Biomasse: Unterschied zwischen den Versionen

15.457 Bytes hinzugefügt ,  16:39, 11. Okt. 2013
K
keine Bearbeitungszusammenfassung
K
Zeile 45: Zeile 45:


== Grundlagen ==
== Grundlagen ==
{{Anker|Biomasse ist gespeicherte Sonnenenergie - Die biochemischen Grundlagen 2}}
{{Anker|Biomasse ist gespeicherte Sonnenenergie - Die biochemischen Grundlagen}}
=== Biomasse ist gespeicherte Sonnenenergie - Die biochemischen Grundlagen ===
=== Biomasse ist gespeicherte Sonnenenergie - Die biochemischen Grundlagen ===
Biomasse entsteht im Wesentlichen durch Photosynthese von Pflanzen. Mittels Sonnenenergie werden aus dem Kohlendioxid der Luft, Wasser und verschiedenen Nährstoffen Biomassen gebildet, die sich in folgende wesentliche Stoffgruppen einteilen lassen:
Biomasse entsteht im Wesentlichen durch Photosynthese von Pflanzen. Mittels Sonnenenergie werden aus dem Kohlendioxid der Luft, Wasser und verschiedenen Nährstoffen Biomassen gebildet, die sich in folgende wesentliche Stoffgruppen einteilen lassen:
Zeile 77: Zeile 77:


== Politische Ziele, Gesetze und Rahmenbedingungen ==
== Politische Ziele, Gesetze und Rahmenbedingungen ==
{{Anker|Politische Ziele, Gesetze und Rahmenbedingungen}}
Der Hintergrund für die staatliche Unterstützung [[Erneuerbare Energie|erneuerbarer Energien]] und der [[Bioenergie]], sowohl seitens der Bundesregierung als auch der EU, liegt in der Endlichkeit fossiler Rohstoffe und in der Verstärkung des Treibhauseffektes begründet, den ihre
Der Hintergrund für die staatliche Unterstützung [[Erneuerbare Energie|erneuerbarer Energien]] und der [[Bioenergie]], sowohl seitens der Bundesregierung als auch der EU, liegt in der Endlichkeit fossiler Rohstoffe und in der Verstärkung des Treibhauseffektes begründet, den ihre
Nutzung verursacht. So setzen die Strategien zur Sicherung der Energieversorgung und zum Klimaschutz neben der Energieeinsparung und Effizienzsteigerung auf die Nutzung Erneuerbarer Energien.
Nutzung verursacht. So setzen die Strategien zur Sicherung der Energieversorgung und zum Klimaschutz neben der Energieeinsparung und Effizienzsteigerung auf die Nutzung Erneuerbarer Energien.
Zeile 204: Zeile 205:


'''Klimaschutz''': Die Nutzung von Biomasse zur Gewinnung von Energie hat ein hohes Nachhaltigkeitspotenzial, denn sie dient grundsätzlich
'''Klimaschutz''': Die Nutzung von Biomasse zur Gewinnung von Energie hat ein hohes Nachhaltigkeitspotenzial, denn sie dient grundsätzlich
der Verminderung von Treibhausgas-, speziell [[CO2|CO<sub>2</sub>]]-Emissionen. Die Ursachen dafür liegen im wahrsten Sinne des Wortes „in der Natur der Sache“, denn sie gründen auf den biochemischen Zusammenhängen bei der Entstehung und energetischen Umwandlung von Biomasse, erläutert in [[#Biomasse ist gespeicherte Sonnenenergie - Die biochemischen Grundlagen 2|Kapitel 2]]. Diese Grundsätze werden jedoch manchmal unterlaufen, wenn die Erzeugung und Aufbereitung der Biomasse selbst mit einem hohen (fossil gedeckten) Energieaufwand verbunden sind, oder wenn, um Platz für den Anbau der Biomasse zu schaffen, Urwälder gerodet und Moore entwässert und dabei große Treibhausgasmengen freigesetzt werden. Unter Umständen sind diese Mengen dann größer, als bei der eigentlichen Energiegewinnung gegenüber fossilen Brennstoffen eingespart werden kann. Daraus folgt: Die Nutzung von Bioenergie muss unter bestimmten Rahmenbedingungen erfolgen, die immer wieder neu zu hinterfragen und zu kontrollieren sind.
der Verminderung von Treibhausgas-, speziell [[CO2|CO<sub>2</sub>]]-Emissionen. Die Ursachen dafür liegen im wahrsten Sinne des Wortes „in der Natur der Sache“, denn sie gründen auf den biochemischen Zusammenhängen bei der Entstehung und energetischen Umwandlung von Biomasse, erläutert in [[#Biomasse ist gespeicherte Sonnenenergie - Die biochemischen Grundlagen|Kapitel 2]]. Diese Grundsätze werden jedoch manchmal unterlaufen, wenn die Erzeugung und Aufbereitung der Biomasse selbst mit einem hohen (fossil gedeckten) Energieaufwand verbunden sind, oder wenn, um Platz für den Anbau der Biomasse zu schaffen, Urwälder gerodet und Moore entwässert und dabei große Treibhausgasmengen freigesetzt werden. Unter Umständen sind diese Mengen dann größer, als bei der eigentlichen Energiegewinnung gegenüber fossilen Brennstoffen eingespart werden kann. Daraus folgt: Die Nutzung von Bioenergie muss unter bestimmten Rahmenbedingungen erfolgen, die immer wieder neu zu hinterfragen und zu kontrollieren sind.


