Bauphysik Sanierungs-Studie: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
Zeile 190: Zeile 190:
# Die Luftdichtung sollte sich möglichst im frostfreien Bereich befinden.
# Die Luftdichtung sollte sich möglichst im frostfreien Bereich befinden.
}}
}}
== Sub–and–Top– Vergleich des Bauschadensfreiheitspotentials ==
; bei Dampfbremsen mit unterschiedlichem [[sd-Wert|s<sub>d</sub>-Wert]]
In dem ersten Teil dieser Studie wurde zwischen Sanierungssystemen unterschieden, die für die Dachsanierung von außen geeignet sind. Dabei wurden diffusionsoffene Bahnen zur Herstellung der [[Luftdichtheit]] verglichen mit Systemlösungen,
die zugleich leicht [[diffusionshemmend]] sind.
In der folgenden Ausarbeitung werden reine [[Sub-and-Top]]-Lösungen betrachtet, die sowohl unterhalb der Wärmedämmung,
als auch über die Tragkonstruktion der Konstruktion verlegt werden.
Dabei sind zwei grundlegende Varianten zu unterscheiden:
====Systeme aus Dampfbrems- und Luftdichtungsbahnen mit feuchtevariablem (veränderlichem) Diffusionswiderstand====
<!--
{|align="right" valign="top"
|valign="top"|[[Bild:BPhys_GD_3SS_20_4_Ergebnis_1.jpg|right|thumb|200px|Keine  ]]
|}-->
Diese verfügen über einen in Abhängigkeit von der umgebenden mittleren [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]] [[Feuchtevariabilität|variablen]] [[Diffusionswiderstand]]. Bei der Dachsanierungs-Dampfbremse [[DASATOP]] kann dieser Werte zwischen 0,05 und 2 m (siehe Abb.) annehmen, je nachdem welche mittlere [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]] sich in unmittelbarer Nähe der Bahn einstellt.<br />
Informationen zur genauen Wirkungsweise der [[Feuchtevariabilität]] enthält die Studie „Berechnung des [[Bauschadensfreiheitspotential]]s von Wärmedämmkonstruktionen im Holz- und Stahlbau“ [10].
<br clear="all" />
====Systeme aus Dampfbrems- und Luftdichtungsbahnen mit konstantem (unveränderlichem) Diffusionswiderstand====
Bei diesem Bahnenkonzept werden Funktionsfilme eingesetzt, die kein Veränderung des [[Diffusionswiderstand]]es bei unterschiedlicher rel. Luftfeuchtigkeit aufweisen. Beispielhaft sind die Diffusionswiderstände zweier Bahnen mit dem [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m bzw. 5 m in Abb. 23 dargestellt.
===Vergleichende Betrachtung der Rücktrocknungsreserven===
Werden Bahnen [[Sub-and-Top]] verlegt, ist klar, dass diese oberseitig der Tragkonstruktion einen möglichst geringen
[[Diffusionswiderstand]] annehmen sollten. [[sd-Wert|s<sub>d</sub>-Wert]]e unterhalb von 0,1 m sind ideal, damit durch hohe Diffusionsoffenheit möglichst große Mengen an [[Feuchtigkeit]] vom [[Sparren]] abtrocknen können.<br />
Feuchtevariable Dampfbremsen für [[Zwischensparrendämmung]]en erreichen einen [[sd-Wert|s<sub>d</sub>-Wert]] im feuchten Bereich von ca. 0,25 m. Sie bieten daher ein geringeres [[Bauschadensfreiheitspotential]] als die [[DASATOP]].
Wird der Diffusionsstrom durch ein Material nach [[DIN 4108]]-3 im stationären Zustand mittels Berechnung der [[Wasserdampfdiffusionsstromdichte]] g [kg/m² x h] erfasst, wird die Leistungsfähigkeit unterschiedlich dichter Bahnen deutlich.
