Diffusion: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
2.526 Bytes hinzugefügt ,  15:47, 27. Sep. 2023
K
keine Bearbeitungszusammenfassung
K
(35 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
== Definitionen ==
Bei der '''Diffusion''' durchdringen Gase andere Gase oder feste Körper in Folge von Konzentrationsunterschieden. Die Diffusion ist ein ohne äußere Einwirkung eintretender Ausgleich unterschiedlicher Gaskonzentrationen.
Bei der '''Diffusion''' durchdringen Gase andere Gase oder feste Körper in Folge von Konzentrationsunterschieden. Die Diffusion ist ein ohne äußere Einwirkung eintretender Ausgleich unterschiedlicher Gaskonzentrationen.


In der Bauphysik beschreibt die '''Dampfdiffusion''' den Feuchtetransport durch Molekülwanderung, verursacht durch den Dampfdruckunterschied der das Bauteil umgebenden Luftschichten. In der Regel liegt im Winter ein Dampfdruckgefälle von der Raumseite nach außen vor, bei Erwärmung der Dachoberseite infolge Sonneneinstrahlung – auch im Winter – kehrt sich die Richtung um. Durch diese [[Umkehrdiffusion|Umkehr-]] oder Rückdiffusion besteht die Möglichkeit, dass im Bauteil enthaltene Feuchtigkeit auch zur Raumseite hin austrocknen kann.<ref name="Qu_1" />
Laut [[DIN 4108-3]]:2018-10 werden Stoffe hinsichtlich ihrer Dampfdurchlässigkeit nunmehr in folgende Kategorien eingestuft:
{{{TabH1/1}}
! width="200px" | Begriff || width="150" | [[sd-Wert|s<sub>d</sub>-Wert]] (Bereich)
|-
| diffusionsoffene Schicht || align="center" | s<sub>d</sub> ≤ 0,5 m
|-
| diffusionsbremsende Schicht || align="center" | 0,5 m < s<sub>d</sub> ≤ 10,0 m
|-
| diffusionshemmende Schicht || align="center" | 10 m < s<sub>d</sub> < 100 m
|-
| diffusionssperrende Schicht || align="center" | 100 m ≤ s<sub>d</sub> < 1.500 m
|-
| diffusionsdichte Schicht || align="center" | s<sub>d</sub> ≥ 1.500 m
|}
Die enstprechende redaktionelle Anpassung folgender Ausführungen erfolgt zu einem späteren Zeitpunkt.
 
----
 
 
'''[[Dampfbremse]]n''' und '''[[Dampfsperre]]n''' werden als  Funktionsschicht zur Begrenzung des Feuchteeintrags durch Dampfdiffusion auf ein für die Konstruktion unkritisches Maß eingesetzt. Bei den nachfolgend dargestellten Konstruktionen unterscheiden die Autoren zwischen Dampfbremsen (2 m ≤ [[sd-Wert|s<sub>d</sub>]] ≤ 20 m) und Dampfsperren ([[sd-Wert|s<sub>d</sub>]] > 20 m).


Eine  Besonderheit sind '''[[Feuchtevariabilität|feuchtevariable  Dampfbremsen]]''' (auch feuchteadaptiv genannt), bei denen sich  materialbedingt der [[Diffusionswiderstand]] entsprechend der umgebenden  Luftfeuchte verändert. Bei trockenem Umgebungsklima (im Winter auf der  Raumseite) weisen sie einen höheren  [[sd-Wert|s<sub>d</sub>-Wert]] auf (bis  [[sd-Wert|s<sub>d</sub>]] > 25 m), bei höheren  [[Luftfeuchtigkeit]]en (z.B. im Sommer) sinkt der  [[Diffusionswiderstand]] (bis [[sd-Wert|s<sub>d</sub>]] =  0,2 m). Zur Bemessung sind die produktspezifischen Werte zu beachten.  <ref name="Qu_1" />


