Biogas

 
Bestandsentwicklung Biogasanlagen - Quelle: FNR nach FvB (2016) © FNR 2016
 
Biogasausbeuten - Quelle: KTBL (2015) © FNR 2015

Ob in Mooren und Sümpfen oder im Verdauungstrakt von Wiederkäuern: Biogas bildet sich überall dort, wo organisches Material in feuchter Umgebung unter Sauerstoffabschluss zersetzt wird. Verschiedene Bakterien, darunter Methanbakterien, leisten dabei die Hauptarbeit. In einer Biogasanlage wird dieser Prozess technisch nachvollzogen. Die Biogaserträge, aber auch die Zusammensetzung des Biogases variieren je nach Zusammensetzung der Ausgangsstoffe sowie der Verfahrens- und Prozesstechnik. Der Energiegehalt des Biogases ist schließlich direkt vom Methangehalt abhängig. So hat ein Kubikmeter (m³) Methan einen Energiegehalt von etwa 10 Kilowattstunden (9,97 kWh).

Mit Inkrafttreten des Erneuerbare-Energien-Gesetz (EEG) stieg die Zahl der Biogasanlagen in Deutschland deutlich an (siehe Abbildung ...). Ende 2012 waren mehr als 8.000 Biogasanlagen mit einer elektrischen Leistung von insgesamt über 4.000 MW am Netz und liefern soviel Strom wie drei größere Atomkraftwerke.

Die Rohstoffe

Biogas kann aus einer Vielzahl von organischen Ausgangsstoffen gewonnen werden. In landwirtschaftlichen Anlagen dienen überwiegend gezielt angebaute Energiepflanzen und tierische Exkremente (Gülle und Mist) als Substrate. Die Nutzung von Gülle und anderen Wirtschaftsdüngern ist nicht nur aus Sicht des Klimaschutzes (Emissionsvermeidung) und der Kaskadennutzung von großer Bedeutung, sondern hat auch eine den Prozess stabilisierende Wirkung. Als nachwachsende Rohstoffe zum Beispiel Mais, Gräser, Getreide u. v. m. in Frage, wobei der Mais derzeit als Kultur mit hohen Masse- und Gaserträgen sowie mit den geringsten spezifischen Kosten den größten Anbauumfang einnimmt. Negativ kann sich der hohe Maisanbau in einigen Regionen jedoch auf Bodenfruchtbarkeit und Biodiversität auswirken.

In der Abbildung werden die Richtwerte für die Gaserträge verschiedener Biogassubstrate und deren durchschnittlicher Methangehalt gezeigt. Die in der Praxis erzielbaren Gaserträge können durchaus abweichen, da diese vom Substratmix und den technischen und biologischen Kennziffern der jeweiligen Biogasanlage abhängig sind.

Aufbau einer Biogasanlage

 
Aufbau einer landwirtschaftlichen Biogasanlage - Quelle: FNR

Eine landwirtschaftliche Biogasanlage besteht aus den Grundelementen Vorgrube/Substrateinbringung, Fermenter mit Rührwerk, Gasspeicher, Gärrückstandslager und Biogasverwertung (z. B. Blockheizkraftwerk oder Gasaufbereitung). In der Vorgrube werden die Substrate zwischengelagert, wenn nötig zerkleinert, verdünnt und vermischt und gelangen von hier in den isolierten und beheizten Fermenter. Er ist das Kernstück der Anlage und muss gas- und wasserdicht sowie lichtundurchlässig ausgeführt sein. Entsprechende Rührtechnik gewährleistet die Homogenität des Gärsubstrates und unterstützt die Gasbildung. Das Biogas gelangt in den Gasspeicher, während das ausgegorene Substrat in das Gärrestlager transportiert wird, das i. d. R. auch als Nachgärbehälter dient.

Der flüssige oder feste Rückstand der Vergärung wird als Gärrest oder Biogasgülle bezeichnet und von den Landwirten wegen seiner hohen Nährstoffgehalte meist als organischer Dünger verwendet.