'''Artenvielfalt''': Auch hier gilt: Bioenergie hat unter den richtigen Rahmenbedingungen das Potenzial, einen Beitrag zur Artenvielfalt
'''Artenvielfalt''': Auch hier gilt: Bioenergie hat unter den richtigen Rahmenbedingungen das Potenzial, einen Beitrag zur Artenvielfalt
zu leisten. Schließlich ist die Bandbreite an Energiepflanzen und weiteren nachwachsenden Rohstoffen deutlich größer, als das gegenwärtig angebaute, recht begrenzte Spektrum der Pflanzen zur Erzeugung von
zu leisten. Schließlich ist die Bandbreite an [[Energiepflanzen]] und weiteren nachwachsenden Rohstoffen deutlich größer, als das gegenwärtig angebaute, recht begrenzte Spektrum der Pflanzen zur Erzeugung von Nahrungs- und Futtermitteln. Noch ist diese Bandbreite bei weitem nicht ausgeschöpft, vielmehr konzentrieren sich die meisten „Energiewirte“ bislang auf ertragreiche Kulturen, die sie gut kennen und für die sie über die geeignete Anbau- und Erntetechnik verfügen: Mais, [[Raps]], Getreide. Doch der Wandel hat begonnen. Der Gesetzgeber hat zum Beispiel im [[Erneuerbare-Energien-Gesetz]] (EEG) festgelegt, dass Landwirte nicht ausschließlich Mais in ihren ab 2012 in Betrieb genommenen Biogasanlagen vergären dürfen, wenn sie die EEG-Vergütung (EEG: Erneuerbare-Energien-Gesetz; vgl. [[#Politische Ziele, Gesetze und Rahmenbedingungen|Kapitel 3]]) erhalten wollen. Forschungsarbeiten zu neuen Energiepflanzen laufen auf Hochtouren. Und viele Landwirte sind schon jetzt sehr interessiert daran, Neues auf ihrem Acker auszuprobieren. <br />
Festzuhalten ist: Die Bioenergienutzung bedarf gesetzgeberischer Rahmenbedingungen, Forschung und Entwicklung, einem funktionierenden Wissenstransfer aus der Forschung in die Praxis und Landwirten, die neue Erkenntnisse umsetzen – dann steht einer vielfältigen Agrarlandschaft, die neben Nahrungs- und Futtermitteln auch Energie und Rohstoffe erzeugt, nichts im Wege.


