&nbsp;(1+kdef) abgemindert werden.
Ist der ständige Lastanteil > 70 % der Gesamtlast soll die Steifigkeit Druck beanspruchter Bauteile um den Faktor 1 / (1+'''k'''<sub>def</sub>) abgemindert werden. Bei Tragwerken aus Bauteilen mit unterschiedlichen zeitabhängigen Verformungsverhalten sollen die Steifigkeiten der einzelnen Bauteile um den Faktor&nbsp;1&nbsp;/&nbsp;(1+k<sub>def</sub>) abgemindert werden.


Besteht eine Verbindung aus Holzbaustoffen mit unterschiedlichen '''k'''<sub>def</sub>-Werten ist das arithmetische Mittel zu verwenden. Bei Stahlblech-Holz-Verbindungen ist der Verformungsbeiwert des Holzes zu verwenden.
Besteht eine Verbindung aus Holzbaustoffen mit unterschiedlichen '''k'''<sub>def</sub>-Werten ist das arithmetische Mittel zu verwenden. Bei Stahlblech-Holz-Verbindungen ist der Verformungsbeiwert des Holzes zu verwenden.
Zeile 839: Zeile 839:
|<math> \mathsf {\sigma_{c,\alpha,d} = \frac {F_{c,\alpha,d}}{A_{ef}}} </math> || || Bemessungswert der Druckspannung  
|<math> \mathsf {\sigma_{c,\alpha,d} = \frac {F_{c,\alpha,d}}{A_{ef}}} </math> || || Bemessungswert der Druckspannung  
|-
|-
|<math> \mathsf {\alpha} </math> || || Winkel zwischen der Beanspruchungsrichtung und Faserrichtung des Holzes
|α || || Winkel zwischen der Beanspruchungsrichtung und Faserrichtung des Holzes
|-
|-
|<math> \mathsf {k_{c,90}} </math> || || Querdruckbeiwert siehe Tab. 1.14
|k<sub>c,90</sub> || || Querdruckbeiwert siehe Tab. 1.14
|}
|}


Zeile 858: Zeile 858:
|<math> \mathsf {\sigma_{m,d} = \frac {M_{d}}{W} } </math> || || Bemessungswert der Biegespannung für Rechteckquerschnitte
|<math> \mathsf {\sigma_{m,d} = \frac {M_{d}}{W} } </math> || || Bemessungswert der Biegespannung für Rechteckquerschnitte
|-
|-
|<math> \mathsf {k_{m} = 0,7} </math> || || Beiwert für Rechteckquerschnitte aus Vollholz, BSH und Furnierschichtholz <br /> (Anmerkung: In der DIN 1052 muss h/b &le; 4 eingehalten werden)
|k<sub>m</sub> = 0,7 || || Beiwert für Rechteckquerschnitte aus Vollholz, BSH und Furnierschichtholz <br /> (Anmerkung: In der DIN 1052 muss h/b &le; 4 eingehalten werden)
|-
|-
|<math> \mathsf {k_{m} = 1,0} </math> || || Beiwert für andere Querschnitte
|k<sub>m</sub> = 1,0} || || Beiwert für andere Querschnitte
|}
|}


Zeile 940: Zeile 940:


{|
{|
|<math> \mathsf { \tau_{tor,d} } </math> || || Bemessungswert der Torsionsspannungen
|τ<sub>tor,d</sub>|| || Bemessungswert der Torsionsspannungen
|-
|-
|<math> \mathsf { f_{v,d} } </math> || || Bemessungswert der Schubfestigkeit
|f<sub>v,d</sub> || || Bemessungswert der Schubfestigkeit
|-
|-
|<math> \mathsf { k_{shape} } </math> || || Beiwert zur Berücksichtigung der Querschnittsform
|k<sub>shape</sub> || || Beiwert zur Berücksichtigung der Querschnittsform
|-
|-
|<math> h </math> || || die größere Querschnittsabmessung
|h || || die größere Querschnittsabmessung
|-
|-
|<math> b </math> || || die kleinere Querschnittsabmessung
|b || || die kleinere Querschnittsabmessung
|}
|}


Zeile 977: Zeile 977:
|und
|und
|-
|-
|<math> \mathsf { \beta = 0{,}2 } </math> || || für [[Vollholz]] und Balkenschichtholz,
|β<sub>c</sub> = 0,2 || || für [[Vollholz]] und Balkenschichtholz,
|-
|-
|<math> \mathsf { \beta = 0{,}1 } </math> || || für [[Brettschichtholz]] und [[Holzwerkstoff]]e
|β<sub>c</sub> = 0,1 || || für [[Brettschichtholz]] und [[Holzwerkstoff]]e
|}
|}
mit dem bezogenen Schlankheitsgrad
mit dem bezogenen Schlankheitsgrad
Zeile 987: Zeile 987:
|Dabei ist:
|Dabei ist:
|-
|-
|<math> \mathsf { \sigma_{c,crit}\ } </math> || || kritische Druckspannung, berechnet mit dem 5%-Quantilen der Steifigkeitskennwerte
|σ<sub>c,crit</sub> || || kritische Druckspannung, berechnet mit dem 5%-Quantilen der Steifigkeitskennwerte
|-
|-
|<math> \mathsf { \lambda = \lambda_{ef} / \pi } </math> || || Schlankheitsgrad
|λ = λ<sub>ef</sub> / π || || Schlankheitsgrad
|-
|-
|<math> \mathsf { \pi } </math> || || Trägheitsradius
|π || || Trägheitsradius
|-
|-
|<math> \mathsf { \lambda_{ef} = \beta \cdot s\ \mbox {oder}\ \beta \cdot h } </math> || || Ersatzstablänge
|λ<sub>ef</sub> = β &middot; s oder β &middot; h || || Ersatzstablänge
|-
|-
|<math> \mathsf { \beta } </math> || || Knicklängenbeiwert
|β || || Knicklängenbeiwert
|-
|-
|<math> \mathsf {s\ \mbox {bzw.}\ h } </math> || || Stablänge
|s bzw. h || || Stablänge
|}
|}


Zeile 1.014: Zeile 1.014:


Dabei ist:<br />
Dabei ist:<br />
<math> \mathsf { \sigma_{m,crit} } </math> kritische Biegedruckspannung, berechnet mit dem 5%-Quantilwerten der Steifigkeitswerte  
σ<sub>c,crit</sub> kritische Biegedruckspannung, berechnet mit dem 5%-Quantilwerten der Steifigkeitswerte  
{|
{|
| width="120px" | <math> \mathsf { i_{m} = \frac { \sqrt {J_{z} \cdot J_{t}}}{W_{y}} } </math>
| width="120px" | <math> \mathsf { i_{m} = \frac { \sqrt {J_{z} \cdot J_{t}}}{W_{y}} } </math>
Zeile 1.025: Zeile 1.025:
{{FmAm| <math> \mathsf { \lambda_{rel,m} = \sqrt {\frac {l_{ef} \cdot h }{\pi\ \cdot b^2 }}\ x\ \sqrt {  \frac {f_{m,k}}{ \sqrt { E_{0,05} \cdot G_{0,05}} }} } </math>  |(1.41)}}
{{FmAm| <math> \mathsf { \lambda_{rel,m} = \sqrt {\frac {l_{ef} \cdot h }{\pi\ \cdot b^2 }}\ x\ \sqrt {  \frac {f_{m,k}}{ \sqrt { E_{0,05} \cdot G_{0,05}} }} } </math>  |(1.41)}}


Bei Biegestäben aus [[Brettschichtholz]] darf zur Berechnung des bezogenen Kippschlankheitsgrades <math> \mathsf { \lambda_{rel,m}} </math> bzw. der kritischen Biegedruckspannung <math> \mathsf { \sigma_{m,crit}} </math> das Produkt der 5%-Quantilen der Steifigkeitskennwerte mit dem Faktor 1,4 multipliziert werden.
Bei Biegestäben aus [[Brettschichtholz]] darf zur Berechnung des bezogenen Kippschlankheitsgrades λ<sub>rel,m</sub> bzw. der kritischen Biegedruckspannung σ<sub>c,crit</sub> das Produkt der 5%-Quantilen der Steifigkeitskennwerte mit dem Faktor 1,4 multipliziert werden.