Die [[Wasserdampfdiffusionsstromdichte]] wird ermittelt durch die Differenz der Wasserdampfteildrücke p<sub>i</sub> (innen) [Pa] und p<sub>a</sub> (außen) [Pa] dividiert durch den [[Wasserdampfdiffusions-Durchlasswiderstand]] Z [m² x h x Pa/kg]. Durch Multiplikation mit 24 erhält man den [[Wasserdampfdurchgang]] (W<sub>DD</sub>) [g/m² x 24 h].
Beispielhaft wird der Diffusionsstrom bei Erreichen des Taupunktes kombiniert mit einer winterlichen Außentemperatur
berechnet. Für p<sub>i</sub> wird ein Wert von 1.163 Pa (9,2°C / 100 % [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]] (Taupunkttemperatur bei Normklima)) und für p<sub>a</sub> ein Wert von 208 Pa (-10°C / 80 % rel. Luftfeuchtigkeit) zugrunde gelegt.
===W<sub>DD</sub>-Werte für verschiedene [[sd-Wert|s<sub>d</sub>-Wert]]e===
{| cellpadding="3" cellspacing="0" rules="all" style="background: #ffffff; align="right" class="rahmenfarbe1"
|-
|[[sd-Wert|s<sub>d</sub>-Wert]] [m] || [[Wasserdampfdurchgang|W<sub>DD</sub>]] [g/m² x 24 h]
|- align="center"
| width="100" | 0,05  || width="120" | ~ 320
|- align="center"
| 0,10  || ~ 160
|- align="center"
| 0,50  || ~ 32
|- align="center"
| 2,0  || ~ 8
|- align="center"
| 5,0  || ~ 3
|- align="center"
| 50,0  || ~ 0,3
|}
Deutlich reduzieren sich die möglichen [[Wasserdampfdurchgang|Wasserdampfdurchgänge]] bereits bei geringen Erhöhungen der [[sd-Wert|s<sub>d</sub>-Wert]]e. Dies hat Auswirkungen auf die Sicherheit einer Konstruktion.
Diese Betrachtung kann nicht unmittelbar auf instationäre Berechnungen übertragen werden, da sich p<sub>i</sub> und p<sub>a</sub> durch das in der Berechnung verwendete reale Klima und in Abhängigkeit von der Lage in der Konstruktion ständig ändern. Für die Austrocknungssituation sind die Werte beispielsweise aufgrund der geringeren Druckdifferenzen auf beiden Seiten der Bahnen geringer.
<br clear="all" />
===Berechnung des Bauschadensfreiheitspotentials===
Für die Berechnung von Konstruktionen mit [[Sub-and-Top]] verlegten Bahnen ist die Betrachtung der Entfeuchtungsleistung
der Tragkonstruktion (hier Sparren) maßgebend. Bei nicht eng an den [[Sparren]] anliegenden Bahnen kann es während der kalten Jahreszeit zu einer [[Tauwasser]]bildung oberseitig der Sparren kommen. Diese muss durch das Bahnenmaterial
aus der Konstruktion heraustrocknen können. Dafür ist es erforderlich, die Wärme- und Feuchteströme zweidimensional zu betrachten. Wärme und Feuchteströme erfolgen nicht ausschließlich von innen nach außen. Diffusionsströme können auch innerhalb der Konstruktion stattfinden, z. B. von den Sparrenflanken durch geeignete Dampfbrems- und Luftdichtungsbahnen
in die Wärmedämmebene.
Um die Entfeuchtungsleistung darzustellen, wird über die Holzfeuchte der Sparren die zusätzliche Feuchtigkeitsmenge
eingebracht. Diese wird mit einem [[Materialfeuchte]]gehalt von 80 % (= 2.300 g Wasser pro lfm Sparren) in der Berechnung berücksichtigt und simuliert einen Feuchtigkeitsausfall zwischen Dampfbrems-/Luftdichtungsbahn und Sparren. Aus der errechneten Rücktrocknungsmenge kann anschließend das [[Bauschadensfreiheitspotential]] in [g] H<sub>2</sub>O/[m] Sparren pro Jahr errechnet werden. Im Normalfall haben die Sparren einen Feuchtigkeitsgehalt von ca. 300 g pro lfm.
