Feuchtevariabilität: Unterschied zwischen den Versionen

Aus Wissen Wiki
Zur Navigation springen Zur Suche springen
Zeile 47: Zeile 47:


=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes. Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und im Sommer von außen nach innen. Messungen in  Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den  Transport der Feuchtigkeit im [[Sparren]]feld nach außen die Dampfbremse  in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im  sommerlichen Klima kommt es bei [[Feuchtigkeit]] im Sparrenfeld dagegen  zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T.  sogar zu Sommerkondensat. (siehe Abb. 1)
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes. <br /> Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und
im Sommer von außen nach innen.  


Dampfbremsen mit einem '''feuchtevariablen Diffusionswiderstand''' sind in  trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.  
Messungen in Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei [[Feuchtigkeit]] im Sparrenfeld dagegen  zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T.  sogar zu Sommerkondensat. (siehe Abb. 1)


Seit 1991 hat sich die [[DB+]] bewährt. Ihr Diffusionswiderstand kann Werte zwischen 0,6 und 4 m annehmen.  
Dampfbremsen mit einem  feuchtevariablen Diffusionswiderstand sind in  trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.  


Seit 2004 bewährt sich die Hochleistungs-Dampfbremse [[INTELLO]]. INTELLO hat - wie auch die [[INTELLO PLUS]] und die [[INTESANA]] - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 25 m. (siehe Abb. 3)
Seit 1991 hat sich die pro clima [[DB+]] in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann [[sd-Wert|s<sub>d</sub>-Wert]]e zwischen 0,6 und 4 m annehmen.
 
Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima [[INTELLO]] entwickelt. INTELLO hat - wie auch die [[INTELLO PLUS]] und die [[INTESANA]] - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 10 m. (siehe Abb. 3)


=== Hoher Diffusionswiderstand im Winter ===
=== Hoher Diffusionswiderstand im Winter ===

Version vom 18. November 2014, 09:42 Uhr

Feuchtevariable Dampfbremsen (auch: "Feuchteadaptive -", "Intelligente Dampfbremsen") ändern, im Gegensatz zu konventionellen Dampfbremsen, ihren Dampfdiffusionswiderstand in Abhängigkeit von der Luftfeuchtigkeit.

Letzteres bietet das hohe Rücktrocknungspotential.

Feuchtevariable Dampfbremsen bieten daher zu jeder Jahreszeit ein hohes Bauschadensfreiheitspotential.

Je größer die Variabilität des Diffusionswiderstandes zwischen Winter und Sommer ist, umso mehr Sicherheit bietet die Dampfbremse.


Feuchtesituation in der Konstruktion

Auszug einer von MOLL bauökologische Produkte GmbH initiierten Studie[1]:

Austrocknung der Konstruktion nach innen

Feuchtesituation in der Konstruktion

Der Diffusionsstrom geht immer von der warmen zur kalten Seite. Daraus folgt:
Im Winter:
Erhöhte Feuchtigkeit auf der Außenseite.

Im Sommer:
Erhöhte Feuchtigkeit auf der Innenseite.
1. Funktionsprinzip
feuchtevariable Bahnen
BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg
Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
2. sd-Wert-Verhalten von PE-Folie
BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg
PE-Folie: keine Feuchtevariabilität
3. sd-Wert-Verhalten von
pro clima Dampfbremsbahnen
BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png
DB+: Mittlere Feuchtevariabilität
INTELLO: Hohe Feuchtevariabilität

Eine entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil nach innen: Immer wenn die Temperatur außenseitig der Dämmung höher ist als innenseitig, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit strömt zur Innenseite. Dies erfolgt bereits bei sonnigen Tagen im Frühjahr und im Herbst sowie verstärkt in den Sommermonaten.

Wäre eine Dampfbrems- und Luftdichtungsebene diffusionsoffen, könnte die eventuell in der Konstruktion befindliche Feuchtigkeit nach innen austrocknen. Eine diffusionsoffene Dampfbremse würde aber im Winter zu viel Feuchtigkeit in die Konstruktion diffundieren lassen und dadurch einen Bauschaden verursachen.

Bei Verwendung von Dampfsperren scheint die Konstruktion auf den ersten Blick gegen Feuchtigkeit geschützt. Erfolgt allerdings ein Eintrag von Feuchtigkeit durch Konvektion, Flankendiffusion oder erhöhte Baustofffeuchtigkeit, ist eine Rücktrocknung im Sommer nach innen nicht möglich. Da diese Bauteile Feuchtefallen begünstigen, wurde diesen im Falle von Flachdachkonstruktionen der Status der anerkannten Regeln auf dem 2. Holz[Bau]Physik-Kongress im Februar 2011 aberkannt. [2]

Ideal ist daher eine Dampfbremse mit einem hohen Diffusionswiderstand im Winter und einem niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese „intelligenten“ Dampfbremsen mit feuchtevariablem sd-Wert bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren sie umgebenden relativen Luftfeuchtigkeit. So sind sie im winterlichen Klima diffusionsdichter und schützen die Konstruktion vor Feuchtigkeit. Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen somit eine Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.