Für den gabelgelagerten Einfeldträger mit konstantem Moment entspricht die Ersatzlänge l<sub>ef</sub> der Stützweite l des Trägers.
Für den gabelgelagerten Einfeldträger mit konstantem Moment entspricht die Ersatzlänge l<sub>ef</sub> der Stützweite l des Trägers.

Version vom 18. November 2010, 16:09 Uhr

Kurzdarstellung semiprobabilistisches Sicherheitskonzept

Nachweise nach Normen basierend auf dem semi-probabilistischem Sicherheitskonzept Anmerkung zum folgenden Kapitel

Dieses Kapitel stellt zum Zweck des Überblicks eine inhaltliche Kurzfassung der derzeit geltenden Europäischen Normenwerke dar und erhebt naturgemäß keinen Anspruch auf Vollständigkeit. Es ersetzt im Anwendungsfall keinesfalls die detaillierten Festlegungen der jeweiligen Normen, welche in jedem Fall heranzuziehen sind.
Die redaktionelle Erarbeitung erfolgte im Hinblick auf die Darstellung der Eigenschaften vom SHERPA Holzverbinder-System.

Einführung

Der Holzbau hat sich durch die verschiedenen Baukulturen der Völker, den unterschiedlichen regionalen Holzarten und nicht zuletzt von den getrennt durchgeführten Holzforschungen und den damit verbundenen Erfahrungen, regional in sehr unterschiedlichen Bauweisen weiterentwickelt. Durch die Europäisierung und dem damit einhergehenden Wunsch Handelshemmnisse abzubauen, wurde ab den 70er Jahren mit der Harmonisierung nationaler Regelungen begonnen [Step 1]. Mit der Normenserie EN 1995-1-1:2004/A1:2008 und EN 1995-1-2:2006 stehen dem Holzbau heute Dokumente zur Verfügung, die durch gesichertes Fachwissen eine auf europäischer Ebene einheitliche Bemessung von Holzbauten ermöglichen [Step 1]. Damit den regionalen Bedürfnissen und Anforderungen der Länder nachgekommen werden kann, erfolgte eine Erweiterung der Grundlagendokumente der Eurocodes durch nationale Anhänge. Für die Anwendung des Eurocode 5 EN 1995-1-1:2004/A1:2008 sind gewisse Vorkenntnisse nötig, damit ein sicherer Umgang mit den semi-probabilistischen Bemessungskonzepten erfolgen kann.

In Deutschland findet durch die DIN 1052:2008 dasselbe Sicherheitskonzept Anwendung, weshalb es unter anderem noch zu keiner vollständigen Umstellung auf den Eurocode 5 gekommen ist. Da mit der DIN 1052:2008 ein sehr gutes Normenwerk zur Verfügung steht, werden auch in anderen Ländern sehr häufig noch Bemessungsregeln daraus verwendet. Mit der Zeit wird es allerdings auch hierzu einer Angleichung kommen müssen.

Der SHERPA®-Verbinder mit der bauaufsichtlichen Zulassung Z-9.1-558 vom Deutschen Institut für Bautechnik (DIBt) unterliegt den Regeln der DIN 1052:2008. In den folgenden Punkten werden die Methoden der Berechnung von Holzbauwerken nach den semi-probabilistischen Sicherheitskonzeptender beiden Regelwerke DIN 1052:2008 und der EN 1995-1-1:2004/A1:2008 vorgestellt. Durch den Sitz der Vinzenz Harrer GmbH in Frohnleiten bei Graz, werden in bestimmten Punkten auch Angaben aus dem nationalen Anhang für Österreich ÖNORM B 1995-1-1:2009 gemacht. Im Anschluss daran werden die Nachweise für die Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit der EN 1995-1-1:2004/A1:2008 und der DIN 1052:2008 vorgestellt und auch miteinander verglichen.

Die gezeigten Rechenmodelle beinhalten nur einen kleinen Teil der beiden genannten Regelwerke und dürfen somit keinesfalls als Ersatz der jeweils gültigen Normendokumente verstanden werden.

Viele Parameter in den Berechnungskonzepten zur Dimensionierung von Bauteilen unterliegen natürlichen statistischen Streuungen. Damit die in diesem Zusammenhang entstehenden Unsicherheiten der Modellannahmen quantifiziert und das Versagensrisiko so gering wie möglich gehalten und auch bewertet werden kann, werden in den Normenwerken die Berechnungskonzepte nachdem semi-probabilistischen Sicherheitskonzept aufgebaut. Die europäischen Normenwerke zur Bemessung von Tragwerken ist der Abb. 1.1 zu entnehmen.

Abb. 1.1

Neben den Definitionen des Sicherheitskonzepts in

  • EN 1990 Grundlagen der Tragwerksplanung

sind für den Bereich des konstruktiven Holzbaues weiters die Normengruppe der Einwirkungen

sowie die Bemessungs- und Konstruktionsnormengruppen

  • EN 1995 Bemessung und Konstruktion von Holzbauten
  • EN 1993 Bemessung und Konstruktion von Stahlbauten
  • EN 1992 Bemessung und Konstruktion von Betonbauten und
  • EN 1998 Auslegung von Bauwerken gegen Erdbeben

von besonderer Relevanz.

Die Bemessung und Konstruktion von Holzbauten wird in Europa einheitlich durch die Normenwerke

EN 1995-1-1:2004/A1:2008 Bemessung und Konstruktion von Holzbauten
Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau
EN 1995-1-2:2006 Bemessung und Konstruktion von Holzbauten
Teil 1-2: Allgemeine Regeln - Bemessung für den Brandfall
EN 1995-2: 2006 Bemessung und Konstruktion von Holzbauten
Teil 2: Brücken

Neben den angeführten „Grundlagendokumenten“ besteht für die jeweiligen nationalen Normeninstitute noch die Möglichkeit der Herausgabe von sog. „nationalen Anhängen“, in denen nationale Festlegungen, Erläuterungen und Ergänzungen zu den Grundlagendokumenten definiert werden können. All diese Dokumente (ÖNORM EN 199x und ÖNORM B 199x) sind als geschlossene Einheit anzuwenden, und das Vermischen mit anderen Normenserien (ÖNORM B 4xxx, ÖNORM ENV 199x) ist nichtzulässig.

Grundsätzliches zur Bemessung nach Grenzzuständen

Allgemeines

Die auf dem semi-probabilistischem Sicherheitskonzept basierende Normenfamilie der Eurocodes und einzelner nationaler Normen, wie zum Beispiel dieDIN 1052:2008, definieren über Grenzzustände die konstruktive Zuverlässigkeit der Tragsicherheit, Gebrauchstauglichkeit und Dauerhaftigkeit von Tragwerken. Werden die Grenzzustände überschritten, können die an ein Tragwerk gestellten Anforderungen nicht mehr gesichert erfüllt werden.

Grenzzustände der Tragfähigkeit (engl.: Ultimate Limit State (ULS))

Grenzzustände der Tragfähigkeit sind Zustände, bei deren Überschreitung es zu einem Einsturz des Tragwerks oder anderen Formen des Versagens (plastische Deformationen) kommen kann.
Kennzeichen der Grenzzustände der Tragfähigkeit sind:

  • Gleichgewichtsverlust des gesamten Tragwerkes oder einzelner Tragwerksteile (Montagezustände berücksichtigen)
  • Stabilitätsverluste (besonders bei schlanken Bauteilen)
  • Eintritt von Versagensmechanismen am Gesamtsystem oder einzelner Tragwerksteile

Grenzzustände der Gebrauchstauglichkeit (engl.: Serviceability Limit State (SLS))

Die Verformungen bzw. Durchbiegungen eines Tragwerkes infolge von Beanspruchungen sollen in definierten Grenzen gehalten werden, um mögliche Schäden (wie z. B. Rissbildungen) an Bauteilen, wie Decken, Fußboden, Trennwänden, Installationen, etc. zu vermeiden. Auch gilt es, die Anforderungen hinsichtlich der Benutzbarkeit (Durchbiegungen, Schwingungen) und des Erscheinungsbildes bzw. des Wohlbefindens der Nutzer zu erfüllen.