Zur Abbildung:
In landwirtschaftlichen Biogasanlagen werden in der Regel Gülle oder Mist und nachwachsende Rohstoffe, wie z.B. Mais, Gras, Getreide oder Zuckerrüben, vergoren.

Das in Fermenter und Nachgärer produzierte Biogas wird entweder als aufbereitetes Biomethan ins Erdgasnetz eingespeist oder wie vom Großteil der Anlagen in Deutschland in einem Blockheizkraftwerk in Strom und Wärme umgewandelt. Der Strom wird in das öffentliche Netz eingespeist und die anfallende Wärme wird für die Beheizung der Wohn- und Wirtschaftgebäude genutzt oder auch über Wärmenetze an private, kommunale und gewerbliche Nutzer verteilt.

Nach Abschluss des Gärprozesses kann dann der angefallene Gärrest als wertvoller organischer Dünger auf den Feldern der Landwirte genutzt werden.

Hiermit wird der Stoffkreislauf einer landwirtschaftlichen Biogasanlage geschlossen.

Die Abläufe im Fermenter

 
Schematische Darstellung des Fermentationsprozesses - Quelle: FNR

Der Vergärungsprozess im Fermenter läuft prinzipiell in vier voneinander abhängigen Teilschritten unter anaeroben Bedingungen (ohne Sauerstoff) ab, an denen jeweils verschiedene Gruppen von Mikroorganismen beteiligt sind. Das gebildete Gasgemisch besteht überwiegend aus Methan (50-75 %), Kohlendioxid (25-45 %) und geringen Anteilen an Wasserdampf, Sauerstoff , Stickstoff, Schwefelwasserstoff und weiteren Spurengasen.

Das so gebildete Gasgemisch besteht überwiegend aus

  • 50–75 % Methan (CH4),
  • 25–45 % Kohlendioxid (CO2),
  • 2–7 % Wasserdampf (H2O),
  • < 2 % Sauerstoff (O2),
  • < 2 % Stickstoff (N2),
  • < 1 % Schwefelwasserstoff (H2S) und
  • < 2 % Spurengasen.

Grundsätzlich finden die vier Phasen zeitgleich und parallel statt. Aufgrund der unterschiedlichen Milieubedingungen der verschiedenen Mikroorganismen muss daher ein Kompromiss der optimalen Parameter, wie insbesondere Gärtemperatur, pH-Wert oder Nährstoffversorgung, gefunden werden.

Aufbereitung und Nutzung von Biogas

 
Nutzungsmöglichkeiten von Biogas - Quelle: FNR
 
Verfahrensschritte zur Biogasaufbereitung
Quelle: FNR

Biogas bietet eine Vielzahl von Nutzungsoptionen. Es kann sowohl für die Strom- und Wärmeerzeugung als auch als Kraftstoff und Erdgas-Äquivalent eingesetzt werden. Hinzu kommt, dass Biogas speicherbar und über das Erdgasnetz transportierbar ist und dadurch jederzeit und unabhängig vom Entstehungsort zur Verfügung steht. Die Energieerzeugung aus Biogas unterliegt keinen tages- und jahreszeitlichen oder witterungsbedingten Schwankungen und kann somit bedarfsgerecht und auch kontinuierlich erfolgen.

Dank fester Vergütungssätze für die Verstromung ist die Erzeugung von Strom und Wärme direkt an der Biogasanlage die derzeit vorrangige Nutzungsart von Biogas. Sie erfolgt in Blockheizkraftwerken (BHKW), man spricht dabei von Kraft-Wärme-Kopplung (KWK), weil Strom und Wärme gleichzeitig erzeugt werden. Das BHKW besteht aus einem mit Biogas betriebenen Verbrennungsmotor, der einen Generator zur Erzeugung von elektrischer Energie antreibt.