;Das [[Bauschadensfreiheitspotential]] beschreibt
* wie tolerant die Konstruktion bei unvorhergesehener Feuchtebelastung ist und
* wie viel Wasser in eine Konstruktion (unvorhergesehen) eindringen kann und sie trotzdem bauschadensfrei bleibt.
===Untersuchte Konstruktionen===
# Steildach mit 40° Dachneigung nach Norden orientiert, Dacheindeckung aus grauen Dachziegeln
# Sparrenhöhe 12 cm mit Vollsparrendämmung aus [[Mineralwolle]] (Dichte = 60 kg/m³)
Die Festlegung des Innenklimas erfolgt mit normaler Feuchtelast.
'''Fall 1: Diffusionsoffenes Unterdach''' <br />
(Abb. 25)
Das Unterdach hat in der Berechnung einen [[sd-Wert|s<sub>d</sub>-Wert]] von 0,1 m.
<br clear="all" />
'''Fall 2: Unterdachplatte aus 60 mm Holzweichfaser'''
(Abb. 26)
Diese wird zur Vermeidung von Wärmebrücken als zusätzliche [[Aufsparrendämmung]] eingesetzt ([[sd-Wert|s<sub>d</sub>-Wert]] = 0,3 m).
<br clear="all" />
'''Fall 3: Unterdachplatte aus 35 mm Polyurethan''' <br />
(Abb. 27)
[[Aufsparrendämmung]] wie bei Fall 2, jedoch [[sd-Wert|s<sub>d</sub>-Wert]] = 3,5 m.
<br clear="all" />
Jeder der 3 Fälle wird mit 3 unterschiedlichen Dampfbremsen – [[Sub-and-Top]]-verlegt – betrachtet:
* Dampfbremse [[DASATOP]] [[sd-Wert|s<sub>d</sub>-Wert]] feuchtevariabel 0,05 bis über 2 m
* [[Dampfbremse]] [[sd-Wert|s<sub>d</sub>-Wert]] 2 m konstant
* [[Dampfbremse]] [[sd-Wert|s<sub>d</sub>-Wert]] 5 m konstant
===Ergebnisdiskussion===
Untersucht wird das Austrocknungsvermögen des in den Sparren vorhandenen erhöhten Feuchtigkeitsgehaltes. Dieser wird vergleichend über einen Zeitraum von 3 Jahren für jeden der Fälle mit den unterschiedlichen Dampfbremsbahnen dargestellt.
Bei allen Konstruktionen ist erkennbar, dass bei der Variante mit der feuchtevariablen [[DASATOP]] die Materialfeuchte aus
dem Sparren am schnellsten entweichen kann.
Unkritische Feuchtegehalte in den Sparren werden bei Unterschreitung des Fasersättigungspunktes des Holzes erreicht. Wird dieser für einen Vergleich der Austrocknungsgeschwindigkeit herangezogen, trocknet der Sparren in der Konstruktion mit der [[DASATOP]] etwa dreimal schneller aus als mit der Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m. Im Vergleich zu einer Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ermöglicht die [[DASATOP]] eine fünfmal schnellere Austrocknung bei Konstruktionen mit [[Aufdachdämmung]]en. Bei Konstruktionen ausschließlich mit der diffusionsoffenen Unterdachbahn bietet die [[DASATOP]] sogar über achtmal schnellere Trocknung als eine Konstruktion mit einer Dampfbremse mit einem s<sub>d</sub>-Wert von 5 m.
