Bauphysik Studie: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
2.969 Bytes hinzugefügt ,  Freitag um 23:31
K
(34 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 26: Zeile 26:
| valign="top" width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''1. Feuchtephysik der Luft bei 50 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|460px|]]
| valign="top" width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''1. Feuchtephysik der Luft bei 50 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|460px|]]
| valign="top" width="300px" | '''2. Feuchtephysik der Luft bei 65 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|460px|]]
| valign="top" width="300px" | '''2. Feuchtephysik der Luft bei 65 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|460px|]]
|- style="font-size:90%;"
|-  
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20 °C / 50 % rel. Luftfeuchte wird der Taupunkt bei 8,7 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 5,35 g/m³ Luft aus.
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20 °C / 50 % rel. Luftfeuchte wird der Taupunkt bei 8,7 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 5,35 g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65 % rel. Luftfeuchte wird der Taupunkt schon bei 13,2 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 7,95 g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65 % rel. Luftfeuchte wird der Taupunkt schon bei 13,2 °C erreicht. <br /> Bei -5 °C fällt Kondensat von 7,95 g/m³ Luft aus.
Zeile 70: Zeile 70:
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.


{|
{| align="center"
| {{Textrahmen vario|Fazit: |Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.|600px}}
| width="50%" algin="left" | {{Textrahmen vario|Fazit: |Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.|600px}}
| style="border-style:solid; border-width:1px; class="rahmenfarbe1" |'''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
| style="border-style:solid; border-width:1px; class="rahmenfarbe1" |'''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> » es fällt früher Tauwasser aus.
|} <br clear="all" />
|} <br clear="all" />
Zeile 122: Zeile 122:


{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" width="600px"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" width="600px"
| '''4. Bauschaden: Feuchteeintrag <br /> trotz luftdichtem Anschluss und <br /> Verwendung einer Dampfsperre'''   
| width="410px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''4. Bauschaden: Feuchteeintrag trotz luftdichtem Anschluss und Verwendung einer Dampfsperre'''   
| '''5. Ursache des Feuchteeintrags: <br /> Feuchtetransport über die <br /> Flanke, hier das Mauerwerk'''
| '''5. Ursache des Feuchteeintrags: Feuchtetransport über die Flanke, hier das Mauerwerk'''
|-
|-
| [[Bild:BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg|center|400px|]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg|center|400px|]]
| [[Bild:BPhys GD 1 09_Dachschn.Flankendiffusion-01-2.jpg|center|400px]]
| [[Bild:BPhys GD 1 09_Dachschn.Flankendiffusion-01-2.jpg|center|400px]]
|-
|-  
| Luftdichte Konstruktion mit Dampfsperrfolie ([[PE]]) und luftdichter Putzschicht, außen Bitumendachbahn.  
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Luftdichte Konstruktion mit Dampfsperrfolie ([[PE]]) und luftdichter Putzschicht, außen Bitumendachbahn.  
| Feuchteeintrag durch Flankendiffusion über das angrenzende Mauerwerk.
| Feuchteeintrag durch Flankendiffusion über das angrenzende Mauerwerk.
|}
|}
Zeile 146: Zeile 146:
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
|[[Bild:BPhys GD 1 10_Dachschn.Baust._Feuchte-01-2.jpg|center|400px|]]
|[[Bild:BPhys GD 1 10_Dachschn.Baust._Feuchte-01-2.jpg|center|400px|]]
|- style="font-size:90%;"
|-
|Unvorhergesehen: Feuchtigkeit aus Baustoffen
|Unvorhergesehen: Feuchtigkeit aus Baustoffen
|}
|}
Zeile 170: Zeile 170:
Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie ganz auszuschließen ist. Wenn es darum geht schaden- und schimmelfrei zu bauen, ist die
Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie ganz auszuschließen ist. Wenn es darum geht schaden- und schimmelfrei zu bauen, ist die
Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.
Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.