Nachweise durch die Methode der Teilsicherheitsbeiwerte

Das in den Eurocodes und der DIN 1052:2008 verankerte Sicherheitskonzept beruht - im Gegensatz zum deterministischen Sicherheitskonzept mit einem globalen Sicherheitsbeiwert („Verfahren mit zulässigen Spannungen“) - auf der Nachweisführung mit sogenannten Teilsicherheitsbeiwerten.
Diese Sicherheitsfaktoren werden verwendet, um das Versagensrisiko einer Tragstruktur, mit den für die Berechnung verbundenen Modellannahmen, so niedrig wie möglich zu halten. Dabei ist zu zeigen, dass in allen maßgebenden Bemessungssituationen beim Ansatz der Bemessungswerte für Einwirkungen oder deren Auswirkungen, für die Tragwiderstände keiner der maßgebenden Grenzzustände überschritten wird. Ein Vorteil dieser Methode ist die eindeutige Trennung der wichtigsten Einflussfaktoren für die Bemessung von Tragwerken.

Zu den wichtigsten Einflussfaktoren gehören:

  • Einwirkungen: Nutzlasten, Schnee, Wind, Temperaturen, . . .
  • Baustoffeigenschaften: Festigkeiten, Steifigkeiten,. . .
  • geometrische Größen: Abmessungen, Geometrien, . . .

All diese Einflussfaktoren sind Zufallsgrößen, die statistischen Streuungen unterliegen.


In Abb. 1.2 ist dieser Zusammenhang an Hand typischer Verteilungsfunktionen für die Einwirkung E und die Tragfähigkeit R eines Bauteils grafisch dargestellt. Beide Zufallskenngrößen weisen dabei streuenden Charakter auf. Ein Versagen lässt sich in dieser Darstellung durch den Zusammenhang R − E < 0 definieren. Für den Fall R − E = 0 wird dementsprechend gerade der Grenzzustanderreicht. Auf Grund der Tatsache, dass für die beiden Verteilungsfunktionen - insbesondere an den Verteilungsenden - im Allgemeinen unzureichende empirische Kenntnisse vorliegen, begnügt man sich im Rahmen des semi-probabilistischen Sicherheitskonzeptes damit dafür Sorge zu tragen, dass zwischen definierten Werten (charakteristischen Werten bzw. Bemessungswerten) der Verteilungsfunktionenein ausreichender Sicherheitsabstand gewährleistet bleibt.

Durch das einheitliche Konzept der Eurocodes mit den Teilsicherheitsbeiwerten kann die Bemessung von Tragwerken baustoffunabhängig erfolgen und die Berechnungen für alle Baustoffe auf denselben Konzepten basieren.

Abb 1.2


Es bedeuten:
E Beanspruchung
Emean Mittelwert der Beanspruchung
Ek charakteristischer Wert der Beanspruchung
Ed Bemessungswert der Beanspruchung
R Widerstand
Rmean Mittelwert des Widerstandes
Rk charakteristischer Wert des Widerstandes
Rd Bemessungswert des Widerstandes


Auf Grund der zum Teil stark streuenden Eigenschaften des Roh- und Werkstoffes Holz hinsichtlich mechanischer Eigenschaften, des orthotropen (unterschiedliche Eigenschaften in Richtung der Längs-, Radial- und Tangentialachse) Material- und Feuchteverhaltens (Schwinden und Quellen in den genannten Richtungen) sowie Inhomogenitäten in der Baustoffstruktur, werden in Ergänzung zum semi-probabilistischem Sicherheitskonzept für die Bemessung und Konstruktion von Holztragwerken eine Reihe weiterer Faktoren verwendet.

Diese ermöglichen zum Beispiel die Berücksichtigung unterschiedlicher Feuchtegehalte und der Dauer der Lasteinwirkung auf das Tragverhalten, der Berücksichtigung einer verminderten Querschnittsfläche infolge von Rissen oder auch das zeitabhängige Verformungsverhalten zur Berücksichtigung des Kriechverhaltens von Holzkonstruktionen.

Einwirkungen und Einwirkungskombinationen

Begriffe im Zusammenhang mit Einwirkungen

Unter Einwirkungen im Sinne des europäischen Normenkonzeptes versteht man übergeordnet:

  • „eine Gruppe von Kräften (Lasten), die auf ein Tragwerk wirken (direkte Einwirkungen)“,

sowie

  • „eine Gruppe von aufgezwungenen Verformungen oder einer Beschleunigung, die z. B. durch Temperaturänderungen, Feuchtigkeitsänderung, ungleiche Setzung oder Erdbebenhervorgerufen werden (indirekte Einwirkungen).

“Die nachfolgende Abbildung enthält einen Überblick über die gegebenenfalls zu berücksichtigenden „Einwirkungs-Normen“ nach EN 1991.

Abb. 1.3:

Auswirkungen von Einwirkungen auf ein Tragwerk

Durch die Einwirkungen auf ein Tragwerk kommt es zu Beanspruchungen von Bauteilen(z. B. Schnittkräfte, Spannungen, Dehnungen) oder Reaktionen des Gesamttragwerks (z. B. Durchbiegungen, Verdrehungen).

Einteilung der Einwirkungen
ständige Einwirkungen

Einwirkungen (direkte Einwirkungen wie z. B. das Eigengewicht von Konstruktionen, Gebäudeausrüstungen,... . Indirekte Auswirkungen wie Schwinden, ungleichmäßige Setzungen, ...) von denen vorausgesetzt wird, dass sie während der gesamten Nutzungsdauer in die gleiche Richtung wirken und deren zeitliche Größenänderungen vernachlässigt werden können.

veränderliche Einwirkungen

Einwirkungen (z. B. Nutzlasten auf Decken, Schneelasten, Windlasten) die nicht immer in die gleiche Richtung wirken und deren zeitliche Größenänderungen nicht vernachlässigbar sind.

außergewöhnliche Einwirkungen

Einwirkungen (z. B. Brand, Explosionen, Erdbeben, Fahrzeuganprall, ... ) die in der Regel von kurzer Dauer, aber von bedeutender Größenordnung sind und die während der geplanten Nutzungsdauer mit keiner nennenswerten Wahrscheinlichkeit auftreten können.

Bemessungswert einer Einwirkung

Wert einer Einwirkung, der durch Multiplikation des repräsentativen Wertes mit dem Teilsicherheitsbeiwert ermittelt wird.

charakteristischer Wert einer Einwirkung

wichtigster repräsentativer Wert einer Einwirkung.

Kombination von Einwirkungen (ohne Ermüdung)

Da Einwirkungen auf ein Tragwerk meistens in Kombinationen mit anderen veränderlichen Einwirkungen auftreten, müssen unterschiedliche Kombinationen mit der Berücksichtigung von Auftretenswahrscheinlichkeiten auf ein Tragwerk angesetzt werden. Für die Bemessungssituationen wird unterschieden in

  • ständige Situationen, die den üblichen Nutzungsbedingungen des Tragwerks entsprechen;
  • vorübergehende Situationen, die sich auf zeitlich begrenzte Zustände des Tragwerks beziehen (Bauzustand, Instandsetzungen,. . . )
  • außergewöhnliche Situation, die sich auf außergewöhnliche Bedingungen für das Tragwerk beziehen, z. B. Brand, Explosionen, Anprall oder Folgen lokalen Versagens;
  • Situationen bei Erdbeben, die die Bedingungen bei Erdbebeneinwirkungen auf das Tragwerk umfassen.

„Die gewählten Bemessungssituationen müssen alle Bedingungen, die während der Ausführung und Nutzung des Tragwerks vernünftigerweise erwartet werden können, hinreichend genau erfassen.“

Für die Kombinationsregeln gilt der Allgemeine Grundsatz:

Jede Einwirkung sollte eine dominierende Einwirkung (Leiteinwirkung mit einem Maximum) oder eine außergewöhnliche Einwirkung (Erdbeben, Fahrzeuganprall, ...) aufweisen. Die Auswirkungen der übrigen Einflüsse (Begleiteinwirkungen) sind, sofern aus physikalischen oder betrieblichen Gründen sinnvoll, zu berücksichtigen. Dabei soll jede Einwirkung auch als Leiteinwirkung auftreten. Daraus lässt sich ableiten, dass die Anzahl der unterschiedlichen Lastfallkombinationen zumindest jener der unterschiedlichen von einander unabhängigen Einwirkungen entspricht. Aus allen Kombinationen ist jene mit den ungünstigsten Auswirkungen auf das Tragverhalten der Struktur maßgebend. Die Integration der Einwirkungen erfolgt mit Hilfe von Teilsicherheitsbeiwerten gG und gQ und Kombinationsbeiwerten y .

