Bauphysik Studie: Unterschied zwischen den Versionen

1.757 Bytes hinzugefügt ,  Dienstag um 23:19
K
(78 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 22: Zeile 22:


{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| colspan="2" | '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
| colspan="2" style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;"| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
|-
|-
| valign="top" width="300px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | 1. Feuchtephysik der Luft bei 50 % rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|300px|]]
| valign="top" width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''1. Feuchtephysik der Luft bei 50 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|460px|]]
| valign="top" width="300px" | 2. Feuchtephysik der Luft bei 65 % rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|300px|]]
| valign="top" width="300px" | '''2. Feuchtephysik der Luft bei 65 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|460px|]]
|- style="font-size:90%;"
|-  
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20 °C / 50 % rel. Luftfeuchte wird der Taupunkt bei 8,7 °C erreicht. Bei -5 °C fällt Kondensat von 5,35 g/m³ Luft aus.
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20 °C / 50 % rel. Luftfeuchte wird der Taupunkt bei 8,7 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 5,35 g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65 % rel. Luftfeuchte wird der Taupunkt schon bei 13,2 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 7,95 g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65 % rel. Luftfeuchte wird der Taupunkt schon bei 13,2 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 7,95 g/m³ Luft aus.
|}
|}
Die [[Wärmedämmung]] der Gebäudehülle trennt im winterlichen Klima die warme Innenraumluft mit ihrem hohen Feuchtegehalt von der kalten Außenluft mit geringer absoluter [[Luftfeuchtigkeit|Feuchtigkeit]]. Dringt warme Innenraumluft in das ein Bauteil ein, kühlt sie sich auf ihrem Weg durch die Konstruktion ab. Aus dem in der Luft enthaltenen Wasserdampf kann dann flüssiges Wasser auskondensieren. Ursächlich für den Ausfall von Wasser ist das physikalische Verhalten der Luft: <br />  
Die [[Wärmedämmung]] der Gebäudehülle trennt im winterlichen Klima die warme Innenraumluft mit ihrem hohen Feuchtegehalt von der kalten Außenluft mit geringer absoluter [[Luftfeuchtigkeit|Feuchtigkeit]]. Dringt warme Innenraumluft in das Bauteil ein, kühlt sie sich auf ihrem Weg durch die Konstruktion ab. Aus dem in der Luft enthaltenen Wasserdampf kann dann flüssiges Wasser auskondensieren. Ursächlich für den Ausfall von Wasser ist das physikalische Verhalten der Luft: <br />  
Warme Luft kann mehr Wasser aufnehmen als kalte Luft ''(siehe auch: [[Luftfeuchtigkeit]])''. Bei höherer rel. Raumluftfeuchtigkeit (z. B. Neubauten mit 65 %) erhöht sich die [[Taupunkttemperatur]] und als unmittelbare Folge die Tauwassermenge (siehe Abb. 1 und 2). <br />
Warme Luft kann mehr Wasser aufnehmen als kalte Luft ''(siehe auch: [[Luftfeuchtigkeit]])''. Bei höherer rel. Raumluftfeuchtigkeit (z. B. Neubauten mit 65 %) erhöht sich die [[Taupunkttemperatur]] und als unmittelbare Folge die Tauwassermenge (siehe Abb. 1 und 2). <br />
Tauwasser kann im Bauteil anfallen, wenn die Taupunkttemperatur unterschritten wird und enthaltener Wasserdampf durch [[diffusionsdicht]]ere Bauteilschichten auf der Außenseite nicht aus dem Bauteil heraustrocknen kann.
Tauwasser kann im Bauteil anfallen, wenn die Taupunkttemperatur unterschritten wird und enthaltener Wasserdampf durch [[diffusionsdicht]]ere Bauteilschichten auf der Außenseite nicht aus dem Bauteil heraustrocknen kann.
Zeile 46: Zeile 46:


=== Feuchtebelastungen der Konstruktion ===
=== Feuchtebelastungen der Konstruktion ===
Eine Feuchtebelastung innerhalb einer Wärmedämmkonstruktion, z. B. im Dach, kann verschiedene Ursachen haben. Zum Beispiel kann durch eine undichte [[Dachhaut]] Wasser eindringen (Anschlusspunkte, Nahtstellen, Unwetter, Nagetiere). Dies können große Mengen Feuchtigkeit sein, bei denen das Wasser in den bewohnten Raum tropft. Geringe Leckagen können zu einer schleichenden Auffeuchtung führen. Diese ist oft begleitet durch [[Schimmel]]befall der in der Konstruktion enthaltenen Materialien. Eine Belastung der Konstruktion durch Feuchtigkeit kann aber auch von innen erfolgen durch:
Eine Feuchtebelastung innerhalb einer Wärmedämmkonstruktion kann verschiedene Ursachen haben. Zum Beispiel kann durch eine undichte Flachdachabdichtung Wasser von außen in ein Bauteil eindringen. Diese Feuchtigkeitsmengen können so groß sein, dass Wasser in den bewohnten Bereich tropft. Geringe Leckagen in Abdichtungen können dagegen in der Konstruktion zu einer allmählichen Auffeuchtung führen. Als Folge treten oft [[Schimmel]]befall der enthaltenen Materialien bis hin zum Entstehen holzzerstörender Pilze auf. Feuchtigkeit kann aber auch von der beheizten Innenseite in eine Konstruktion eindringen durch:


; Vorhersehbare Feuchtebelastung:
; a) Vorhersehbare Feuchtebelastung:
* Diffusionsvorgänge (s.u.)
* Diffusionsvorgänge  
;Unvorhergesehene Feuchtebelastung:
 
; b) Unvorhergesehene Feuchtebelastungen:
* [[Konvektion]], d. h. Luftströmung (Undichtheiten in der Luftdichtungsebene)  
* [[Konvektion]], d. h. Luftströmung (Undichtheiten in der Luftdichtungsebene)  
* Konstruktiv bedingter [[Feuchtetransport]] (z. B. [[Flankendiffusion]] durch angrenzendes Mauerwerk)  
* Konstruktiv bedingter [[Feuchtetransport]] (z. B. [[Flankendiffusion]] durch angrenzendes Mauerwerk)  
* Erhöhte [[Einbaufeuchte]] der verwendeten Baustoffe  
* Erhöhte [[Einbaufeuchte]] der verwendeten Baustoffe (z. B. der Hölzer)
* Nicht koordinierter Bauablauf
* Fehler im Bauablauf
 
Im Einzelnen:


==== Feuchtebelastung durch Diffusion ====
==== Feuchtebelastung durch Diffusion ====
Je höher der innenseitige sd-Wert ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von
Je höher der innenseitige [[sd-Wert|s<sub>d</sub>-Wert]] ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von Dampfsperren mit hohen Diffusionswiderständen Bauschäden verhindern würde. <br />
[[Dampfsperre]]n mit hohen Diffusionswiderständen Bauschäden verhindern würde. Dass die Realität anders ist, wurde bereits vor über 20 Jahren bei der Markteinführung der pro clima DB+ mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.
Dass die Realität anders ist, wurde bereits vor über 25 Jahren bei der Markteinführung der ersten feuchtevariablen Dampfbremse [[DB+]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.  
 
Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, trifft zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Aussage: Dampfsperren »unter binden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche
Restleckagen erforderlich ist«. <ref name="Qu_01" />


Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, macht zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Angabe: Dampfsperren »unterbinden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist«. <ref name="Qu_01" />
Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über ein ausreichendes [[Rücktrocknungspotenzial]] verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.


Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über [[Rücktrocknungspotenzial]]e verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.


Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine [[Dampfsperre]] infolge [[Konvektion]] selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt.
{| align="center"
Das entspricht einer [[Kondensat]]menge, welche durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.
| width="50%" algin="left" | {{Textrahmen vario|Fazit: |Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.|600px}}
{{Textrahmen01|'''Fazit:''' <br /> Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.}}
| style="border-style:solid; border-width:1px; class="rahmenfarbe1" |'''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
|} <br clear="all" />
----


==== Feuchtebelastung durch Konvektion ====  
==== Feuchtebelastung durch Konvektion ====  
{|align="right" width="180px" style="border-style:solid; border-width:1px; class="rahmenfarbe1"
Durch [[Konvektion]], also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen (siehe Abb. 3).
| colspan="2" |'''3. Feuchtigkeitsmenge durch Konvektion'''
 
Durch Leckagen in Konstruktionen mit äußeren diffusionsdichten Bauteilschichten eingedrungene Feuchtigkeit kann schnell zu einem Bauschaden führen. Konvektive Feuchteeinträge können wegen ihrer hohen Feuchtelast aber
auch für außen diffusionsoffene Bauteile gefährlich werden, v. a. wenn bereits [[Tauwasser]] ausgefallen und es im winterlich kalten Klima zur Bildung von Eisschichten z. B. an der Unterdeckung gekommen ist.
 
'''Feuchteeintrag in die Konstruktion durch Undichtheiten in der Dampfsperre'''
{|align="left" style="border-style:solid; border-width:1px; class="rahmenfarbe1"
| colspan="3" |   '''3. Feuchtigkeitsmenge durch Konvektion'''
|-
| colspan="2" | [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01-3.jpg|center|460px]]
|-
| '''Feuchtetransport'''
|-
| durch Dampfsperre: || 0,5 g/(m² · 24 h)
|-
|-
|valign="top" colspan="2" | [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01-3.jpg|left|220px|]]
| durch 1 mm Fuge: || 800 g/(m · 24 h)
|-  
| '''Erhöhung Faktor:''' || '''1.600'''
|-
|-
|Feuchtetransport ||  
| colspan="2" align="center" | ---  ---  ---    ---  ---  ---    ---  ---  ---    ---  ---  --- 
|-
|-
|durch Dampfbremse: <br /> durch 1 mm Fuge: || 0,5 g/(m² · 24 h) <br />  800 g/(m · 24 h)
| '''Randbedingungen'''
|-
|-
|'''Erhöhung Faktor:''' || '''1.600'''
| Dampfbremse sd-Wert: || 30 m
|-
|-
| <small>''Randbedingungen:''</small>
| Innentemperatur: ||  +20 °C
|-
|-
|<small>''Dampfbremse sd-Wert'' <br /> ''Innentemperatur'' <br /> ''Außentemperatur''</small>|| <small>''= 30 m'' <br /> ''= +20 °C'' <br /> ''= 0 °C''</small>
| Außentemperatur: || 0 °C
|-
|-
| valign="top" | <small>''Druckdifferenz''</small> || <small>''= 20 Pa <br />~ Windstärke 2-3</small>''
| Druckdifferenz: || colspan="2" | 20 Pa (entsprechend Windstärke 2-3)
|-
|-
| colspan="2" | <small>Messung: [[Institut für Bauphysik]], Stuttgart<ref name="Qu_04" /></small>
|  Messung: || colspan="2" | [[Institut für Bauphysik]], Stuttgart <ref name="Qu_04" />
|}
|} 
Durch [[Konvektion]], also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen. (Siehe Abb. 3)
<br clear="all" />
 
<br />
<br />
 
----


Für Konstruktionen mit außen diffusionsdichten Bauteilschichten hat ein Feuchteeintrag über Konvektion schnell einen Bauschaden zur Folge. Konvektive Feuchtemengen können wegen ihrer hohen Feuchtelast aber auch für diffusionsoffene Bauteile auf der Außenseite gefährlich werden, vor allem wenn bereits [[Tauwasser]] ausgefallen ist.
==== Konstruktiv bedingte Feuchtigkeit - Flankendiffusion ====
Verschiedene Bauschäden wurden in der Literatur dokumentiert, die sich allein mit [[Diffusion]]s- und [[Konvektion]]svorgängen durch Dampfsperren nicht erklären ließen. <br />
Ruhe <ref name="Qu_05" /> und Klopfer <ref name="Qu_06" /> haben 1995 bzw. 1997 bei einem Bauschaden auf das Problem der Flankendiffusion hingewiesen <ref name="Qu_07" />.