Neben der elektrischen Energie fällt beim BHKW-Betrieb die Wärme als Koppelprodukt an. Die Biogasanlage selbst benötigt je nach Anlagentyp und Jahreszeit 20–40 Prozent der Abwärme für die Beheizung des Fermenters. Aus ökologischer Sicht und für einen wirtschaftlichen Betrieb der Anlage ist eine sinnvolle Nutzung der überschüssigen Wärme unabdingbar. Eine Option besteht darin, mit der Abwärme der BHKW die Wohn- und Wirtschaftsgebäude des landwirtschaftlichen Betriebes zu beheizen. Ist eine Abnahme der Wärme in unmittelbarere Anlagennähe nicht gegeben, kann sie mithilfe von dezentralen Wärmenetzen zu den Verbrauchern gebracht werden. So lassen sich neben Wohnhäusern auch kommunale Einrichtungen wie Schwimmbäder oder Krankenhäuser und Gewerbebetriebe mit Wärme versorgen. Bei größeren Entfernungen kann auch das Biogas selbst über Gasleitungen zu einem sogenannten Satelliten-BHKW transportiert werden, das dann am Ort des Verbrauches Strom und Wärme produziert.

Grundsätzlich eignet sich Biogas auch als Energieträger für Brennstoffzellen, Stirlingmotoren und Mikrogasturbinen. Vorteile dieser Technologien, wie größere Wirkungsgrade oder geringere Betriebskosten, werden derzeitig noch durch die höheren Kosten überlagert. Eine weitere Möglichkeit der effizienten Nutzung bietet die ORC-Technologie. Sie erzeugt aus der BHKW-Abwärme zusätzlichen Strom.

In den letzten Jahren hat sich außerdem die Aufbereitung und Einspeisung von Biogas in das Erdgasnetz zunehmend etabliert. Ende 2012 produzierten 117 Biogasaufbereitungsanlagen etwa 73.000 Normkubikmeter Biomethan pro Stunde. Diese Menge entspricht einer Gesamtkapazität von ca. 6 Mrd. kWh pro Jahr. Gängige Aufbereitungstechnologien für Biomethan sind die Druckwasserwäsche, die Druckwechseladsorption, physikalische und chemische Wäschen sowie die Membrantechnologie. Sie separieren das Biogas und trennen das gewünschte Methan von den anderen Begleitgasen ab. So wird der Methananteil im Biogas durch die Abscheidung von Kohlendioxid und ggf. weiteren Spurengasen von rund 50 Prozent auf das für das jeweilige Gasnetz erforderliche Niveau von 85–98 Prozent erhöht. In der nachfolgenden Abbildung sind die generellen Verfahrensschritte der Reinigung und Aufbereitung von Biogas zu Biomethan dargestellt.

Das aufbereitete Biogas, nun „Biomethan“ genannt und chemisch mit Erdgas quasi identisch, kann durch die vorhandene Infrastruktur des Erdgasnetzes über beliebige Distanzen hin zu Standorten mit hohem, ganzjährigem Wärmebedarf transportiert werden. Das Gasnetz verfügt über ein erhebliches Transport- und Speicherpotenzial und ist damit in der Lage, die Energieerzeugung vom -bedarf zu entkoppeln. Gleichzeitig vermindert sich durch die Nutzung des Gasnetzes die Notwendigkeit des Ausbaus von Höchstspannungsnetzen. Viele Gasversorger bieten Biomethan/Erdgas-Mischprodukte mit unterschiedlichen Biomethananteilen an (5, 10 oder 20 Prozent Biomethan), die auch für die privaten Nutzer erhältlich sind.
100-prozentige Biomethanprodukte sind eher selten und in der Regel deutlich teurer als reine Erdgasprodukte mit gleichem Energiegehalt. Jeder Erdgaskunde kann diese Produkte nutzen, ohne seine bestehende Heizung hierfür austauschen zu müssen. Auch herkömmliche Haushaltsgasgeräte, wie z. B. Gasherde oder Gastrockner, können mit Biomethan betrieben werden.