==Diffusion, die planbare Größe==
== Diffusion, die planbare Größe ==
{{Hinweis|Eine Dampfbremse mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,3&nbsp;m lässt im Winter nach [[DIN 4108]]-3 pro Tag ca. 5&nbsp;g Feuchtigkeit pro Quadratmeter in die Konstruktion eindringen.}}
{{Hinweis|Eine Dampfbremse mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,3&nbsp;m lässt im Winter nach [[DIN 4108]]-3 pro Tag ca. 5&nbsp;g Feuchtigkeit pro Quadratmeter in die Konstruktion eindringen.}}
{|align="right"
{|align="right"
|[[Bild:BPhys GD 1 07_Dachschn.Diffusion-01.jpg|left|thumb|200px|Diffusion erfolgt planmäßig]]
|[[Bild:BPhys GD 1 07_Dachschn.Diffusion-01-2.jpg|right|thumb|200px|Diffusion erfolgt planmäßig]]
|}
|}
Die [[Diffusion]] findet aufgrund der Druckdifferenz zwischen innen und außen statt. Dabei erfolgt der Austausch nicht über Fugen, sondern durch Feuchtigkeit durch eine [[monolithisch]]e, [[Luftdichtung|luftdichte]] Materialschicht. Die Diffusion richtet sich in der Regel im Winter von innen nach außen, im Sommer von außen nach innen. Der Feuchteeintrag in die Konstruktion hängt vom [[Wasserdampfdiffusionswiderstand|Diffusionswiderstand]] (µ-Wert) des Materials ab. Der Zeitraum mit warmen Außentemperaturen in Mitteleuropa ist länger, als der mit winterlichen Temperaturen, so dass mehr Feuchtigkeit aus der [[Konstruktion]] heraus trocknen kann.
In der Bauphysik beschreibt die '''Dampfdiffusion''' den Feuchtetransport durch Molekülwanderung, verursacht durch den  Dampfdruckunterschied der das Bauteil umgebenden Luftschichten. Der Austausch erfolgt also, im Gegensatz zur [[Konvektion]], nicht über Fugen, sondern durch die Wanderung der Feuchtigkeit durch eine [[monolithisch]]e, [[Luftdichtung|luftdichte]] Materialschicht.  
<br clear="all" />


==So dachte man früher==
Der Diffusionsstrom richtet sich im Winter regulär von innen nach außen, bei Erwärmung der Bauteilaußenseite infolge Sonneneinstrahlung - auch im Winter – kehrt sich die Richtung um. Durch diese [[Umkehrdiffusion|Umkehr-]] oder Rückdiffusion besteht die Möglichkeit, dass im Bauteil enthaltene Feuchtigkeit auch zur Raumseite hin austrocknen kann <ref name="Qu_1" />. Der Zeitraum mit warmen Außentemperaturen ist in Mitteleuropa länger, als der mit winterlichen Temperaturen, so dass mehr Feuchtigkeit aus der [[Konstruktion]] heraus trocknen kann.
Je weniger Feuchtigkeit in eine Konstruktion eindringen kann, umso geringer ist die Gefahr eines Bauschadens – so dachte man früher.


Das heißt, die Verwendung von sehr dichten [[Dampfsperre]]n würde Bauschäden verhindern. Dass die Realität anders ist, wurde bereits vor über 15 Jahren bei der Markteinführung der pro clima [[DB+]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30 m durch bauphysikalische Berechnungen belegt.
Der Feuchteeintrag in die Konstruktion hängt vom [[Wasserdampfdiffusionswiderstand|Diffusionswiderstand]] -Wert) des Materials ab.
<br clear="all" />


Des Weiteren zeigen Untersuchungen an Außenwänden in Nordamerika aus dem Jahre 1999 <ref name="Qu_2" />, dass der Feuchtigkeitseintrag durch eine [[Dampfsperre]] infolge [[Konvektion]] selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250 g/m² pro Tauperiode beträgt.<br />
==Feuchtebelastung durch Diffusion==
Das entspricht einer [[Kondensat]]menge, welche durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3 m während eines Winters diffundiert <ref name="Qu_3" />.
''Auszug einer von MOLL bauökologische Produkte GmbH initiierten'' Studie<ref name="Qu_001" />:


{{Textrahmen01|
Je weniger Feuchtigkeit in eine Konstruktion eindringen kann, umso geringer ist die Gefahr eines Bauschadens – so dachte man früher. <br />
;Fazit:
Das heißt, die Verwendung von [[Dampfsperre]]n mit hohen Diffusionswiderständen würde Bauschäden verhindern. Dass die Realität anders ist, wurde bereits vor über 15 Jahren bei der Markteinführung der pro clima DB+ mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.  
;Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50 m, 100 m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.
}}


Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den „Regeln der Technik“.
Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, macht zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Angabe: Dampfsperren „unterbinden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist“. <ref name="Qu_01" />


==Definitionen==
Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über [[Rücktrocknungspotential]]e verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.
Laut [[DIN 4108-3]] werden Stoffe hinsichtlich ihrer Dampfdurchlässigkeit in folgende Kategorien eingestuft:
{{{TabH1/1}}
! width="300px" | || width="150" | [[sd-Wert|s<sub>d</sub>-Wert]]  
|-
| '''diffusionsoffen''' || align="center" | '''≤ 0,5 m'''
|-
| '''diffusionshemmend''' || align="center" | '''> 0,5 m bis < 1.500 m'''
|-
| '''diffusionsdicht''' || align="center" | '''≥ 1.500 m'''
|}


'''[[Dampfbremse]]n''' und '''[[Dampfsperre]]n''' werden als Funktionsschicht zur Begrenzung des Feuchteeintrags durch Dampfdiffusion auf ein für die Konstruktion unkritisches Maß eingesetzt. Bei den dargestellten Konstruktionen unterscheiden die Autoren zwischen Dampfbremsen (2 m ≤ [[sd-Wert|s<sub>d</sub>]] ≤ 20 m) und Dampfsperren ([[sd-Wert|s<sub>d</sub>]] > 20 m).  
Des Weiteren zeigen Untersuchungen an Außenwänden in Nordamerika aus dem Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine [[Dampfsperre]] infolge [[Konvektion]] selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt.<br />
Das entspricht einer [[Kondensat]]menge, welche durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,30&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.


Eine Besonderheit sind '''[[Feuchtevariabilität|feuchtevariable Dampfbremsen]]''' (auch feuchteadaptiv genannt), bei denen sich materialbedingt der [[Diffusionswiderstand]] entsprechend der umgebenden Luftfeuchte verändert. Bei trockenem Umgebungsklima (im Winter auf der Raumseite) weisen sie einen höheren [[sd-Wert|s<sub>d</sub>-Wert]] auf (bis [[sd-Wert|s<sub>d</sub>]] = 10 m), bei höheren [[Luftfeuchtigkeit]]en (z.B. im Sommer) sinkt der [[Diffusionswiderstand]] (bis [[sd-Wert|s<sub>d</sub>]] = 0,2 m). Zur Bemessung sind die produktspezifischen Werte zu beachten. <ref name="Qu_1" />
{{Textrahmen01|'''Fazit:''' <br />
Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.}}
==Berechnungsmodelle für Diffusionsvorgänge ==
; Siehe [[Diffusion - Berechnungsmodelle]]
<!--
''Auszug einer von MOLL bauökologische Produkte GmbH initiierten'' Sanierungs-Studie<ref name="Qu_002" />:


==Berechnungsmodelle für Diffusionsvorgänge==
{{{TabH1/2 r}} Genaue Ergebnisse mit instationären Berechnungsmodellen
{{{TabH1/2 r}} Genaue Ergebnisse mit instationären Berechnungsmodellen
|- class="hintergrundfarbe2"
|- class="hintergrundfarbe2"
Zeile 76: Zeile 91:
===Berechnung nach [[DIN EN 15026]]===
===Berechnung nach [[DIN EN 15026]]===
Wirklich realistische Ergebnisse liefern die instationären Berechnungsverfahren wie [[WUFI#WUFI Pro|WUFI Pro]], [[WUFI#WUFI 2D|WUFI 2D]] oder [[Delphin]]. Sie berechnen den Feuchte- und Wärmetransport in der Konstruktion basierend auf realen Klimadaten (Temperatur, Luftfeuchte, (Schlag-) Regen, Sonne, Wind usw.) bzw. Baustoffeigenschaften ('''Diffusion''', Wasseraufnahme, -speicherung und -transport usw.) und der geographischen Ausrichtung der Gebäudeteile (Neigung, Himmelsrichtung). [[Baufeuchte|Feuchtigkeitsgehalt]] und Temperatur können für jeden Punkt der betrachteten Konstruktion ausgegeben werden.
Wirklich realistische Ergebnisse liefern die instationären Berechnungsverfahren wie [[WUFI#WUFI Pro|WUFI Pro]], [[WUFI#WUFI 2D|WUFI 2D]] oder [[Delphin]]. Sie berechnen den Feuchte- und Wärmetransport in der Konstruktion basierend auf realen Klimadaten (Temperatur, Luftfeuchte, (Schlag-) Regen, Sonne, Wind usw.) bzw. Baustoffeigenschaften ('''Diffusion''', Wasseraufnahme, -speicherung und -transport usw.) und der geographischen Ausrichtung der Gebäudeteile (Neigung, Himmelsrichtung). [[Baufeuchte|Feuchtigkeitsgehalt]] und Temperatur können für jeden Punkt der betrachteten Konstruktion ausgegeben werden.
-->




Zeile 81: Zeile 97:
<references>
<references>
<ref name="Qu_1">INFORMATIONSDIENST HOLZ, spezial, ''Flachdächer in Holzbauweise'', Oktober 2008</ref>
<ref name="Qu_1">INFORMATIONSDIENST HOLZ, spezial, ''Flachdächer in Holzbauweise'', Oktober 2008</ref>
<ref  name="Qu_2">TenWolde, A. et al.: ”''Air pressures in wood frame  walls, proceedings thermal VII.''” Ashrae Publication Atlanta,  1999</ref>
<ref name="Qu_001"> ''Moll bauökologische Produkte GmbH'': WISSEN 2014/15 - [[Bauphysik Studie#Feuchtebelastung durch Diffusion|''Studie „Berechnung des Bauschadensfreiheitspotential von Wärmedämmungen in Holz- und Stahlbaukonstruktionen“ '']], 2012, S. 65 (- oder zum [[WISSEN 2014/15 - pro clima#Studie|Download]]) </ref>
<ref name="Qu_3">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref>
<ref name="Qu_01"> Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig, [http://holzbauphysik-kongress.eu/mediapool/69/694318/data/Konsens_Flachdaecher_2011_03_END.pdf holzbauphysik-kongress.eu: Konsens_Flachdaecher_2011_03_END.pdf] </ref>
</references>
<ref  name="Qu_02">TenWolde, A. et al.: ”''Air pressures in wood frame  walls, proceedings thermal VII.''” Ashrae Publication Atlanta,  1999</ref>
 
<ref name="Qu_03">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref>
 
<!--
{{NAV Bphys gd1}}
<ref name="Qu_002"> pro clima: WISSEN 2010/11 [[WISSEN 2010/11 - pro clima#Sanierungs-Studie|"''Sanierungs-Studie''"]], 2010, S. 71 - zum '''[[WISSEN 2010/11 - pro clima#Sanierungs-Studie|Download]]''' | zum ''' [[Konstruktionsempfehlung - Dachsanierung|Stammartikel]]''' </ref>
-->
</references>


==Siehe auch==
==Siehe auch==
Zeile 92: Zeile 110:
* [[Wasserdampfdurchlässigkeit]]
* [[Wasserdampfdurchlässigkeit]]


 
{{NAV Bphys gd1}}


[[Kategorie:Bauphysik]][[Kategorie:Glossar]]
[[Kategorie:Bauphysik]][[Kategorie:Glossar]]

Navigationsmenü