==== Konstruktiv bedingte Feuchtigkeit - Flankendiffusion ====
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" width="600px"
Es sind in der Praxis Bauschäden aufgetreten, die sich allein mit [[Diffusion]]s- und [[Konvektion]]svorgängen nicht erklären ließen. Ruhe <ref name="Qu_05" /> und Klopfer <ref name="Qu_06" /> haben 1995 bzw. 1997 bei einem Bauschaden auf das Problem der '''Flankendiffusion''' hingewiesen.<ref name="Qu_07" />
| width="410px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''4. Bauschaden: Feuchteeintrag trotz luftdichtem Anschluss und Verwendung einer Dampfsperre'''
{|align="right" style="margin: 0 0 0 15px;"  
| '''5. Ursache des Feuchteeintrags: Feuchtetransport über die Flanke, hier das Mauerwerk'''
|'''4. Bauschaden: Feuchteeintrag<br />trotz luftdichtem Anschluss und<br />Verwendung einer [[Dampfsperre]]'''  
||'''5. Ursache des Feuchteeintrags: <br />[[Feuchtetransport]] über die <br />Flanke, hier das Mauerwerk'''
|-
|-
|[[Bild:BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg|left|thumb|200px|Luftdichte Konstruktion mit [[PE]]-Folie und luftdichter
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg|center|400px|]]
Putzschicht, außen Bitumendachbahn.]]
| [[Bild:BPhys GD 1 09_Dachschn.Flankendiffusion-01-2.jpg|center|400px]]
|[[Bild:BPhys GD 1 09_Dachschn.Flankendiffusion-01-2.jpg|left|thumb|200px|Feuchteeintrag durch Flankendiffusion über das angrenzende
|-
Mauerwerk.]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Luftdichte Konstruktion mit Dampfsperrfolie ([[PE]]) und luftdichter Putzschicht, außen Bitumendachbahn.
| Feuchteeintrag durch Flankendiffusion über das angrenzende Mauerwerk.
|}
|}
;Die Konstruktion
''' Die Konstruktion:''' <br />
Dach, außenseitig Holzschalung und Bitumendachbahn, innenseitig Kunststofffolie aus [[Polyethylen]] (PE), dazwischen der mit [[Mineralwolle]] voll ausgedämmte Sparrenzwischenraum. Trotz perfekter [[Luftdichtheit]] tropfte im Sommer Wasser aus den Anschlüssen der Bahn auf die unteren angrenzenden Bauteile. <br />
Steildach: außen Bitumenbahn auf Holzschalung, innen Dampfsperre aus [[Polyethylen]] (PE), der Zwischenraum ist vollständig mit [[Mineralwolle]] ausgedämmt. Trotz perfekter [[Luftdichtheit]] tropfte im Sommer
Zunächst wurde angenommen, dass die Ursache erhöhte [[Einbaufeuchtigkeit]] sei. Da das Abtropfen von Jahr zu Jahr zunahm, war dies ausgeschlossen. Nach 5 Jahren wurde das Dach geöffnet. Die Holzschalung war bereits größtenteils verfault. <br />
Wasser aus den Anschlüssen der Bahn auf die unteren angrenzenden Bauteile. Zunächst wurde angenommen, dass die Ursache erhöhte [[Einbaufeuchtigkeit]] sei. Da das Abtropfen von Jahr zu Jahr zunahm, war dies ausgeschlossen. <br />
Diskutiert wurde der Feuchteeintrag durch Flankendiffusion. Dabei dringt Feuchtigkeit über die Flanke des seitlichen Luftdichtungsanschlusses, hier ein porosiertes Ziegelmauerwerk, ins Dach ein. Der Feuchtestrom umgeht dadurch die [[PE]]-Folie. (siehe Abb. 4 und 5)<br />
Nach 5 Jahren wurde das Dach geöffnet. Die Holzschalung war bereits erheblich durch holzzerstörende Pilze geschädigt. Diskutiert wurde der Feuchteeintrag durch Flankendiffusion. Dabei dringt Feuchtigkeit
Unter Bauphysikern wurde der Sachverhalt zu Beginn kontrovers diskutiert, bis Künzel <ref name="Qu_08" /> 1997 die Flankendiffusion mit Hilfe von Berechnungen des zweidimensionalen Wärme- und [[Feuchtetransport]]s mit [[WUFI|WUFI 2D]] rechnerisch nachwies. <br />
über die Flanke des angrenzenden Mauerwerks (hier porosierter Ziegel) ins Dach ein. Der Feuchtestrom umgeht dadurch die Dampfsperrfolie (siehe Abb. 4 und 5). <br />
Nach der Berechnung erhöhte sich die Holzfeuchtigkeit über dem Ziegelmauerwerk bereits nach einem Jahr auf ca. 20 % und damit bereits über die [[schimmel]]kritische Grenze, nach 3 Jahren stieg sie auf 40 % und nach 5 Jahren auf 50 %.
Unter Bauphysikern wurde der Sachverhalt zu Beginn kontrovers diskutiert bis Künzel <ref name="Qu_08" /> 1997 die Flankendiffusion mit Hilfe von Berechnungen des zweidimensionalen Wärme- und [[Feuchtetransport]]s mit [[WUFI|WUFI 2D]] rechnerisch nachwies.
In der Simulation erhöhten sich die rel. Feuchtegehalte der Schalung über dem Ziegelmauerwerk bereits nach einem Jahr auf ca. 20 %, nach 3 Jahren stieg sie auf 40 % und nach 5 Jahren auf 50 %.
 