'''Intelligentes Feuchtemanagement Sicherheitsformel:'''
'''Intelligentes Feuchtemanagement Sicherheitsformel:'''
Zeile 180: Zeile 181:
Daraus folgt: <br />
Daraus folgt: <br />
• Im Winter: Erhöhte Feuchtigkeit auf der Außenseite. <br />
• Im Winter: Erhöhte Feuchtigkeit auf der Außenseite. <br />
• Im Sommer: Erhöhte Feuchtigkeit auf der Innenseite.|500px}}
• Im Sommer: Erhöhte Feuchtigkeit auf der Innenseite.|500px|center}}
Eine zusätzliche entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil durch Aktivierung der inneren Rücktrocknungsfläche: <br />
Immer wenn die Temperatur außenseitig der Dämmung höher ist als innerhalb des Gebäudes, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit drängt dann zur Gebäudeinnenseite. Dieser Effekt setzt bereits bei sonnigen Tagen im Frühjahr ein und wirkt bis in den Herbst hinein – er erfolgt verstärkt in den Sommermonaten. Würde statt einer Dampfbrems- und Luftdichtungsbahn eine [[diffusionsoffen]]e Luftdichtungsbahn verbaut werden, könnte die eventuell in der Konstruktion befindliche [[Feuchtigkeit]] nach innen austrocknen. <br />
Eine diffusionsoffene Bahn würde aber im Winter zu viel [[Feuchtigkeit]] in die Konstruktion gelangen lassen – die großen Feuchtemengen würden unweigerlich zu einem Bauschaden führen. Bei Verwendung von [[Dampfsperre]]n scheint die Konstruktion auf den ersten Blick gegen Feuchtigkeit geschützt. Erfolgt allerdings
ein Eintrag von Feuchtigkeit durch [[Konvektion]], [[Flankendiffusion]] oder [[Einbaufeuchte|erhöhte Baustofffeuchtigkeit]], ist eine [[Rücktrocknung]] im Sommer nach innen nicht möglich. Da diese Bauweise Feuchtefallen begünstigt, wurde ihnen der Status der anerkannten Regeln auf dem 2. Holz[Bau]Physik-Kongress im Februar 2011 aberkannt <ref name="Qu_01" />.


{|align="right" width="300px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem sehr niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese »intelligenten« Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima diffusionsdichter und schützen die Konstruktion vor Feuchtigkeitseintrag. <br />
| '''6. Funktionsprinzip <br /> feuchtevariable Bahnen'''
Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen dadurch die Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
{| align="right" width="560px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
| colspan="3" | '''6. Funktionsprinzip feuchtevariable Bahnen'''  
|-
|-
|[[Bild:BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg|center|400px|]]
| colspan="3" | <br /> [[Bild:BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg|center|360px|]]
|- style="font-size:90%;"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
|-
|-
| '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
| colspan="3" style="border-bottom:solid; border-width:1px; | <br /> Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit. <br />
|-
|-  
|[[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|400px|]]
| colspan="3" style="border-bottom:solid; border-width:1px; | <br /> Umgebende Feuchtigkeit der Dampfbremse <br /> &nbsp; • im Winter: geringe Luftfeuchtigkeit <br /> &nbsp; &nbsp; ➝ die feuchtevariable Dampfbremse ist diffusionsdichter <br />  &nbsp; • im Sommer: hohe Luftfeuchtigkeit <br /> &nbsp; &nbsp; ➝ die feuchtevariable Dampfbremse ist diffusionsoffener
|- style="font-size:90%;"  
|-  
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]
| colspan="3" | <br /> '''7. Diffusionsströme der feuchtevariablen <br /> pro clima Dampfbremsen'''
|-
|- class="wikitable" 
| '''9. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
| rowspan="2" width="140px" valign="top" | Diffusionsstrom
|-
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
|[[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|400px|]]
|- class="wikitable"
|- style="font-size:90%;"  
| im Winter
|[[DB+]]: Mittlere [[Feuchtevariabilität]] <br /> [[INTELLO]]: Hohe Feuchtevariabilität
| im Sommer
|- class="wikitable"
| valign="top" | Diffusionsrichtung
| nach außen <div style="font-size:86%;"> Richtung [[Unterdeckung]] </div>
| nach innen <div style="font-size:86%;"> Richtung [[Dampfbremse]] </div>
|- class="wikitable"
| [[DB+]] 
| align="center"| 28 || align="center"| 175
|- class="wikitable"
| [[INTELLO&nbsp;Familie]]  
| align="center"| 7 || align="center"| 560
|}
|}
Idealerweise kann im Sommer der [[sd-Wert|s<sub>d</sub>-Wert]] 0,50 m deutlich unterschreiten – erst unterhalb dieses Wertes gilt ein Material als diffusionsoffen (vgl. DIN 4108-3 [10]). Liegt der mögliche [[sd-Wert|s<sub>d</sub>-Wert]] im Sommerfall oberhalb von 0,50 m ist die Austrocknung aus dem Bauteil deutlich reduziert.
Eine entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil nach innen: Immer wenn die Temperatur außenseitig der Dämmung höher ist als innenseitig, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit strömt zur Innenseite. Dies erfolgt bereits bei sonnigen Tagen im Frühjahr und im Herbst sowie verstärkt in den Sommermonaten.
 