Kombinationsregeln für Nachweise in den Grenzzuständen der Tragfähigkeit

Kombination von Einwirkungen bei ständigen (Normalsituationen) und vorübergehenden (Bausituationen) Bemessungssituationen (= Grundkombination)

(1.1)
mit
Ed Bemessungswert einer Einwirkung
„gemeinsame Auswirkungen von“ (Summenbildung)
„ist zu kombinieren“
Gk,j charakteristischer Wert der ständigen Einwirkung j
γG,j Teilsicherheitsbeiwert für die ständige Einwirkung j
Qk,1 charakteristischer Wert der dominierenden veränderlichen Einwirkung
γQ,1 Teilsicherheitsbeiwert für die dominierende veränderliche Einwirkung
Gk,i charakteristischer Wert der begleitenden veränderlichen Einwirkung i
γQ,i Teilsicherheitsbeiwert für die begleitende veränderliche Einwirkung i
ψ Kombinationsbeiwert einer veränderlichen Einwirkung

Da das Aufstellen der Lastkombinationen mit einem relativ großen Rechenaufwand verbunden ist, werden in der DIN 1052:2008 vereinfachte Regeln gemäß Gleichung (1.2) für die Anwendungen im Hochbau 1a angegeben.

(1.2)

Anmerkung:
In der EN 1990 sind keine Vereinfachungen für die Einwirkungskombinationen zu finden.

a Ermittlung der Schnittgrößen nach Theorie I. Ordnung


Kombination von Einwirkungen bei außergewöhnlichen Bemessungssituationen (Brandfall, Explosionen, ...)

(1.3)
mit
Ed Bemessungswert der Einwirkungskombination bei einer außergewöhnlichen Bemessungssituation
Ad Bemessungswert einer außergewöhnlichen Einwirkung
ψ1,1 Beiwert für häufige Werte der dominierenden veränderlichen Einwirkung
ψ2,1 Beiwert für quasi ständige Werte der dominierenden veränderlichen Einwirkung
ψ2,i Beiwert für quasi ständige Werte der begleitenden veränderlichen Einwirkungen


Kombinationen von Einwirkungen für Bemessungssituation bei Erdbeben

(1.4)
mit
EdAE Bemessungswert der Einwirkungskombination für die Bemessungssituation bei Erdbeben
AEK charakteristischer Wert der Erdbebenlast
γI Wichtungsfaktor (siehe EN 1998)
Kombinationsregeln für Nachweise in den Grenzzuständen der Gebrauchstauglichkeit

Die Kombinationen der Einwirkungen sollen an das Bauwerksverhalten und an die Nutzung desGebäudes und den damit verbundenen Gebrauchstauglichkeitskriterien angepasst werden.

Allgemein ist die Bedingung

(1.5)

zu erfüllen.

mit
Ed Bemessungswert der Einwirkungen auf Gebrauchstauglichkeitsniveau
Cd Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
charakteristische Kombination

Verwendung für nicht umkehrbare Auswirkungen auf ein Tragwerk

(1.6)


häufige Kombination

Verwendung für umkehrbare Auswirkungen auf ein Tragwerk

(1.7)


quasi-ständige Kombination

Verwendung für Langzeitauswirkungen (z. B. Erscheinungsbild) auf ein Tragwerk

(1.8)


Teilsicherheitsbeiwerte für Einwirkungen

Mit Hilfe der Teilsicherheitsbeiwerte werden die Modellunsicherheiten und Größenabweichungen der Einwirkungen und Auswirkungen berücksichtigt.

Grenzustände der Tragfähigkeit
Einwirkungskombination ständige Einwirkung Gd veränderliche Einwirkung Qd
Leit-
einwirkung
Begleit-
einwirkung
günstig ungünstig weitere
ständige und vorübergehende
Bemessungssituation
γG,j;sup · G k,j;sup γG,j;inf · G k,j;inf γQ,1 · Q k,1 γQ,i · ψ0,i · Q k,i
 γG,j;sup  =  1,35

G,j;sup  =  1,10 (1,35) )
 γG,j;inf   =  1,00
G,j;inf   =  0,90 (1,15) )

γQ,1  =  1,50 (0)
γQ,i  =  1,50 (0)
ψQ,i

für STR/GEO: bei ungünstiger Wirkung

(für Nachweise der Lagesicherheit (EQU): z. B. Abhebekräfte infolge Windsog)
für STR/GEO: bei günstiger Wirkung
(für Nachweise der Lagesicherheit (EQU): z. B. Abhebekräfte infolge Windsog)

für EQU/STR/GEO: bei ungünstiger Wirkung (bei günstiger Wirkung)
für EQU/STR/GEO: bei ungünstiger Wirkung (bei günstiger Wirkung)
Kombinationsbeiwert

ständige Einwirkung Gd veränderliche Einwirkung Qd
Leit-
einwirkung
Begleiteinwirkung
günstig ungünstig Haupt
(falls vorhanden)
weitere
außergewöhnliche
Bemessungssituation
G k,j;sup G k,j;inf Ad 1,1 oder ψ2,1) · Q k,i ψ2,i · Q k,i
Erbeben G k,j;sup G k,j;inf - γf · Q Ek oder A Ed ψ2,i · Q k,i
Grenzzustände der Gebrauchstauglichkeit
ständige Einwirkung Gd veränderliche Einwirkung Qd
ungünstig günstig dominierende weitere
charakteristisch G k,j;sup G k,j;inf - Q k,1 ψ0,i · Q k,i
häufig G k,j;sup G k,j;inf - ψ1,1 · Q k,1 ψ2,i · Q k,i
charakteristisch G k,j;sup G k,j;inf - ψ2,1 · Q k,1 ψ2,i · Q k,i
Anmerkung:

Für die außergewöhnliche Bemessungssituation und Erdbeben im Grenzzustand der Tragfähigkeit, sowie Nachweise im Grenzzustand der Gebrauchstauglichkeit werden die Teilsicherheitsbeiwerte mit γG,j = 1,0 berücksichtigt.

Tab. 1.1: empfohlene Teilsicherheitsbeiwerte nach EN 1990:2002 (Zusammenfassung)

Kombinationsbeiwerte ψ0, ψ1 und ψ2

Mit Hilfe der Kombinationsbeiwerte ψ0, ψ1 und ψ2 wird die reduzierte Wahrscheinlichkeit des gleichzeitigen Auftretens der ungünstigen Auswirkungen mehrerer unabhängiger veränderlicher Einwirkungen berücksichtigt.

Die Einwirkungen werden unterteilt in

  • charakteristischer Wert einer Einwirkung
    Der charakteristische Wert einer Einwirkung wird so gewählt, dass er während des Bezugszeitraumes nicht überschritten wird.
  • seltener Wert
    Der Kombinationswert einer selten auftretenden veränderlichen Einwirkung wird begleitend mit einer veränderlichen Einwirkung verwendet.
  • häufiger Wert einer veränderlichen Einwirkung
    Der Kombinationswert einer häufig auftretenden veränderlichen Einwirkung wird so gewählt, dass die Überschreitungshäufigkeit innerhalb der Nutzungsdauer auf einen bestimmten Wert begrenzt bleibt.
  • quasi-ständiger Wert einer veränderlichen Einwirkung
    Der Kombinationswert einer quasi-ständig auftretenden veränderlichen Einwirkung wird so gewählt, dass der Überschreitungszeitraum einen wesentlichen Teil des Bezugszeitraumes ausmacht.
Einwirkungen ψ0 ψ1 ψ2
Nutzlasten im Hochbau (siehe EN 1991-1-1)
Kategorie A: Wohngebäude 0,7 0,5 0,3
Kategorie B: Bürogebäude 0,7 0,5 0,3
Kategorie C: Versammlungsbereiche 0,7 0,7 0,6
Kategorie D: Verkaufsflächen 0,7 0,7 0,6
Kategorie E: Lagerflächen 1,0 0,9 0,8
Fahrzeugverkehr im Hochbau
Kategorie F: Fahrzeuggewicht ≤ 30 kN
Kategorie G: 30 kN < Fahrzeuggewicht ≤ 160 kN

0,7
0,7

0,7
0,5

0,6
0,3
Kategorie H: Dächer 0 0 0
Schneelasten im Hochbau (siehe EN 1991-1-3)a
- Finnland, Island, Norwegen, Schweden 0,7 0,5 0,2
- für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe über 1.000 m ü. NN 0,7 0,5 0,2
- für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe niederiger als 1.000 m ü. NN 0,5 0,2 0
Windlasten im Hochbau (siehe EN 1991-1-4) 0,6 0,2 0
Temperaturanwendungen (ohne Brand) im Hochbau, siehe EN 1991-1-5 0,6 0,5 0
Anmerkung: Die Festlegung der Kombinationsbeiwerte erfolgt im nationalen Anhang.
a Bei nicht ausdrücklich genannten Ländern sollten die maßgebenden örtlichen Bedingungen betrachtet werden.

