Technische Eigenschaften (SOLITEX PLUS): Unterschied zwischen den Versionen
K |
|||
Zeile 18: | Zeile 18: | ||
Das Zusammenspiel dieser beiden Funktionen hat einen entscheidenden Einfluss auf die Qualität und Sicherheit einer Dachkonstruktion. | Das Zusammenspiel dieser beiden Funktionen hat einen entscheidenden Einfluss auf die Qualität und Sicherheit einer Dachkonstruktion. | ||
Problem: Die Wasserdichtheit wird durch die [[Oberflächenspannung]] des Wassers erreicht. Diese kann beim Wasser durch Verschmutzung und Chemikalien massiv herabgesetzt werden (z.B. [[Holzschutzmittel]], wie Salze und [[Netzmittel]], Öle von Kettensägen oder holzeigene Inhaltsstoffe, wie Harze, Öle oder [[Terpene]]). | Problem: Die Wasserdichtheit wird durch die [[Oberflächenspannung]] des Wassers erreicht. Diese kann beim Wasser durch Verschmutzung und Chemikalien massiv herabgesetzt werden (z.B. [[Holzschutzmittel]], wie Salze und [[Netzmittel]], Öle von Kettensägen oder holzeigene Inhaltsstoffe, wie Harze, Öle oder [[Terpene]]). | ||
Resultat: teilweise Undichtheiten, Mehrarbeit und Mehraufwand, unzufriedene Kunden. | Resultat: teilweise Undichtheiten, Mehrarbeit und Mehraufwand, unzufriedene Kunden. | ||
Zeile 27: | Zeile 25: | ||
===Diffusion bei [[mikroporöse Membran|mikroporösen Bahnen]]=== | ===Diffusion bei [[mikroporöse Membran|mikroporösen Bahnen]]=== | ||
Die [[Diffusion]] erfolgt durch einen Luftaustausch (Strömung) – nicht durch echtes Diffundieren. | Die [[Diffusion]] erfolgt durch einen Luftaustausch (Strömung) – nicht durch echtes Diffundieren. | ||
Resultat: bei geringen [[Dampfteildruckdifferenz|Dampfteildruckdifferenzen]] kann es vorkommen, dass Feuchtigkeit selbst durch diffusionsoffene [[mikroporöse Membran|mikroporöse Bahnen]] nicht austrocknet. Konstruktionen können durchfeuchten, Bauschäden können entstehen. | Resultat: bei geringen [[Dampfteildruckdifferenz|Dampfteildruckdifferenzen]] kann es vorkommen, dass Feuchtigkeit selbst durch diffusionsoffene [[mikroporöse Membran|mikroporöse Bahnen]] nicht austrocknet. Konstruktionen können durchfeuchten, Bauschäden können entstehen. | ||
==Die neue Technologie der pro clima [[Außendichtung|SOLITEX]] [[Unterdeckbahn|Unterdeck-]] und [[Unterspannbahn]]en== | ==Die neue Technologie der pro clima [[Außendichtung|SOLITEX]] [[Unterdeckbahn|Unterdeck-]] und [[Unterspannbahn]]en== | ||
===Herstellung=== | ===Herstellung=== | ||
[[monolithische Membran|Geschlossenzellige Membranen]] werden mit einem durchgehenden Film hergestellt. Über 200° C heißes, flüssiges [[Polymer]] wird zwischen zwei [[Vlies]]e gegossen und verklebt diese beim Abkühlen. | [[monolithische Membran|Geschlossenzellige Membranen]] werden mit einem durchgehenden Film hergestellt. Über 200° C heißes, flüssiges [[Polymer]] wird zwischen zwei [[Vlies]]e gegossen und verklebt diese beim Abkühlen. | ||
Zeile 41: | Zeile 39: | ||
Die [[Diffusion]] findet durch aktiven [[Feuchte|Feuchtigkeitstransport]] entlang der Molekülketten als chemische Reaktion statt. | Die [[Diffusion]] findet durch aktiven [[Feuchte|Feuchtigkeitstransport]] entlang der Molekülketten als chemische Reaktion statt. | ||
Resultat: Hohe Dampfdiffusion bei gleichzeitiger Porenfreiheit und höchster Schlagregendichtheit. | Resultat: Hohe Dampfdiffusion bei gleichzeitiger Porenfreiheit und höchster Schlagregendichtheit. | ||
[[Kategorie:SOLITEX PLUS| 4]][[Kategorie:Technische | [[Kategorie:SOLITEX PLUS| 4]] | ||
[[Kategorie:Technische Eigenschaften|SOLITEX PLUS]] |
Version vom 24. November 2009, 09:19 Uhr
Allgemeines
Die neue Technologie der pro clima SOLITEX Bahnen mit geschlossenzelliger Membran bietet mehr Sicherheit gegenüber konventionellen Unterdachfolien mit mikroporösen Membranen.