<br clear="all" />
 
----


==== Hohe Einbaufeuchte von Baustoffen ====
==== Hohe Einbaufeuchte von Baustoffen ====
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
|[[Bild:BPhys GD 1 10_Dachschn.Baust._Feuchte-01-2.jpg|center|260px|]]
|[[Bild:BPhys GD 1 10_Dachschn.Baust._Feuchte-01-2.jpg|center|400px|]]
|- style="font-size:90%;"
|-
|Unvorhergesehen: Feuchtigkeit aus Baustoffen
|Unvorhergesehen: Feuchtigkeit aus Baustoffen
|}
|}
Werden Baustoffe mit einem erhöhten Feuchtegehalt verarbeitet, ist die Konstruktion darauf angewiesen, dass diese Feuchtigkeit wieder austrocknen kann. Auch wenn es sich heute durchgesetzt hat, dass trockenes Bauholz verwendet wird, kann ein Regenschauer zu einer erhöhten Holzfeuchtigkeit führen.


;In konkreten Zahlen heißt das:
Werden Baustoff e mit einem höheren Feuchtegehalt als im Gebrauchszustand eingesetzt, ist die Konstruktion darauf angewiesen, dass diese Feuchtigkeit austrocknen kann. In der Regel werden heute technisch vorgetrocknete Hölzer (Konstruktionsvollholz) eingesetzt. Diese verfügen definitionsgemäß über eine rel. Materialfeuchte von bis zu 18 %. Kommt es zur weiteren Feuchteaufnahme z. B. durch Freibewitterung kann dieser Wert deutlich überschritten werden.
Ein Dach mit Sparren 6/24 und einem Sparrenabstand e = 0,70 m hat pro m² Dachfläche 1,5 lfm Sparren. Bei 10 % Feuchtigkeit enthält diese Dachfläche ca. 1,1 l Wasser aus dem Sparrenanteil.