Tab. 1.2: empfohlene Kombinationsbeiwerte nach EN 1990:2002

Basisvariable

Bemessungswert der Beanspruchbarkeit (Tragfähigkeit)

Der Bemessungswert der Tragfähigkeit eines Querschnitts, Bauteils bzw. einer Verbindung wird im Holzbau mit Hilfe der Gleichung (1.9) berechnet.

(1.9)
mit
Xk bzw. Rk charakteristischer Wert einer Festigkeitseigenschaft bzw. Beanspruchbarkeit
kmod Modifikationsbeiwert zur Berücksichtigung der Lasteinwirkungsdauer und der Nutzungsklasse, siehe Tab. 1.8 und 1.9
γM Teilsicherheitsbeiwert einer Baustoffeigenschaft, siehe Tab. 1.6 und 1.7

Der Modifikationsbeiwert ist ein Sicherheitsfaktor, der den Einfluss des Tragverhaltens durch unterschiedliche Feuchtegehalte und die Dauer der Lasteinwirkung berücksichtigt. Der Sicherheitsfaktor γM ist der Teilsicherheitsbeiwert der Baustoffeigenschaften mit Berücksichtigung der Modellunsicherheiten und Größenabweichungen (Streuungen).

Einwirkungen und Umgebungseinflüsse

Klassen der Lasteinwirkungsdauer (KLED)

Die Klassifizierung der Dauer der Einwirkung auf ein Gebäude bzw. Tragwerk ist Tab. 1.3 und 1.4 zu entnehmen.

KLED Größenordnung der akkumulierten
Lasteinwirkungsdauer
Beispiele
ständig länger als 10 Jahre Eigenlasten von Tragwerken, Ausrüstungen,
festen Einbauten und haustechnischen Anlagen
lang 6 Monate bis 10 Jahre Lagerstoffe
mittel 1 Woche bis 6 Monate Nutzlasten, Schneelasten bei Geländehöhe
größer 1.000 m ü. NN
kurz kürzer als eine Woche Schneelasten bei Geländehöhen
bis 1.000 m ü. NN, Windlasten
sehr kurz kürzer als 1 Minute außergewöhnliche Lasten, Anpralllasten,
Erdbebenlasten

Tab. 1.3: Zuordnung von Tragwerken in KLED nach DIN 1052:2008


Einwirkung KLED
Wichten und Flächenlasten nach DIN 1055-1 ständig
Lotrechte Nutzlasten nachDIN 1055-3

A Spitzböden, Wohn- und Aufenthaltsräume
B Büroflächen, Arbeitsflächen, Flure
C Räume, Versammlungsräume und Flächen, die der Ansammlung von Personen dienen
   können (mit Ausnahme von unter A, B, D und E festgelegten Kategorien)
D Verkaufsräume
E Fabriken und Werkstätten, Ställe, Lagerräume und Zugänge, Flächen mit erheblichen
   Menschenansammlungen
F Verkehrs- und Parkflächen für leichte Fahrzeuge (Gesamtlast ≤ 25 kN)
   Zufahrtsrampen zu diesen Flächen
G Flächen für den Betrieb mit Gegengewichtsstaplern
H nicht begehbare Dächer, außer für übliche Erhaltungsmaßnahmen, Reparaturen
K Hubschrauber-Regellasten
T Treppen und Treppenpodeste
Z Zugänge, Balkone und Ähnliches


mittel
mittel

kurz
mittel

lang
mittel
kurz
mittel
kurz
kurz
kurz
kurz
Horizontale Nutzlasten nach DIN 1055-3
Horizontale Nutzlasten infolge von Personen auf Brüstungen, Geländern und anderen
Konstruktionen, die als Absperrung dienen
kurz
Horizontallasten zur Erzielung einer ausreichenden Längs- und Queraussteifung a
Horizontallasten für Hubschrauberlandeplätze auf Dachdecken
- für horizontale Nutzlasten
- für den Überrollschutz

kurz
sehr kurz
Windlasten nach DIN 1055-4 kurz
Schneelasten und Eislasten nach DIN 1055-5
- Geländehöhen des Bauwerksstandortes NN ≤ 1.000 m
- Geländehöhen des Bauwerksstandortes NN > 1.000 m

kurz
mittel
Anpralllasten nach DIN 1055-9 sehr kurz
Horizontallasten aus Kran- und Maschinenbetrieb nach DIN 1055-10 kurz
a entsprechend der zugehörigen Lasten

Tab. 1.4: Zuordnung von Tragwerken in KLED nach DIN 1052:2008


Nutzungsklasse (NKL)

Durch die hygroskopischen Eigenschaften des Holzes passt sich die Holzfeuchte durch Feuchtigkeitsaufnahme und Feuchtigkeitsabgabe an die Umgebungsfeuchte an. Die sich einstellende Holzfeuchte beeinflusst die technologischen Eigenschaften des Holzes (mit zunehmender Feuchtigkeit nehmen die Festigkeit und der E-Modul ab). Wegen des Umwelteinflusses auf Holzbauteile ist es notwendig, die Tragwerke in Nutzungsklassen zu unterteilen. Sie kennzeichnen die klimatischen Verhältnisse der Umgebungdes Bauwerkes während seiner Lebensdauer.

Nutz-
ungs-
klasse
Umgebungsklima Holzfeuchte
der meisten
Nadelhölzer
Tragwerks- bzw. Gebäudetyp
Temperatur relative Luft-
feuchte a
1 20 °C ≤ 65% ≤ 12% Innenräume von Wohn-, Schul- und Verwaltungsbauten
2 20 °C ≤ 85% ≤ 20% Innenräume von Nutzbauten wie Lagerhallen, Reithallen
und Industriehallen sowie überdachte Konstruktionen im
Freien, deren Bauteile nicht der freien Bewitterung
ausgesetzt sind (30° Regeneinfallswinkel)
3 - > 85% > 20% Bauteile im Freien mit konstruktivem Holzschutz
a Die relative Luftfeuchte darf in den Nutzungsklassen 1 und 2 maximal für einige Wochen im Jahr die angegebenen Werte übersteigen.

Tab. 1.5: Zuordnung von Tragwerken in Nutzungsklassen nach ÖNORM B 1995-1-1 und DIN 1052:2008

Zur Verminderung von Schwindrissen und Maßänderungen sollten die verwendeten Holzbauteile für die Nutzungsklassen 1 und 2 mit einer Einbaufeuchte u ≤ 20 %, und für die Nutzungsklasse 3 mit u ≤ 25 % begrenzt werden (lt. DIN 1052:2008).