===Fazit Vergleich von Sub-and-Top-verlegten Dampfbrems- und Luftdichtungssystemen===
Die [[Sub-and-Top]]-Verlegung mit [[Feuchtevariabilität|feuchtevariablen]] Dampfbrems- und Luftdichtungsbahnen ist aus bauphysikalischer Sicht die beste Lösung für die Sicherheit der Konstruktion und bietet bei unvorhergesehenen
Feuchtigkeitsbelastungen das größte [[Bauschadensfreiheitspotential]].
Unkritische Holzfeuchtigkeiten werden bei der Verwendung der [[DASATOP]] in den Sparren im Vergleich zu Bahnen mit
s<sub>d</sub>-Werten von 2 m bzw. 5 m ca. dreimal bzw. ca. fünfmal (z. T. sogar achtmal) schneller erreicht.
Bei der [[Sub-and-Top]]-Verlegung erfüllt die Bahn unterhalb der [[Wärmedämmung]] (Sub) die Funktion einer [[Dampfbremse]].
Bei der Verlegung über den Sparren (Top) ist hingegen die Funktion einer [[Unterspannbahn]] von Vorteil, damit Feuchtigkeit
möglichst ungehindert austrocknen kann. Dann kann bei nicht perfekt an den Sparren anliegenden Bahnen ein resultierender Feuchtegehalt an den Sparrenflanken wieder zügig austrocknen. Feuchtevariable Dampfbremsen für [[Zwischensparrendämmung]]en erreichen einen s<sub>d</sub>-Wert im feuchten Bereich von ca. 0,25 m. Sie bieten daher ein geringeres [[Bauschadensfreiheitspotential]] als die [[DASATOP]].
Der feuchtegesteuerte [[Diffusionswiderstand]] ermöglicht die sichere Verlegung der Bahnen in allen Details, z. B. bei
Auswechslungen, [[Kehle]]n und [[Grat]]en bzw. zergliederten Konstruktionen. Der [[Diffusionswiderstand]] kann an jeder
Stelle der Bahn einen der jeweiligen Situation klimagesteuert angepassten [[sd-Wert|s<sub>d</sub>-Wert]] zwischen 0,05 und 2 m annehmen. Die Bahnen können sowohl längs als auch quer verlegt werden.
Vorteilhaft erweist sich die Verwendung von diffusionsoffenen Bahnen außen bzw. die Anordnung einer diffusionsoffenen
[[Aufdachdämmung]] aus faserförmigen Dämmstoffen.
Werden Bahnen mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] für die [[Sub-and-Top]]-Verlegung eingesetzt, sinkt das [[Bauschadensfreiheitspotential]] erheblich. Im Winter schützen die Bahnen im Sub-Bereich die Wärmedämmung wie feuchtevariable Bahnen gegen Feuchteeintritt. Im Sommer bieten sie jedoch keine zusätzliche Trocknungsmöglichkeit aus der
Konstruktion heraus. Fällt [[Kondensat]] an den Sparrenoberseiten aus, kann dieses nur langsam heraus trocknen: Die Gefahr
eines [[Bauschaden]]s nimmt drastisch zu.
Wärmedämmkonstruktionen sollten grundsätzlich mit möglichst hohen Sicherheitsreserven versehen werden. Dann besteht bei [[unvorhergesehen]]en Feuchtebelastungen ein zusätzlicher Schutz vor [[Bauschaden|Bauschäden]] und [[Schimmel]]. Damit ist auch der Verarbeiter optimal vor Schäden und Haftungsansprüchen geschützt. Die [[Sub-and-Top]]-Verlegung von [[Feuchtevariabilität|feuchtevariablen]] Dampfbrems- und Luftdichtungsbahnen mit einem möglichst geringen [[sd-Wert|s<sub>d</sub>-Wert]] bei hohen [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]]en bieten bei der [[Dachsanierung]] von außen aus bauphysikalischer Sicht den besten Schutz.