;Das bedeutet:
''' Beispiel: ''' <br />
Wenn die Holzfeuchte zu Beginn 30 % beträgt, muss, damit die [[schimmel]]kritische Feuchtigkeit von 20 % unterschritten wird, 1,1 l Wasser/m² Dachfläche austrocknen können.
Ein Dach mit Sparren 6/24 und einem Sparrenabstand e = 0,70 m hat pro m² Dachfläche 1,5 lfm Sparren. <br />
Bei 10 % Feuchtigkeit enthält diese Dachfläche ca. 1,1 l Wasser aus dem Sparrenanteil.


Dieses Rechenbeispiel gilt auch für eine Holzschalung von 20 mm Stärke. Der Feuchtegehalt bei 10 % Holzfeuchte beträgt ca. 1,2 l Wasser pro m². Bei 30 % rel. Anfangsfeuchtigkeit, nach einem Regentag keine Seltenheit, müssen zur Unterschreitung der Schimmelgrenze 1,2 l Wasser pro m² Dachfläche austrocknen. Für Sparren und Holzschalung zusammen sind das ca. 2,3 l pro m² Dachfläche.
''' Bei erhöhter Feuchte bedeutet das: ''' <br />
Die aktuelle [[DIN 68800-2]] fordert, dass Hölzer, die während der Bauphase über eine rel. Feuchte von 20 % aufgefeuchtet werden, innerhalb von höchstens 3 Monaten eine Holzfeuchte von weniger als 20 % erreichen müssen. Wenn die rel. Holzfeuchte 30 % beträgt, müssen zur Einhaltung der Norm 1,1 l Wasser/m² Dachfläche austrocknen können. <br />
Dieses Rechenbeispiel gilt auch für eine Holzschalung von 24 mm Stärke. Der Feuchtegehalt bei 10 % Holzfeuchte beträgt ca. 1,2 l Wasser pro m². Bei 30 % rel. Anfangsfeuchtigkeit, nach einem Regentag keine Seltenheit, müssen 1,2 l Wasser pro m² Dachfläche austrocknen, damit 20 % rel. Holzfeuchte erreicht werden. <br /> 
Für Sparren und Holzschalung zusammen sind das ca. 2,3 l pro m² Dachfläche. <br />
Die Gesamtmenge an Feuchtigkeit wird häufig unterschätzt. Beim Mauerwerksbau kann durch die Neubaufeuchtigkeit eine erhebliche Feuchtigkeitsmenge zusätzlich ins Holz gelangen. Wird dann auf der Innenseite einer
vollgedämmten Konstruktion eine diffusionsdichte Dampfsperrfolie aus [[Polyethylen]] eingebaut und außen mit einer Bitumendachbahn als Vordeckung kombiniert, ist ein [[Bauschaden]] unausweichlich. Mehr siehe: [[Einbaufeuchte]]


Die Gesamtmenge an Feuchtigkeit wird häufig unterschätzt. Beim Massivbau kann durch die Neubaufeuchtigkeit eine erhebliche Feuchtigkeitsmenge hinzugefügt werden. Wenn sich dann auf der Innenseite eine diffusionsdichte Folie aus [[Polyethylen]] und außen eine Bitumendachbahn als Vordeckung befindet, kann es schnell zu einem [[Bauschaden]] kommen. (mehr siehe: [[Einbaufeuchte]])
<br />
----


==== Zusammenfassung der Feuchtebelastungen ====
==== Zusammenfassung der Feuchtebelastungen ====
Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie auszuschließen ist. Wenn es darum geht schadens- und schimmelfrei zu bauen, ist die Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.
 