Teilsicherheitsbeiwerte für Baustoffeigenschaften und Widerstände

Grenzzustand der Tragfähigkeit γM
Grundkombination
Vollholz
Brettschichtholz
LVL, Sperrholz, OSB
Spanplatten
Harte Faserplatten
Mittelharte Faserplatten
MDF-Faserplatten
Weiche Faserplatten
Verbindungen
Nagelplatten (Stahleigenschaften)
1,30
1,25
1,20
1,30
1,30
1,30
1,30
1,30
1,30
1,25
außergewöhnliche Kombination
Allgemein 1,00
Grenzzustand der Gebrauchstauglichkeit γM
Allgemein 1,00

Tab. 1.6: empfohlene Teilsicherheitsbeiwerte für
Baustoffeigenschaften nach ÖNORM EN 1995-1-1:2009

Grenzzustand der Tragfähigkeit γM
ständige und vorübergehende Bemessungssituation
Holz und Holzwerkstoffe 1,30
Stahl in Verbindungen
- auf Biegung beanspruchte stiftförmige
  Verbindungsmittel
- auf Zug und Scheren beanspruchte
  Teile beim Nachweis gegen die Streck-
  grenze im Nettoquerschnitt
- Plattennachweis auf Tragfähigkeit für
  Nagelplatten


1,10

1,25


1,25
außergewöhnliche Kombination
Allgemein 1,00
Grenzzustand der Gebrauchstauglichkeit γM
Allgemein 1,00

Tab. 1.7: empfohlene Teilsicherheitsbeiwerte für
Baustoffeigenschaften nach DIN 1052:2008

Baustoffeigenschaften

Modifikationsbeiwerte der Festigkeiten zur Berücksichtigung der Nutzungsklasse und Lasteinwirkungsdauer

Anmerkung:
Setzt sich eine Lastkombination aus unterschiedlichen Lasteinwirkungsdauern zusammen, ist in der Regel der Wert für kmod mit der kürzeren Dauer zu verwenden. Besteht eine Verbindung aus Holzteilen mit unterschiedlichen zeitabhängigem Verhalten so ist kmod mit kmod,1 und kmod,2 der beiden Holzteile mit zu ermitteln.

Baustoff (Bezugsnorm) Nutzungsklasse Baustoff (Bezugsnorm) Nutzungsklasse
Vollholz (EN 14081-1)
Brettschichtholz (EN 14080)
Furnierschichtholz (EN 14374, EN 14279)
Sperrholz (EN 636-1, -2, -3)
OSB/2a (EN 300)
Spanplatten Typ P4a, P5 (EN 312)
Holzfaserplatten, hart:
HB.LAa, HB.LA1, HB.LA2 (EN 622-2)
Lasteinwirkungsdauer 1 2 3 Lasteinwirkungsdauer 1 2
ständig 0,60 0,60 0,50 ständig 0,30 0,20
lang 0,70 0,70 0,55 lang 0,45 0,30
mittel 0,80 0,80 0,65 mittel 0,65 0,45
kurz 0,90 0,90 0,70 kurz 0,85 0,60
sehr kurz 1,10 1,10 0,90 sehr kurz 1,10 0,80
Baustoff (Bezugsnorm) Nutzungsklasse Baustoff (Bezugsnorm) Nutzungsklasse
OSB/3, OSB/4 (EN 300)
Spanplatten Typ P6a, P7 (EN 312)
Holzfaserplatten, mittelhart:
MBH.LA1a, MBH.LA2a (EN 622-3)
MBH.HLS1, MBH.HLS2 (EN 622-3)
Holzfaserplatten, MDF:
MDF.LAa, MDF.HLS (EN 622-5)
Lasteinwirkungsdauer 1 2 3 Lasteinwirkungsdauer 1 2
ständig 0,40 0,30 - ständig 0,20 -
lang 0,50 0,40 - lang 0,40 -
mittel 0,70 0,55 - mittel 0,60 -
kurz 0,90 0,70 - kurz 0,80 0,45
sehr kurz 1,10 0,90 - sehr kurz 1,10 0,80
a Anwendungen nur für Nutzungsklasse 1 erlaubt

Tab. 1.8: empfohlene Modifikationsbeiwerte nach EN 1995-1-1:2004/A:2008


Baustoff (Bezugsnorm) Nutzungsklasse Baustoff (Bezugsnorm) Nutzungsklasse
Vollholz, Brettschichtholz
Balkenschichtholz, Furnierschichtholz
Brettsperrholz, Sperrholz
Kunstharzgebundene Spanplatten
Zementgebundene Spanplatten
Faserplatten, Typ HB.HLA2 (DIN EN 622-2:2004-07)
Lasteinwirkungsdauer 1 2 3 Lasteinwirkungsdauer 1 2
ständig 0,60 0,60 0,50 ständig 0,30 0,20
lang 0,70 0,70 0,55 lang 0,45 0,30
mittel 0,80 0,80 0,65 mittel 0,65 0,45
kurz 0,90 0,90 0,70 kurz 0,85 0,60
sehr kurz 1,10 1,10 0,90 sehr kurz 1,10 0,80
Baustoff (Bezugsnorm) Nutzungsklasse Baustoff (Bezugsnorm) Nutzungsklasse
OSB-Platten, Typen OSB/2a, OSB/3 und OSB/4
(DIN EN 300:2006-09)
Faserplattena, Typ MBH.LA2
(DIN EN 622-3:2004-07)
Gipskartonplatten, Typen GKBa, GKFa, GKBI und
GKFI (DIN 18180)
Lasteinwirkungsdauer 1 2 3 Lasteinwirkungsdauer 1 2
ständig 0,40 0,30 - ständig 0,20 0,15
lang 0,50 0,40 - lang 0,40 0,30
mittel 0,70 0,55 - mittel 0,60 0,45
kurz 0,90 0,70 - kurz 0,80 0,60
sehr kurz 1,10 0,90 - sehr kurz 1,10 0,80
a nur Nutzungsklasse 1

Tab. 1.9: empfohlene Modifikationsbeiwerte nach DIN 1052:2008


Baustoff (Bezugsnorm) Nutzungsklasse Baustoff (Bezugsnorm) Nutzungsklasse
1 2 3 1 2
Vollholz
(EN 14081-1)
Brettschichtholz
(EN 14080)
Furnierschichtholz
(EN 14374, EN 14279)
0,60 0,80 2,00 OSB/21 (EN 300)
Spanplatten, Typ P41, Typ P5
(EN 312)
Holzfaserplatten, hart:
HB.LA1, HB.LA1, HB.LA2
(EN 622-2)
Holzfaserplatten, MDF:
MDF.LA1, MDF.HLS
(EN 622-5)
2,25 3,00
Sperrholz
(EN 636-11, -22,-3)
0,80 1,00 2,50
OSB/3, OSB/4
(EN 300)
1,50 2,25 - Holzfaserplatten, mittelhart:
MBH.LA11, MBH.LA2,1
MBH.HLS1, MBH.HLS2
(EN 622-3)
3,00 4,00
Spanplatten, Typ P61, P7
(EN 312)
1 Verwendung nur in Nutzungsklasse 1
2 Verwendung nur in Nutzungsklasse 1 und 2
Anmerkung:
Universalkeilzinkenverbindungen nach EN 387 bei denen sich in Verbindungen die Faserrichtung verändert dürfen nicht
in Nutzungsklasse 3 verwendet werden.

Tab. 1.10: empfohlene Verformungsbeiwert nach EN 1995-1-1:2004/A1:2008

Anmerkung zu EN 1995-1-1:2004/A1:2008
Besteht eine Verbindung aus Holzbauteilen mit dem gleichen zeitabhängigen Verhalten, so ist der Wert von kdef zu verdoppeln. Wenn eine Verbindung aus Holz- und/oder Holzwerkstoffen mit unterschiedlichem zeitabhängigen Verhalten besteht, ist in der Regel der Wert für kdef mit den Verformungsbeiwerten kdef,1 und kdef,2 der beteiligten Holzbaustoffe mittels zu berechnen.


Baustoff (Bezugsnorm) Nutzungsklasse Baustoff (Bezugsnorm) Nutzungsklasse
1 2 3 1 2
Vollholz
Brettschichtholz
Furnierschichtholz
Balkenschichtholz
Brettsperrholz
0,60 0,80 2,00 Kunstharzgebundene
Spanplatte
2,25 3,00
Zementgebundene
Spanplatten
Faserplatten, Typ HB.LA2
(DIN 622-2:2004-07)
Sperrholz 0,80 1,00 2,50 Faserplatten, Typ MBH.LA2
(DIN 622-3:2004-07)
3,00 4,00
Furnierschichtholzc
OSB-Platten 1,50 2,25 - Gipskartonplatten
a Die Werte für kdef für Vollholz, dessen Feuchte beim Einbau im Fasersättigungsbereich oder darüber liegt und im
  eingebauten Zustand austrocknen kann, sind um 1,0 zu erhöhen.

b mit allen Furnieren faserparallel
c mit Querfurnieren

Tab. 1.11: empfohlene Verformungsbeiwert nach DIN 1052:2008

Anmerkung DIN 1052:2008
Ist der ständige Lastanteil > 70 % der Gesamtlast soll die Steifigkeit Druck beanspruchter Bauteile um den Faktor 1 / (1+kdef) abgemindert werden. Bei Tragwerken aus Bauteilen mit unterschiedlichen zeitabhängigen Verformungsverhalten sollen die Steifigkeiten der einzelnen Bauteile um den Faktor 1 / (1+kdef) abgemindert werden.