Wäre eine Dampfbrems- und Luftdichtungsebene diffusionsoffen, könnte die eventuell in der Konstruktion befindliche Feuchtigkeit nach innen austrocknen. Eine [[diffusionsoffen]]e Dampfbremse würde aber im Winter zu viel [[Feuchtigkeit]] in die Konstruktion diffundieren lassen und dadurch einen [[Bauschaden]] verursachen.
 
Bei Verwendung von [[Dampfsperre]]n scheint die Konstruktion auf den ersten Blick gegen  Feuchtigkeit geschützt. Erfolgt allerdings ein Eintrag von Feuchtigkeit durch [[Konvektion]], [[Flankendiffusion]] oder [[Einbaufeuchte|erhöhte  Baustofffeuchtigkeit]], ist eine [[Rücktrocknung]] im Sommer nach innen  nicht möglich. Da diese Bauteile Feuchtefallen begünstigen, wurde diesen im Falle von Flachdachkonstruktionen der Status der anerkannten Regeln auf dem 2. Holz[Bau]Physik-Kongress im Februar 2011 aberkannt. <ref name="Qu_01" />
 
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese „intelligenten“ Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren sie umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima  diffusionsdichter und schützen die Konstruktion vor Feuchtigkeit. Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen somit eine Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.


=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes. <br /> Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft inner- bzw. außerhalb eines Gebäudes. Werden vereinfacht nur die das Bauteil umgebenden Temperaturen betrachtet, so diffundiert Feuchtigkeit von der warmen zur kalten Seite - im Winter von innen nach außen und im Sommer von außen nach innen. Messungen der Feuchtegehalte in Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei warmen Außentemperaturen zu erhöhten relativen [[Luftfeuchtigkeit]]en an der Dampfbremse, bei unvorhergesehenen Feuchteeinträgen z. T. sogar zu Sommerkondensat (siehe Abb. 6). <br />
im Sommer von außen nach innen.  
Diese Klimabedingungen steuern die Funktion von feuchtevariablen Dampfbremsen – dadurch sind sie im Winterfall diffusionsdichter und im Sommerfall diffusionsoffener.


Messungen in  Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei [[Feuchtigkeit]] im Sparrenfeld dagegen  zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T.  sogar zu Sommerkondensat. (siehe Abb. 6)
Seit 1991 hat sich die pro clima [[DB+]] in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann [[sd-Wert|s<sub>d</sub>-Wert]]e zwischen 0,4 m und 4 m annehmen. Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima [[INTELLO]] eingeführt. INTELLO hat – wie auch alle anderen Bahnen aus der [[INTELLO-Familie]] – einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 25 m (siehe Abb. 9). <br /> 
Laut ETA-18/1146 können die INTELLO und INTELLO PLUS sd-Werte bis 55 m erreichen. Somit wird im oben beschriebenen Winterfall das Bauteil sehr gut vor bauteilschädigendem
Feuchteeintrag durch Diffusion geschützt.