{{Textrahmen01|'''Trocknungsvermögen > Feuchtebelastung -> Bauschadensfreiheit'''<br />
Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie ganz auszuschließen ist. Wenn es darum geht schaden- und schimmelfrei zu bauen, ist die
Nur wenn das Trocknungsvermögen kleiner ist als die Feuchtebelastung, kann ein Bauschaden entstehen.<br />
Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.
'''„Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.“'''<br />
 
Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen.}}
 
'''Intelligentes Feuchtemanagement Sicherheitsformel:'''
{{Textrahmen vario|Trocknungsvermögen > Feuchtebelastung <nowiki>=</nowiki> Bauschadensfreiheit|• Nur wenn das Trocknungsvermögen kleiner ist als die Feuchtebelastung, kann ein Bauschaden entstehen. <br /> • »Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.« <br /> Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen. |1200px|center}}
 
== „Intelligente“ Dampfbremsen ==  
== „Intelligente“ Dampfbremsen ==  
=== Austrocknung der Konstruktion nach innen ===
=== Austrocknung der Konstruktion nach innen ===
{{Vollbox-blau|'''Feuchtesituation in der Konstruktion'''  
{{Textrahmen vario|Feuchtesituation in der Konstruktion|  
Der Diffusionsstrom geht immer von der warmen zur kalten Seite.  
Der Diffusionsstrom geht immer von der warmen zur kalten Seite.
Daraus folgt: <br />
Daraus folgt: <br />
Im Winter: <br /> Erhöhte Feuchtigkeit auf der Außenseite. <br />
Im Winter: Erhöhte Feuchtigkeit auf der Außenseite. <br />
Im Sommer: <br /> Erhöhte Feuchtigkeit auf der Innenseite.}}
Im Sommer: Erhöhte Feuchtigkeit auf der Innenseite.|500px|center}}


{|align="right" width="300px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" width="300px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
| '''6. Funktionsprinzip <br /> feuchtevariable Bahnen'''
| '''6. Funktionsprinzip <br /> feuchtevariable Bahnen'''
|-
|-
|[[Bild:BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg|center|300px|]]
| [[Bild:BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg|center|360px|]]
|- style="font-size:90%;"
|-  
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
| Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
|-
| '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
|-
|[[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|300px|]]
|- style="font-size:90%;"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]
|-
| '''9. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
|-
|[[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|300px|]]
|- style="font-size:90%;"
|[[DB+]]:  Mittlere [[Feuchtevariabilität]] <br /> [[INTELLO]]: Hohe Feuchtevariabilität
|}
|}
Eine entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil nach innen: Immer wenn die Temperatur außenseitig der Dämmung höher ist als innenseitig, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit strömt zur Innenseite. Dies erfolgt bereits bei sonnigen Tagen im Frühjahr und im Herbst sowie verstärkt in den Sommermonaten.
Eine entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil nach innen: Immer wenn die Temperatur außenseitig der Dämmung höher ist als innenseitig, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit strömt zur Innenseite. Dies erfolgt bereits bei sonnigen Tagen im Frühjahr und im Herbst sowie verstärkt in den Sommermonaten.


Zeile 169: Zeile 197:


Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese „intelligenten“ Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren sie umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima  diffusionsdichter und schützen die Konstruktion vor Feuchtigkeit. Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen somit eine Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese „intelligenten“ Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren sie umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima  diffusionsdichter und schützen die Konstruktion vor Feuchtigkeit. Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen somit eine Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
{|align="left" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
| width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
| width="400px" | '''9. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|360px|]]
| [[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|360px|]]
|- 
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]
| [[DB+]]:  Mittlere [[Feuchtevariabilität]] <br /> [[INTELLO]]: Hohe Feuchtevariabilität
|} <br clear="all" />


=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
Zeile 190: Zeile 230:
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
|-
|-
| width="77px"| im Winter  
| im Winter  
| width="77px"| im Sommer
| im Sommer
|-
|-
| Diffusions-richtung
| Diffusionsrichtung
| nach außen <div style="font-size:86%;"> Richtung <br /> [[Unterdeckung]] </div>
| nach außen <div style="font-size:86%;"> Richtung [[Unterdeckung]] </div>
| nach innen <div style="font-size:86%;"> Richtung <br /> [[Dampfbremse]] </div>
| nach innen <div style="font-size:86%;"> Richtung [[Dampfbremse]] </div>
|-
|-
| [[DB+]]   
| [[DB+]]