* Quelle: http://bioenergie.fnr.de/bioenergie/biomasse/grundlagen/ und http://mediathek.fnr.de/broschuren/bioenergie/bioenergie.html - Abgerufen: 10.10.2013
'''Umweltgefährdende Stoffe''': Eine Holzheizung emittiert mehr Feinstaub als eine Gasheizung, aber [[Biodiesel]] ist weniger wassergefährdend
als fossiler Diesel. Ein nicht abgedecktes Gärrückstandslager einer Biogasanlage setzt Ammoniak frei, aber ein herkömmliches Güllelager tut dies ebenso. Diese Aufzählung ließe sich fortsetzen. <br />
Fazit: Die Realität ist auch hier nicht schwarzweiß. Biomasse ist tendenziell weniger toxisch und umweltgefährdend als fossile Rohstoffe, doch im Einzelfall kommt es immer auf das WIE der Nutzung an. Durch technische Entwicklung und geeignete Rahmenbedingungen lässt sich aber auch hier die Nachhaltigkeit schrittweise immer weiter erhöhen – so emittieren moderne Holzheizungen zum Beispiel viel weniger Feinstaub und durch die inzwischen gesetzlich geregelte Pflicht zur gasdichten Abdeckung des Gärrückstandslagers werden die Ammoniak-Emissionen bei Biogasanlagen weitgehend verhindert.
 
=== Ökonomische Nachhaltigkeit der Bioenergie ===
Die Biomassenutzung muss wirtschaftlich tragfähig sein, sonst hat sie keine Aussicht auf langfristigen Erfolg. Das bedeutet jedoch nicht, dass in der Phase der Entwicklung nicht höhere Kosten anfallen dürfen. Mittel- bis langfristig muss sich die Bioenergie jedoch, auch gegenüber anderen erneuerbaren Energien, wirtschaftlich behaupten können und es müssen vor allem die Umwandlungsoptionen verfolgt werden, die
am ökonomischsten sind. Das Gebot der Wirtschaftlichkeit hängt eng zusammen mit dem der Effizienz – oft sind die effizientesten Verfahren auch die wirtschaftlichsten. Und ein sparsamer Umgang mit der Ressource Biomasse ist eine Grundvoraussetzung für Nachhaltigkeit – schließlich sind die Potenziale groß, aber nicht unendlich.  Ein wirtschaftlicher Aspekt ist auch der der Regionalentwicklung durch Bioenergie – die
Schaffung von Arbeitsplätzen und Wertschöpfung insbesondere in bislang eher strukturschwachen ländlichen Räumen. Verbindet sich die Bioenergienutzung auf diese Art mit wirtschaftlicher Entwicklung, steigert das die Nachhaltigkeit, weil mehr Wohlstand wiederum ein mehr an Bildung und Investitionen in moderne, umweltschonende Technologien ermöglicht.
 
=== Soziale Nachhaltigkeit der Bioenergie ===
Die Übergänge zur ökonomischen Nachhaltigkeit sind fließend, insbesondere beim Aspekt der Regionalentwicklung. Bioenergie birgt ein hohes soziales Nachhaltigkeitspotenzial insbesondere für ländliche Räume. Aus reinen „Schlaf-Dörfern“, deren Bewohner zur Arbeit in urbane Zentren pendeln und ihre Energieversorgung großen Unternehmen und Energielieferanten aus fernen Ländern überlassen, werden regionale Selbstversorger. Orte beleben sich, neue Arbeitsplätze im Mittelstand und in der Land- und Forstwirtschaft entstehen. Privatpersonen, Firmen und Kommunen
engagieren sich wirtschaftlich, in der Folge wächst auch der soziale Zusammenhalt. Dies alles führt zu mehr gesellschaftlicher Teilhabe
und sozialem Frieden, ohne den es langfristig keine Nachhaltigkeit geben kann.
 
=== Zertifizierung von Biomasse ===
Die Bedeutung einer gesetzlichen „lenkenden Hand“ zur Sicherung von Nachhaltigkeit im Bioenergiebereich wurde bereits erwähnt. Die Bundesregierung hat dem unter anderem Rechnung getragen, in dem sie mit der Biomassestrom-Nachhaltigkeitsverordnung vom Juli 2009 und der Biokraftstoff-Nachhaltigkeitsverordnung vom September 2009 zwei Verordnungen erlassen hat, die sich ausschließlich dem Thema Nachhaltigkeit
bei der Biomassenutzung widmen. Damit hat die Bundesregierung als erstes Land in Europa die Anforderungen der Erneuerbare-Energien-Richtlinie der EU umgesetzt. <br />
Aufgrund der Verordnungen unterliegen die Biomasseerzeugung und der Handel mit flüssigen Bioenergieträgern für die Stromerzeugung sowie für die Kraftstoffproduktion bei uns strengen Kontrollen; es werden nur noch entsprechend zertifizierte Biomassen staatlich gefördert. Auch aus dem Ausland importierte Biomasse muss zertifiziert sein. Die Bundesregierung erwägt zudem eine Ausweitung der Biomassezertifizierung auch
auf feste und gasförmige Bioenergieträger.
 