Der Prozess der Aufbereitung und Einspeisung rentiert sich wegen der höheren Investitions- und Betriebskosten bisher vor allem für größere Anlagen, aber der technische Fortschritt lässt auch zunehmend kleinere Anlagen direkt an diesem Markt teilhaben.

Biomethan kommt auch als Kraftstoff in Erdgasfahrzeugen zum Einsatz. Während Erdgas zwar vergleichsweise sauber verbrennt, aber als fossiler Kraftstoff zusätzliches CO2 emittiert, hat Biomethan aufgrund seiner pflanzlichen Basis ein sehr hohes CO2-Einsparpotenzial, das auch innerhalb der Biokraftstoffpalette hervorragend abschneidet.
So senkt ein Anteil von 25 Prozent Biomethan im Erdgas die CO2-Emissionen um 20 Prozent. In den europäischen Vorreiterländern Schweden und der Schweiz wird schon seit Jahren Biogas in Pkw, Bussen und Lkw eingesetzt. In Deutschland steht diese Nutzungsart allerdings noch am Anfang. Trotz einsatzbereiter Technik werden die Potenziale längst nicht ausgeschöpft. Derzeit gibt es nur sehr wenige Tankstellen, an denen reines Biomethan erhältlich ist. Aber etwa ein Drittel der 900 Erdgastankstellen in Deutschland bieten bereits Biomethan-Erdgas-Gemische an.

Was muss beachtet werden?

Für die Errichtung und den anschließenden Betrieb von Biogasanlagen sowie die Ausbringung der Gärrückstände sind eine Vielzahl von Gesetzen und Verordnungen zu beachten. Diese Anforderungen umfassen das Planungs-, Bau-, Wasser-, Naturschutz- und Abfallrecht, relevant sind auch die Vorschriften von Immissionsschutz-, Düngemittel- und Hygienerecht.

Biogas ist brennbar und in Mischungen mit 6–12 Prozent Luft explosiv. Aus diesem Grund sind die Sicherheitsregeln für landwirtschaftliche Biogasanlagen und die entsprechenden allgemeinen Regelwerke zu beachten. Grundsätzlich sind die Entstehung und das Entweichen von gefährlichen Gasen zu vermeiden. Die Betreiber haben eine Vielzahl von Nachweisen zu erbringen und Prüfungen durchzuführen, die den sicheren Betrieb gewährleisten. Bei Einhaltung der gesetzlichen Vorgaben und Empfehlungen birgt der Umgang mit Biogas kein größeres Risiko als der mit Erdgas.

Für den wirtschaftlichen Erfolg einer Biogasanlage ist es geboten, alle Kostenminderungspotenziale bei Bau und Betrieb zu nutzen. Vor allem aber gilt es, die produzierte Energie bestmöglich zu verwerten.



Steckbrief Bio-Methan
Rohstoffe Energiepflanzen; Gülle und organische Reststoffe
Jahresertrag je Hektar 4.950 m³/ha bzw. 3560 kg1)
Kraftstoff-Äquivalent 1kg Methan ersetzt ca. 1,4l Ottokraftstoff
Marktpreis 0,80 - 0,90 EUR/kg
CO2-Minderung keine Angaben
Technische Hinweise Bio-Methan kommt ohne Anpassung in Erdgasfahrzeugen zum Einsatz

1) Grundlage: Flächenertrag von Mais 45 [t/ha*a]; Biogasausbeute 190 [m³/t]; Methangehalt 55 %


Rohstofferträge zur Herstellung von Biomethan
Rohstoffertrag Biogasausbeute Methangehalt Methanausbeute
[t/ha] FM [m³/t] [%] [m³/ha] [kg/ha]
ca. 45* ca. 202* 54 4.910 3.535

Quelle: FNR/KTBL - *auf Basis von Silomais; FM = Frischmasse, Dichte Biomethan: 0,72 [kg/m³]

Quelle

dient Zeilenumbruch
Sie haben Anregungen und wollen bei dem WISSEN Wiki mitmachen? . ==> bitte hier lang