Besteht eine Verbindung aus Holzbaustoffen mit unterschiedlichen kdef-Werten ist das arithmetische Mittel zu verwenden. Bei Stahlblech-Holz-Verbindungen ist der Verformungsbeiwert des Holzes zu verwenden.

Materialkennwerte

Baustoffeigenschaften werden durch charakteristische Werte angegeben, der einem angenommenen Fraktilwert einer statistischen Verteilung entspricht. In der Regel sind das die

  • 5 %-Quantilwerte bei Festigkeiten und Rohdichten, und
  • 5 %-Quantilwerte oder Mittelwerte bei Steifigkeiten
Vollholz

- Dieser Abschnitt ist ausgelagert, siehe: Vollholz

Brettschichtholz

- Dieser Abschnitt ist ausgelagert, siehe: Brettschichtholz


Nachweise im Grenzzustand der Tragfähigkeit

Allgemeines

Im Zuge der Nachweisführung für Tragwerke / Bauwerke sind nach EN 1990 folgende Bedingungen zu erfüllen:

  • EQU (equilibrium)
    Verlust der Lagesicherheit des Tragwerks oder eines seiner Teile, die als Starrkörper betrachtet werden dürfen
(1.10)
  • STR (structural failure)
    Versagen oder übermäßige Verformungen des gesamten Tragwerks oder von Tragwerksteilen, wobei die Tragfähigkeit von Bauteilen und deren Festigkeit maßgebend wird (Stabilität)
(1.11)
  • GEO (geotechnic)
    Versagen oder übermäßige Verformungen des Baugrundes
(1.12)
  • FAT (fatique)
    Ermüdungsversagen des gesamten Tragwerks oder von Tragwerksteilen
mit
Ed,dst Bemessungswerte der Auswirkungen der destabilisierenden Einwirkungen
Rd,stb Bemessungswerte der Auswirkungen der stabilisierenden Einwirkungen
Ed Bemessungswerte der Auswirkungen der Einwirkungen
Rd Bemessungswerte der zugehörigen Tragfähigkeiten


Die Nachweise der Grenzzustände der Tragfähigkeiten können einerseits über die Spannungszustände

(1.13)

oder durch den Vergleich der einwirkenden Schnittgrößen mit den Widerständen auf der Baustoffseite

(1.14)

geführt werden.


Abb. 1.5 : Ablaufschema beim Nachweis der Grenzzustände der Tragfähigkeit von Bauteilen


Querschnittsnachweise

Zug in Faserrichtung

Einwirkungen Qk erhält man nach Ermittlung der maßgebenden Lastkombination den Bemessungswert der Zugbeanspruchung st,0,d. Diesem wird der Bemessungswert der Zugfestigkeit ft,0,d gegenübergestellt. Bei der Bemessung der Querschnittstragfähigkeit sind evtl. vorhandene Querschnittsschwächungen zu berücksichtigen
(ANetto ~ 0,3 · ABrutto bis 0,8 · ABrutto (abhängig von derVerbindungsart)).

Die Spannungen müssen die folgende Bedingung erfüllen:

(1.15)
mit
Bemessungswert der Zugspannung
Bemessungswert der Zugfestigkeit


Druck in Faserrichtung des Holzes

Die Bemessungswerte für Druck in Faserrichtung sc,0,d aus der maßgebenden Lastkombination sind den Bemessungswerten der Druckfestigkeit fc,0,d gegenüber zustellen.

Die Spannungen müssen die folgende Bedingung erfüllen:

(1.16)
mit
Bemessungswert der Druckspannung
Bemessungswert der Druckfestigkeit


Druck rechtwinklig zur Faserrichtung des Holzes

Durch die anisotropen Eigenschaften hat Holz bei Beanspruchung in den verschiedenen Richtungen auch unterschiedliche Eigenschaften. Weiters ist die Beanspruchbarkeit bzw. das Verformungsverhalten bei Bauteilen ohne einen Überstand der Hirnholzflächen im Bereich der Lasteinleitung schlechter, als bei Beanspruchungen mit über den Lasteinleitungsbereichen überstehenden Holzfasern.

Wird ein Holzprobekörper vollflächig belastet, verhalten sich die Holzfasern wie übereinander gestapelte Rohre die im plastischen Bereich zusammengequetscht werden [2]. Wird stattdessen nur eine Teilflächenbelastung aufgebracht, ergibt sich eine höhere Steifigkeit. Eine Begründung dieser Tatsache kann durch den sogenannten „Einhängeeffekt“, der über die Lasteinleitungslänge hinauslaufenden Fasern resultiert, gefunden werden [9].


Baustoff l1 ≥ 2 · h l1 < 2 · h
Art der Lasteinleitung
kontinuierliche
Unterstützung
punktuelle
Unterstützung
Vollholz aus Nadelholz 1,25 1,50 1,00
Brettschichtholz aus Nadelholz 1,50 1,75 a 1,00
a Vorausgesetzt es gilt: l ≤ 400 mm, ansonsten darf l = 400 mm oder kc,90 = 1,00 angenommen werden.
Es bedeuten:

l ...... Kontaktlänge
l1 .... Abstand zwischen der Lasteinleitung
h ..... Höhe des Bauteils

Anmerkung:
Ist der Beiwert kc,90 nicht bekannt, darf konservativ mit einem Wert von 1,00 gerechnet werden.

Tab. 1.14: Querdruckbeiwert kc,90 nach EN 1995-1-1:2004/A1:2008 und DIN 1052:2008


Die Spannungen müssen die folgende Bedingung erfüllen:

(1.17)
mit
Bemessungswert der Querdruckspannung
Bemessungswert der Querdruckfestigkeit
Querdruckbeiwert siehe Tab. 1.14

Für die effektive Druckfläche Aef rechtwinklig zur Faserrichtung des Holzes, darf die tatsächliche Kontaktlänge durch den Einhängeeffekt parallel zur Faserrichtung um bis zu 30 mm je Seite verlängert werden.


Druck unter einem Winkel zur Faserrichtung des Holzes

Für 0° < a < 90° sind die folgenden Nachweise zu führen

Nachweis nach EN 1995-1-1:2004/A1:2008

(1.18)


Nachweis nach DIN 1052:2008

(1.19)
(1.20)
(1.21)
mit
Bemessungswert der Druckspannung
α Winkel zwischen der Beanspruchungsrichtung und Faserrichtung des Holzes
kc,90 Querdruckbeiwert siehe Tab. 1.14


Biegung

Träger mit entsprechenden Abmessungen und Auflagerausbildungen bei denen die Gefahr des Biegedrillknickens ausgeschlossen werden kann, dürfen die Biegespannungen nach der linearen Elastizitätstheorie ermittelt werden. Für kippgefährdete Balken sind zusätzlich Stabilitätsnachweise gegen Biegedrillknicken zu führen. Zur Berücksichtigung der Spannungsverteilungen durch die Inhomogenitäten des Baustoffes wird der Beiwert km verwendet. In der DIN 1052 wird der Beiwert zur Berücksichtigung der Inhomogenitäten mit kred bezeichnet.

Die Spannungen müssen die folgende Bedingung erfüllen:

(1.22)
(1.23)
mit
Bemessungswert der Biegespannung für Rechteckquerschnitte
km = 0,7 Beiwert für Rechteckquerschnitte aus Vollholz, BSH und Furnierschichtholz
(Anmerkung: In der DIN 1052 muss h/b ≤ 4 eingehalten werden)
km = 1,0} Beiwert für andere Querschnitte


Biegung und Zug

Bei einer kombinierten Beanspruchung aus Biegung und Zug müssen die folgenden Bedingungen nach Gleichung (1.24) und (1.25) erfüllt sein

(1.24)
(1.25)
mit
km Angaben gemäß 1.6.5


Biegung und Druck

Bei einer kombinierten Beanspruchung aus Biegung und Druck müssen die folgenden Bedingungen erfüllt sein:

(1.26)
(1.27)
mit
km Angaben gemäß 1.6.5


Schub aus Querkraft

Bei Schub und Rollschub muss die Gleichung (1.28) erfüllt sein:

(1.28)
mit
Bemessungswert der mittleren Schubspannungen bei Rechteckquerschnitten

Für den Nachweis der Beanspruchbarkeit auf Schub biegebeanspruchter Bauteile, sollte der Einfluss von möglichen Rissen nach EN 1995-1-1:2004/A1:2008 durch eine Abminderung der Querschnittsbreite mit dem Faktor kcr erfolgen.

mit
kcr = 0,67 für Vollholz
kcr = 0,672) für Brettschichtholz
kcr = 1,00 für für andere holzbasierte Produkte nach EN 13986 und EN 14374

2) Wird nach ÖNORM B 1995-1-1:2009 eine einheitliche Schubfestigkeit von fv,k = 3,0 N/mm² für alle BSH-Festigkeitsklassen angenommen, kann kcr = 0,83 angenommen werden.