Wirkungsweise des feuchtevariablen Diffusionswiderstandes

Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes.
Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und im Sommer von außen nach innen.

Messungen in Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei Feuchtigkeit im Sparrenfeld dagegen zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T. sogar zu Sommerkondensat. (siehe Abb. 1)

Dampfbremsen mit einem feuchtevariablen Diffusionswiderstand sind in trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.

Seit 1991 hat sich die pro clima DB+ in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann sd-Werte zwischen 0,6 und 4 m annehmen.

Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima INTELLO entwickelt. INTELLO hat - wie auch die INTELLO PLUS und die INTESANA - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 10 m. (siehe Abb. 3)

Hoher Diffusionswiderstand im Winter

Diffusionsströme der feuchtevariablen
pro clima Dampfbremsen
Diffusionsstrom WDD-Wert in g/m²
pro Woche
im Winter im Sommer
Diffusions-richtung nach außen Richtung
Unterdeckung
nach innen Richtung
Dampfbremse
DB+ 28 175
INTELLO
INTELLO PLUS
INTESANA
7 560

Der Diffusionswiderstand der Dampfbremsen INTELLO, INTELLO PLUS und INTESANA ist so eingestellt, dass die Bahn im winterlichen Klima einen sd-Wert von mehr als 25 m erreichen kann. Das bewirkt, dass im Winter, wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine Feuchtigkeit in das Bauteil gelangen lässt.

Die Funktion des feuchtevariablen Diffusionswiderstandes ist unabhängig von der Gebäudehöhenlage. Auch bei kalten langen Wintern bleibt die Eigenschaft erhalten.
Bei Konstruktionen mit diffusionsdichten Abdichtungsbahnen auf der Außenseite, können die Bahnen den Feuchtehaushalt regulieren und die Bauteile wirksam vor Feuchtigkeit schützen.

Der hohe sd-Wert ist auch bei außen diffusionsoffenen Dächern von Vorteil, wenn es um eine Reif- und Eisbildung (Dampfsperre) an einer diffusionsoffenen Unterspannbahn geht.

Niedriger Diffusionswiderstand im Sommer

Der Diffusionswiderstand im sommerlichen Klima kann auf einen sd-Wert von 0,25 m fallen. Dies bewirkt eine schnelle Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, nach innen. Je nach Höhe des Dampfdruckgefälles entspricht das einer Austrocknungskapazität von 5 – 12 g/m² H2O pro Stunde, entsprechend ca. 80 g/m² H2O pro Tag, bzw. 560 g/m² H2O pro Woche.

Dieses hohe Austrocknungsvermögen bewirkt, dass ein Bauteilgefach schon im Frühjahr schnell austrocknet. Dampfbremsen, die im feuchten Bereich sd-Werte von mehr als 1 m aufweisen, bieten keine nennenswerten zusätzlichen Sicherheiten.

Ausgewogenes Diffusionsprofil

In Zeiten besserer Luftdichtungen und damit verbundenen erhöhten Luftfeuchtigkeiten in Neubauten in Massivbauweise kommt dem Diffusionswiderstand bei höherer rel. Luftfeuchtigkeit (rel.LF) eine wichtige Bedeutung zu.

Ausgelagerte Abschnitte:


Höchste Sicherheit

Das „intelligente“ Verhalten der feuchtevariablen Dampfbremsen macht Wärmedämmkonstruktionen sehr sicher, auch bei unvorhergesehenem Feuchtigkeitseintrag in die Konstruktion, z. B. durch widrige Klimabedingungen, Undichtheiten, Flankendiffusion oder erhöhte Einbaufeuchtigkeit von Bauholz oder Dämmstoff. Die feuchtevariablen pro clima Dampfbremsen wirken wie eine Feuchtigkeitstransportpumpe, die aktiv Feuchtigkeit aus dem Bauteil zieht, welche sich evtl. unvorhergesehen in ihm befindet.

Einzelnachweis

  1. Moll bauökologische Produkte GmbH: WISSEN 2014/15 - Studie „Berechnung des Bauschadensfreiheitspotential von Wärmedämmungen in Holz- und Stahlbaukonstruktionen“ , 2012, S. 68 (- oder zum Download)
  2. Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig, holzbauphysik-kongress.eu: Konsens_Flachdaecher_2011_03_END.pdf