Kernanforderungen der Nachhaltigkeitsverordnungen im Rahmen der Bioenergieförderung sind
# keine Verwendung von Biomasse von Flächen mit hohem Naturschutzwert (z. B. Grünland mit hoher biologischer Vielfalt, Naturschutzflächen, bestimmte bewaldete Flächen);
# keine Verwendung von Biomasse von Flächen mit hohem Kohlenstoffbestand (z. B. Moorflächen, Feuchtgebiete);
# keine Verwendung von Biomasse von Torfmooren;
# Referenzzeitpunkt für die genannten schützenswerten Flächen ist der 1. Januar 2008;
# der Biomasseanbau in der EU hat entsprechend der guten fachlichen Praxis zu erfolgen, die auch für die Nahrungsmittelproduktion bindend ist und deren Nicht-Beachtung sanktioniert werden kann und
# das Treibhausgasminderungspotenzial von Biokraftstoffen muss mindestens 35 Prozent, ab 2017 mindestens 50 Prozent und ab 2018 mindestens 60 Prozent betragen.
 
Die Einhaltung dieser Kriterien wird von zugelassenen Zertifizierungsstellen kontrolliert, die nach entsprechenden Kontrollen Zertifikate an alle zentralen Glieder einer '''Biokraftstoff'''- oder Biostrom-Produktionskette vergeben. Für die Anerkennung und Kontrolle der Zertifizierungssysteme und -stellen ist die Bundesanstalt für Landwirtschaft und Ernährung ([[BLE]]) verantwortlich. <br />
Ein aktuell viel diskutiertes Problem sind die systemimmanenten Grenzen der Zertifizierung, die diese vor allem außerhalb Europas einschränken: In asiatischen oder südamerikanischen Ländern kann nicht an in Europa bestehende Umweltgesetze und -kontrollen in der Landwirtschaft angeknüpft werden. Der Anbau für Nahrungs- und Futtermittel oder für technische Zwecke findet dort nicht immer unter nachhaltigen Bedingungen statt. Lediglich für die Biokraftstoffproduktion für den europäischen Markt existiert seit einigen Jahren eine Nachhaltigkeitskontrolle. <br />
Das bedeutet: Während die Nachhaltigkeit der Biokraftstoffproduktion nun über die Zertifizierung belegt werden kann, besteht die Möglichkeit, dass sich der Anbau für andere Nutzungsrichtungen ungehindert auf ökologisch wertvolle Flächen, z. B. bisher nicht landwirtschaftlich genutzte Flächen hoher Biodiversität (Savannen, Buschland, Regenwald), verlagert. <br />
Biomasse-Zertifizierungen sind derzeit nicht in der Lage, dieses als „Indirekte Landnutzungsänderungen“ (englisch „Iluc“ von indirect land use change) bezeichnete Phänomen zu erfassen. Nur wenn sich die Zertifizierung weltweit oder zumindest in den wichtigen Anbauländern auf alle Nutzungsrichtungen landwirtschaftlich erzeugter Rohstoffe ausdehnen würde, wäre das Problem zu lösen. Tatsächlich sind entsprechende Absichtserklärungen der Politik in Deutschland und Europa erfolgt.
 
== Biomassegewinnung durch Energiepflanzenanbau ==
{|align="right"
|valign="top"|[[Bild:Umwelt nawaro anbau.png|thumb|500px| Anbau nachwachsender Rohstoffe 2012/2013 (Quelle: [[FNR]])]]
|}
Für Pflanzen, die gezielt ganz oder überwiegend für die energetische Nutzung in der Landwirtschaft angebaut werden, hat sich der Begriff „Energiepflanzen“ eingebürgert. Der Oberbegriff „Nachwachsende Rohstoffe“ umfasst daneben auch Holz aus dem Forst, diverse organische Reststoffe und Nebenprodukte sowie jegliche Biomasse, die für die stofflich-technische Nutzung bestimmt ist.
 