Dampfbremsen mit einem  feuchtevariablen Diffusionswiderstand sind in  trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.  
=== Nachweis der Dauerhaftigkeit ===
Die europäische Normung für Dampfbremsen ([[DIN EN 13984]]) kennt aktuell kein Nachweisverfahren zur Überprüfung des Verlaufs und der Dauerhaftigkeit von feuchtevariablen
Eigenschaften. Dementsprechend können nach der EN nur Dampfbremsen mit konstanten Diffusionswiderständen überprüft werden. Aus diesem Grund wurde die Alterungsbeständigkeit der Feuchtevariabilität von [[INTELLO]] und [[INTELLO PLUS]] nach einem durch einen unabhängigen Sachverständigenausschuss des Deutschen Instituts für Bautechnik ([[DIBt]]) festgelegten Verfahren nachgewiesen. Dabei wurden die beiden Dampfbremsbahnen im Vergleich zur [[DIN EN 13984]] unter deutlich verschärften Beanspruchungen (erhöhte Temperatur und verdoppelter Alterungszeitraum) beschleunigt gealtert. <br />
Bei der Auswertung wurden zudem die zulässigen Abweichungen der gealterten von den ungealterten Diffusionswiderständen gegenüber der europäischen Norm deutlich
verschärft. <br />
Durch die Europäisch Technische Bewertung (ETA-18/1146) verfügen INTELLO und INTELLO PLUS über den nach [[DIN 68000]]-2 für Dampfbremsen mit feuchtevariablem Diffusionswiderstand geforderten Nachweis der Alterungsbeständigkeit.


Seit 1991 hat sich die pro clima [[DB+]] in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann [[sd-Wert|s<sub>d</sub>-Wert]]e zwischen 0,6 und 4 m annehmen.
<br clear="all" />


Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima [[INTELLO]] entwickelt. INTELLO hat - wie auch die [[INTELLO PLUS]] und die [[INTELLO&nbsp;X Familie]] - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 10 m. (siehe Abb. 9)


<br clear="all" />


==== Hoher Diffusionswiderstand im Winter ====
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
{{{TabH1/2 r}} 7. Diffusionsströme der feuchtevariablen <br /> pro clima Dampfbremsen
| width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
| width="400px" | '''9. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|360px|]]
| [[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|360px|]]
|-   
|-   
| rowspan="2" width="93px" | Diffusionsstrom
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]  
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
| [[DB+]]: Mittlere [[Feuchtevariabilität]] <br /> [[INTELLO]]: Hohe Feuchtevariabilität
|-
|} <br clear="all" />
| width="77px"| im Winter
| width="77px"| im Sommer
|-
| Diffusions-richtung
| nach außen <div style="font-size:86%;"> Richtung <br /> [[Unterdeckung]] </div>
| nach innen <div style="font-size:86%;"> Richtung <br /> [[Dampfbremse]] </div>
|-
| [[DB+]]   
| align="center"| 28 || align="center"| 175
|-
| [[INTELLO&nbsp;Familie]]  
| align="center"| 7 || align="center"| 560
|}


==== Hoher Diffusionswiderstand im Winter ====
Der Diffusionswiderstand der Dampfbremse [[INTELLO]], [[INTELLO PLUS]] und [[INTELLO&nbsp;X Familie]] ist so eingestellt, dass die Bahn im winterlichen Klima einen  [[sd-Wert|s<sub>d</sub>-Wert]] von mehr als 25 m erreichen kann. Das bewirkt, dass im Winter, wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine [[Feuchtigkeit]] in das Bauteil gelangen lässt.  
Der Diffusionswiderstand der Dampfbremse [[INTELLO]], [[INTELLO PLUS]] und [[INTELLO&nbsp;X Familie]] ist so eingestellt, dass die Bahn im winterlichen Klima einen  [[sd-Wert|s<sub>d</sub>-Wert]] von mehr als 25 m erreichen kann. Das bewirkt, dass im Winter, wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine [[Feuchtigkeit]] in das Bauteil gelangen lässt.  


Navigationsmenü