Nach der DIN 1052:2008 soll bei einer Beanspruchung durch Doppelbiegung von Rechteckquerschnitten die folgende Bedingung eingehalten werden:

(1.29)

Anmerkung:
In der EN 1995-1-1 sind zu dieser Beanspruchungsart bzw. einer Nachweisführung keine Angaben zu finden.


Torsion

Bei auf Torsion beanspruchten Querschnitten dürfen die Torsionsspannungen wie für Bauteile ausisotropem Material berechnet werden.

Für den Nachweis nach DIN 1052:2008 muss die Gleichung (1.30) erfüllt werden

(1.30)

Für den Nachweis nach EN 1995-1-1:2004/A1:2008 gilt Gleichung (1.31)

(1.31)

mit

(1.32)
τtor,d Bemessungswert der Torsionsspannungen
fv,d Bemessungswert der Schubfestigkeit
kshape Beiwert zur Berücksichtigung der Querschnittsform
h die größere Querschnittsabmessung
b die kleinere Querschnittsabmessung
Schub aus Querkraft und Torsion

Nach DIN 1052:2008 muss die Bedingung

(1.33)

erfüllt werden.

Anmerkung:
In der EN 1995-1-1:2004/A1:2008 sind keine Angaben zu dieser Beanspruchungsart zu finden.

Bauteilnachweise (Stabilitätsnachweise)

Allgemeines

Druckbeanspruchte Bauteile können vor Erreichen ihrer Querschnittstragfähigkeit instabil werden und infolge übergroßer Verformungen ihre Tragfähigkeit verlieren, weshalb diese entsprechend zu dimensionieren bzw. nachzuweisen sind.

Im Folgenden wird die Nachweisführung nach DIN 1052:2008 für Druckstäbe nach dem sog. „Ersatzstabverfahren“ dargestellt. Für die Nachweisführung nach EN 1995-1-1:2004/A1:2008 wird auf die Festlegungen des Abschnittes 6.3 der genannten Norm verwiesen.

Druckstäbe mit planmäßig mittigem Druck

Die folgende Bedingung muss erfüllt sein

(1.34)

Der Knickbeiwert kc beträgt

(1.35)

mit

(1.36)
und
βc = 0,2 für Vollholz und Balkenschichtholz,
βc = 0,1 für Brettschichtholz und Holzwerkstoffe

mit dem bezogenen Schlankheitsgrad

(1.37)
Dabei ist:
σc,crit kritische Druckspannung, berechnet mit dem 5%-Quantilen der Steifigkeitskennwerte
λ = λef / π Schlankheitsgrad
π Trägheitsradius
λef = β · s oder β · h Ersatzstablänge
β Knicklängenbeiwert
s bzw. h Stablänge


Biegestäbe ohne Druckkraft

Biegestäbe müssen an den Auflagern gegen Verdrehen gesichert sein.

Die folgende Bedingung muss erfüllt sein

(1.38)

Der Kippbeiwert km beträgt

(1.39)

mit dem bezogenen Kippschlankheitsgrad

(1.40)

Dabei ist:
σc,crit kritische Biegedruckspannung, berechnet mit dem 5%-Quantilwerten der Steifigkeitswerte

mit Jz
Jt
Wy
Flächenmoment 2. Grades um die z-Achse,
Torsionsträgheitsmoment
Widerstandsmoment

Für Biegestäbe mit Rechteckquerschnitt der Breite b und der Höhe h darf der bezogene Kippschlankheitsgrad berechnet werden zu

(1.41)

Bei Biegestäben aus Brettschichtholz darf zur Berechnung des bezogenen Kippschlankheitsgrades λrel,m bzw. der kritischen Biegedruckspannung σc,crit das Produkt der 5%-Quantilen der Steifigkeitskennwerte mit dem Faktor 1,4 multipliziert werden.

Für den gabelgelagerten Einfeldträger mit konstantem Moment entspricht die Ersatzlänge lef der Stützweite l des Trägers.

Für andere Lagerungen und andere Einwirkungen ist die Ersatzstablänge lef nach Anhang E von DIN 1052:2008 zu berechnen.

Für Biegestäbe, bei denen eine seitliche Verschiebung des gedrückten Randesüber die ganze Länge verhindert wird, darf km = 1 gesetzt werden.

Für Biegestäbe mit Rechteckquerschnitt und darf km = 1 gesetzt werden. Dabei ist b die Trägerbreite.


Stäbe mit Biegung und Druck

Die folgenden Bedingungen müssen erfüllt sein

(1.42)

und

(1.43)
Dabei ist
kc,y Knickbeiwert nach Glg. 1.35 für Knicken um die y-Achse
kc,z Knickbeiwert nach Glg. 1.35 für Knicken um die z-Achse
km Kippbeiwert nach Glg. 1.39
kred Beiwert nach Abschnitt 1.6.2.5


Stäbe mit Biegung und Zug
(1.44)

und

(1.45)
Dabei ist
km Kippbeiwert nach Glg. 1.39
kred Beiwert nach Abschnitt 1.6.2.5


Allgemeine Nachweise in den Grenzzuständen der Gebrauchstauglichkeit

Grenzwerte für die Durchbiegung von Biegestäben

Die zulässigen Verformungen von Tragwerken sollen mit der vorgesehenen Nutzung abgestimmt werden. In der Tab. 1.15 werden Empfehlungen für die zulässigen Durchbiegungen von Biegeträgern gegeben.

Rechenwerte der Durchbiegungen Grenzwerte der Durchbiegungen
Biegeträger Kragträger
charakteristische
Bemessungs-
situation
wQ,inst l / 300 lk / 300
wfin - wQ,inst l / 200 lk / 100
quasi-ständige
Bemessungs-
situation
wfin - w0a) l / 200 lk / 100
a) In der ÖNORM B 1995-1-1 werden die Grenzwerte mit l/250 bzw. lk/125

Tab. 1.15: Empfohlene Grenzwerte von Durchbiegungen nach DIN 1052 und ÖNORM B 1995-1-1

Es bedeuten:
wG Durchbiegung im Fall ständiger Einwirkung
wQ Durchbiegung im Fall veränderlicher Einwirkungen
w0 Überhöhung (falls vorhanden)

Abb. 1.6: Anteile der Durchbiegungen

Zur Berücksichtigung der Kriechverformungen wird der Faktor kdef nach Tab. 1.10 bzw. Tab. 1.11 verwendet.


Nachweise im Grenzzustand der Gebrauchstauglichkeit

Die Ermittlung der Durchbiegungen kann nach DIN 1052:2008 mit den folgenden Gleichungen durchgeführt werden:

1) Gleichung für die Ermittlung der Endverformung wg,fin infolge der ständigen Einwirkungen

(1.34)

2) Gleichungen für die Ermittlung der Endverformung wQ,fin infolge der veränderlichen Einwirkungen

(a) für die charakteristische (seltene) Bemessungssituation

- vorherrschende veränderliche Einwirkung
(1.35)
- weitere veränderliche Einwirkungen
(1.36)

(b) für die quasi-ständige Bemessungssituation

- alle veränderlichen Einwirkungen
(1.37)



Schwingungsnachweise dürfen für Holzbauteile mit vorwiegend ruhender Belastung entfallen.

Für Wohnungsdecken sind die Angaben 9.3 in der DIN 1052:2008 bzw. 7.3 in der EN 1995-1-1:2004/A1:2008 sowie die Angaben im nationalen Anhang 5.7 der ÖNORM B 1995-1-1:2009 zu beachten.