2012 wurden nachwachsende Rohstoffe auf knapp 2,4 Mio. der gut 12 Mio. Hektar Ackerfläche in Deutschland angebaut. Auf Energiepflanzen entfallen davon ca. 2,1 Mio. Hektar. Hinzu kommt die in den über 11 Mio. Hektar Wald forstlich erzeugte Biomasse. Sie stellt den größten Anteil nachwachsender Rohstoffe.
 
Verschiedene Kulturarten, die aus der Nahrungs- und Futtermittelproduktion bekannt sind, gewinnen als Energiepflanzen an Bedeutung, wie z. B. Mais, [[Raps]], Rüben und Getreidearten. Sie werden als einjährige Kulturen angebaut, d. h. sie erfordern eine jährliche Bodenbearbeitung und Neueinsaat. Meistens erfolgt der Anbau in mehrgliedrigen Fruchtfolgen, auf einer Fläche werden also im jährlichen Wechsel verschiedene Kulturen angebaut. Einige Arten wie Mais sind aber auch „mit sich selbst verträglich“ und können mehrere Jahre in Folge auf der gleichen Fläche wachsen, andere wie z. B. Raps brauchen Anbaupausen von 3–4 Jahren.
 
Als Energiepflanzen werden auch mehrjährige Kulturen angebaut. Diese können – einmal gesät oder gepflanzt – über einen langen Zeitraum von bis zu 30 Jahren genutzt werden. Dazu zählen zum Beispiel Stauden wie die Durchwachsene Silphie oder Großgräser wie Miscanthus, beide werden jährlich geerntet. In Kurzumtriebsplantagen wiederum wachsen Baumarten wie Pappeln und Weiden, die in Reihen angepflanzt und alle 3–5 Jahre geerntet werden. Danach treiben die schnellwüchsigen Bäume aus dem Wurzelstock wieder aus. In den Zwischenjahren wird die Fläche so gut wie nicht bearbeitet, die Bäume kommen weitestgehend ohne Düngung und chemischen Pflanzenschutz aus. Dadurch eignen sie sich auch sehr gut für den Anbau in Trinkwassereinzugs- oder -schutzgebieten. Alle mehrjährigen Energiekulturen werden im Gegensatz zu den einjährigen erst in relativ geringem Umfang angebaut, das Interesse der Landwirtschaft nimmt hier aber deutlich zu.
 
Neu bei den einjährigen Energiepflanzen sind innovative Anbausysteme: etwa der Mischfruchtanbau, bei dem verschiedene Pflanzenarten, wie z. B. Mais und Sonnenblumen oder Getreide und Leindotter, gemeinsam auf einem Feld stehen, oder das Zweikulturnutzungssystem – es ermöglicht
binnen eines Jahres zwei Ernten. Eine Beispiel-Fruchtfolge für Letzteres ist die Ernte der Wintergetreidekultur Roggen als Ganzpflanzensilage im Mai/Juni und der Nachbau von Hirse oder Mais mit Ernte im Oktober. Diese Anbausysteme bieten interessante Optionen in Hinblick auf eine diversifizierte, ökologische Ausrichtung des Energiepflanzenanbaus, in dem sie zum Beispiel den Boden ganzjährig bedecken und Erosion  vorbeugen.
 
Eine interessante Kombination des Anbaus von ein- und mehrjährigen Arten in einem System stellt die sogenannte Agroforstwirtschaft
dar. Hierbei werden z. B. schnellwachsende Baumarten in Reihen und in den dazwischen liegenden Feldblöcken einjährige Kulturen gepflanzt (mit an moderne Saat- und Erntetechnik angepassten 36 oder 48 Meter Breite). Die Baumreihen leisten in solchen Systemen einen wichtigen Beitrag
zur Minderung der Bodenerosion durch Wind und Wasser (Starkregen). Zudem werden diesen Anbauverfahren durch die Verbesserung
des Mikroklimas und der Begünstigung von Nützlingen ertragssichernde und ertragssteigernde Effekte zugesprochen.
 