Durch den 4-lagigen Aufbau ist pro clima SOLITEX PLUS äußerst robust und widerstandsfähig. Die Funktionsmembran ist geschützt durch einen Schutz- und einen Deckvlies. Zur Verstärkung der Bahn ist zwischen Membran und Vlies ein Polypropylen-Armierungsgelege eingearbeitet. Daher bietet die Bahn eine sehr hohe Nagelausreissfestgikeit und eine große Durchtrittsicherheit.
Kriterien für sichere Konstruktionen
Die Regendichtheit ist das entscheidende Kriterium für eine Unterdachbahn. Diese Funktion sollte nicht nur im Labor, sondern gerade unter Baustellenbedingungen eine dauerhafte Sicherheit vor eindringender Feuchtigkeit bieten. Bahnen, die nach konventioneller Technik mit mikroporöser Membran produziert werden, können durch die reale Beanspruchung auf dem Dach zu Problemen führen.
Wie erkennt man eine mikroporöse Bahn?
Mikroporöse Membranen sind nicht luftdicht. Wird ein wassergefüllter Zylinder auf eine solche Bahn gestellt und von unten Luft durch die Bahn eingeblasen, so sind im Wasser deutlich die aufsteigenden Luftblasen zu erkennen. Je mehr Luftblasen die Bahn durchdringen, um so größer ist die Porosität. Dringen keine Blasen durch die Bahn, verfügt die Bahn über eine geschlossenzellige Membran.
Konventionelle Technologie: Mikroporöse Membran
Herstellung
Mikroporen entstehen, indem einer Kunststoff-Membran Calciumcarbonat zugesetzt und die Folie nach der Herstellung gedehnt wird.
Wasserdichtheit
Die Dichtheit mikroporöser Membranen basiert auf der Oberflächenspannung des Wassers. Wird die Oberflächenspannung durch Einwirkung baustellentypischer Einflüsse reduziert, besteht die Gefahr, dass Feuchtigkeit die poröse Membran durchdringt. Ein altbekannter Effekt, der dazu geführt hat, dass eine neue Technologie entwickelt wurde. Qualitativ hochwertige Bahnen werden heute mit einer geschlossenzelligen Membran hergestellt. Sie bieten höchstmögliche Regendichtheit und gewährleisten gleichzeitig, dass eine große Menge an Wasserdampf aktiv aus der Konstruktion heraus nach außen transportiert wird.
Das Zusammenspiel dieser beiden Funktionen hat einen entscheidenden Einfluss auf die Qualität und Sicherheit einer Dachkonstruktion.
Problem: Die Wasserdichtheit wird durch die Oberflächenspannung des Wassers erreicht. Diese kann beim Wasser durch Verschmutzung und Chemikalien massiv herabgesetzt werden (z.B. Holzschutzmittel, wie Salze und Netzmittel, Öle von Kettensägen oder holzeigene Inhaltsstoffe, wie Harze, Öle oder Terpene).
Resultat: teilweise Undichtheiten, Mehrarbeit und Mehraufwand, unzufriedene Kunden.
Diffusion bei mikroporösen Bahnen
Die Diffusion erfolgt durch einen Luftaustausch (Strömung) – nicht durch echtes Diffundieren.
Resultat: bei geringen Dampfteildruckdifferenzen kann es vorkommen, dass Feuchtigkeit selbst durch diffusionsoffene mikroporöse Bahnen nicht austrocknet. Konstruktionen können durchfeuchten, Bauschäden können entstehen.
Die neue Technologie der pro clima SOLITEX Unterdeck- und Unterspannbahnen
Herstellung
Geschlossenzellige Membranen werden mit einem durchgehenden Film hergestellt. Über 200° C heißes, flüssiges Polymer wird zwischen zwei Vliese gegossen und verklebt diese beim Abkühlen.
Wasserdichtheit
Geschlossenzellige Membranen sind unempfindlich gegenüber Einflüssen, welche die Oberflächenspannung des Wassers reduzieren. Resultat: Die Membran bleibt dicht, Vermeidung von Mehrarbeit und Mehraufwand, zufriedene Kunden.
Diffusion
Die Diffusion findet durch aktiven Feuchtigkeitstransport entlang der Molekülketten als chemische Reaktion statt. Resultat: Hohe Dampfdiffusion bei gleichzeitiger Porenfreiheit und höchster Schlagregendichtheit.