===Ziel des Bauens===
Ziel des Bauens sind nicht nur energieeffiziente Gebäude und hoher klimatischer Wohnkomfort, sondern insbesondere
Gebäude mit [[Wohngesundheit|wohngesund]]em Raumklima. Hier spielen nicht nur toxikologische Aspekte, z. B. durch Emissionen von Baustoffen, eine Rolle, sondern vor allem die [[Schimmel]]freiheit auf und in der Konstruktion. Sporen von [[Schimmelpilz]]en schädigen das Immunsystem und fördern/führen zu Allergien; die Ausscheidungen der Schimmelpilze
([[MVOC]]) können zu physischen und psychischen Gesundheitsbelastungen führen. Befinden sich Schimmelpilze in einem trockenen Klima, verlieren sie viel von ihrer Gefährlichkeit. Werden [[Schimmelpilz]]e hingegen wieder befeuchtet, wird ihre Gefährlichkeit in altbekannter Weise wieder reaktiviert.
Befinden sich Schimmelpilze auf der raumseitigen Oberfläche von Bauteilen (z. B. durch [[Wärmebrücke]]n oder Oberflächen[[kondensat]]), sind sie sichtbar, können erkannt und bei Bedarf beseitigt werden. Befinden sich Schimmelquellen
aber innerhalb einer Konstruktion, bleiben sie unerkannt. In jährlichen Abständen werden sie durch [[Feuchtigkeit]] reaktiviert – die Gesundheit der Bewohner wird permanent gefährdet.
Ziel des Bauens sollte es sein, die bauphysikalische Sicherheit nicht bis zum Letzten auszureizen, sondern gerade in
Bezug auf [[Schimmel]] das höchstmögliche Sicherheitspotential zu generieren.
{{Textrahmen01|
===8 Punkte führen zu dauerhaft sicherer Konstruktion und Verarbeitung===
# Optimal sicher sind Konstruktionen mit [[Feuchtevariabilität|feuchtevariablen]] Dampfbrems- und Luftdichtungsbahnen mit einem besonders geringen [[Diffusionswiderstand]] im feuchten Bereich von < 0,10 m.
# [[Sub-and-Top]]-Bahnen mit besonders niedrigem Diffusionswiderstand bei Feuchtigkeitsausfall können über den Sparren im Frostbereich liegen. Die Gefahr von Eisbildung ist aufgrund der hohen möglichen Austrocknung und der Diffusionscharakteristik der Konstruktion praktisch ausgeschlossen.
# Unkritische Sparrenfeuchten werden mit der [[DASATOP]] dreimal bzw. fünfmal (z. T. achtmal) so schnell erreicht. Der erhöhte Schutz vor [[Schimmel]]bildung ist dabei gewährleistet.
# Die Wärmedämmung wird durch Verlegung im Gefachbereich vor nutzungsbedingten Feuchtigkeiten aus dem Innenraum durch [[sd-Wert|s<sub>d</sub>-Wert]]e bis zu 2 m geschützt. Schädliche [[Tauwasser]]bildung in der Dämmebene kann nicht erfolgen.
# Außen diffusionsoffene Konstruktionen haben größere Rücktrocknungsreserven als Konstruktionen mit diffusionshemmenden
Bauteilschichten (z. B. Schaumdämmstoffe).
# Empfehlenswert ist immer die Durchführung einer baubegleitenden Qualitätssicherung. Bei der Sanierung von außen kann die Luftdichtheit mittels Überdrucktest, kombiniert mit künstlichem Nebel, durchgeführt werden. Leckagen lassen sich dann aufspüren und abdichten.
# Die Befestigung der Bahn bei der [[Sub-and-Top]]-Verlegung sollte mit dünnen Leisten mechanisch erfolgen. Eine zusätzliche Verklebung ist mit einem Luftdichtungsanschlusskleber möglich. Klebebänder haften auf den staubigen Untergründen der alten Sparren nicht.
# Blendfreie Bahnen mit dunklerer Farbe sind aus Gründen der Unfallrelevanz und des Verlegekomforts hellen, insbesondere weißen Bahnen vorzuziehen.
|}


==Einzelnachweise==
==Einzelnachweise==