Umfangreiche Informationen zu den einzelnen Kulturen finden Sie im Internet unter: http://energiepflanzen.fnr.de
 
{{{TabH1/1}}
! Extensiver Energiepflanzenanbau und Änderung der Ausgleichsregelung – Synergien zwischen Naturschutz, Landwirtschaft und Bioenergie?
|-
|Nach der sogenannten Eingriff-Ausgleichs-Regelung sind Eingriffe in den Naturhaushalt bei Baumaßnahmen, etwa für Gewerbe, Siedlungen oder neue Straßen, durch anschließende Naturschutz fördernde Maßnahmen wieder auszugleichen. Finanzieren muss sie der Bauherr, der dazu Flächen von Landwirten kauft. Der einzelne Landwirt verdient zwar an diesem Verkauf, insgesamt muss die Landwirtschaft jedoch gleich doppelt Boden abgeben: Einmal für die Baumaßnahmen selbst und dann für die Ausgleichsflächen, die für die landwirtschaftliche Produktion in der Regel nicht mehr zur Verfügung stehen. Dieser Flächenverlust ist ein nicht unerhebliches Problem in Deutschland, so beträgt die Zunahme der Siedlungs- und
Verkehrsflächen noch immer Tag für Tag rund 87 Hektar (Stat. Bundesamt, Berechnungszeitraum 2007–2010), die Ausgleichsflächen kommen noch dazu. In einem Modellvorhaben wird deshalb untersucht, ob extensiv genutzte Energiepflanzenflächen wie z. B. Kurzumtriebsplantagen eine Lösung für beide Seiten darstellen könnten: Die Flächen haben aus Naturschutzsicht einen höheren Wert als die dort zuvor befindliche intensive landwirtschaftliche Nutzung und dennoch bewirtschaftet sie der Landwirt weiter und erzielt auf ihnen ein Einkommen.
Auch für den Naturschutz wären extensive Energiepflanzenflächen vorteilhaft. Im Gegensatz zu den aktuellen Ausgleichsprojekten, die häufig sehr kleinteilig sind, könnte man sie wesentlich größer dimensionieren. Auch Bauherren, z. B. Kommunen, die bei den steigenden Bodenpreisen zunehmend Probleme haben, Ausgleichsflächen zu erwerben, würden von der neuen Regelung profitieren, denn künftig blieben die Flächen im Eigentum der Landwirte.
 
Informationen zu den Modellvorhaben unter: www.landnutzungsstrategie.de
|}
 
Für die Planung des Energiepflanzenanbaus sind die zu erwartende Erträge und der Energiewert eine wichtige Grundlage. Die nachfolgende Tabelle 4 zeigt eine vergleichende Übersicht auf Basis des Heizöläquivalents.
 
'''Tabelle 4: Bioenergieträger, ihre typischen Umwandlungsverfahren und Erträge, angegeben als Heizöl äquivalent in Litern pro Hektar und Jahr'''
{|class="wikitable"
! width="150" | Energieträger !! width="150" | Umwandlungsverfahren || width="120" | Ertrag <br /> Heizöläquivalent <br /> l/(ha •a)
|-
| colspan="3" | ''Rückstände''
|-
| Waldrestholz || Verbrennung || align="right" | 434
|-
| Getreidestroh || Verbrennung || align="right" | 2.390
|-
| colspan="3" | ''[[Energiepflanzen]]''
|-
| Maissilage || Vergärung zu [[Biogas]] || align="right" | 5.280
|-
| [[Raps]]öl || Verbrennung/ <br /> Umesterung zu [[Biodiesel]] || align="right" | 1.528
|-
| Kurzumtriebsplantagen <br /> (z. B. Pappeln, Weiden) || Verbrennung || align="right" | 5.120
|-
| Getreideganzpflanzen || Vergärung zu [[Biogas]] || align="right" | 4.013
|-
| Getreidekörner || Verbrennung/ <br /> Vergärung zu [[Biogas]] <br /> Vergärung zu [[Ethanol]] || align="right" | 2.232
|-
| Futtergräser <br /> (z. B. Rohrschwingel) || Vergärung zu [[Biogas]] || align="right" | 3.016
|-
| Miscanthus <br /> (Chinaschilf; ab 3. Jahr) || Verbrennung || align="right" | 6.081
|}
Quelle: Leitfaden Bioenergie, FNR (2007) und eigene Berechnungen
 
 
 
== Quelle ==
* http://bioenergie.fnr.de/bioenergie/biomasse/grundlagen/ und http://mediathek.fnr.de/broschuren/bioenergie/bioenergie.html - Abgerufen: 10.10.2013


Weiter mit [[Bioenergie|Nutzung Bioenergie]]


== Siehe auch ==
== Siehe auch ==