Luftdichtung: Unterschied zwischen den Versionen

K
 
(43 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 17: Zeile 17:


{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
|- valign="top"
| Ungeschützter Dämmstoff: <br /> Luftbewegung reduziert Dämmwirkung. || Geschützter Dämmstoff: <br /> Volle Dämmwirkung.
|-
|-
|[[Bild:BPhys GD 1 01_WD_offen-01.jpg|right|250px|'''Dämmung durch unbewegte Luft''' - Ungeschützter Dämmstoff:<br /> Luftbewegung in der Porenstruktur reduziert die Dämmwirkung.]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 01_WD_offen-01.jpg|right|250px|'''Dämmung durch unbewegte Luft''' - Ungeschützter Dämmstoff:<br /> Luftbewegung in der Porenstruktur reduziert die Dämmwirkung.]]
|[[Bild:BPhys GD 1 02_WD_umschlossen-01.jpg|right|250px|'''Geschützter Wärmedämmung:'''<br /> Keine Luftbewegung in der Porenstruktur möglich, <br />volle Dämmwirkung.]]
|[[Bild:BPhys GD 1 02_WD_umschlossen-01.jpg|right|250px|'''Geschützter Wärmedämmung:'''<br /> Keine Luftbewegung in der Porenstruktur möglich, <br />volle Dämmwirkung.]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Ungeschützter Dämmstoff: <br /> Luftbewegung reduziert Dämmwirkung. || Geschützter Dämmstoff: <br /> Volle Dämmwirkung.
|}
|}
<br />
<br />
Zeile 32: Zeile 32:
{{Hinweis|Wichtig beim Einbau der Luftdichtung ist die perfekte Ausführung, denn Undichtheiten in der Fläche und an Anschlüssen haben Folgen.}}
{{Hinweis|Wichtig beim Einbau der Luftdichtung ist die perfekte Ausführung, denn Undichtheiten in der Fläche und an Anschlüssen haben Folgen.}}
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"  
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"  
|-
| [[Bild:BPhys GD 1 32_SOLITEX_WD_voll_Gefach-01.jpg|center|400px]]
|-  
|-  
| Innen luftdicht, außen winddicht
| Innen luftdicht, außen winddicht
|-
| [[Bild:BPhys GD 1 32_SOLITEX_WD_voll_Gefach-01.jpg|center|400px]]
|}  
|}  
Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:<br />
Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:<br />
Zeile 46: Zeile 46:
===Lüftungswärmeverlust===
===Lüftungswärmeverlust===
;Ökonomie + Ökologie / Wärmeverluste / Klimaerwärmung
;Ökonomie + Ökologie / Wärmeverluste / Klimaerwärmung
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 05_Heizung_gross-02.jpg|right|250px|'''Undichte''' Gebäudehülle: <br />Hohe Heizkosten und [[CO2|CO<sub>2</sub>-Emissionen]]]]
|[[Bild:BPhys GD 1 04_Heizung_klein-02.jpg|right|250px|'''Dichte''' Gebäudehülle: <br />Geringe Kosten]]
|-  
|-  
| Undicht: Hohe Heizkosten || Dichte: Geringe Kosten
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" width="180px" | Undicht: Hohe Heizkosten || width="180px" | Dichte: Geringe Kosten
|-
|[[Bild:BPhys GD 1 05_Heizung_gross-02.jpg|right|250px|'''Undichte''' Gebäudehülle: <br />Hohe Heizkosten und [[CO2|CO<sub>2</sub>-Emissionen]]]]
|[[Bild:BPhys GD 1 04_Heizung_klein-02.jpg|right|300px|'''Dichte''' Gebäudehülle: <br />Geringe Kosten]]
|}
|}
Bereits kleinste Leckagen in der Dampfbremsebene, wie wie z. B. durch mangelnde Verklebung der Bahnenüberlappungen oder -anschlüsse entstehen, haben weitreichende Folgen. Eine derartige Fehlstelle hat die gleichen Auswirkungen wie eine durchgehende Fuge zwischen Fensterrahmen und Mauerwerk. Niemand würde in diesem Bereich eine Fuge tolerieren. Entsprechend sollten Fugen in der Dampfbremse die gleiche Aufmerksamkeit bekommen.
Bereits kleinste Leckagen in der Dampfbremsebene, wie wie z. B. durch mangelnde Verklebung der Bahnenüberlappungen oder -anschlüsse entstehen, haben weitreichende Folgen. Eine derartige Fehlstelle hat die gleichen Auswirkungen wie eine durchgehende Fuge zwischen Fensterrahmen und Mauerwerk. Niemand würde in diesem Bereich eine Fuge tolerieren. Entsprechend sollten Fugen in der Dampfbremse die gleiche Aufmerksamkeit bekommen.
Zeile 57: Zeile 57:
Die durch Undichtheiten entstehenden höheren Heizkosten führen zu einer geringeren Rentabilität der Wärmedämmung für den Bauherrn. Darüber hinaus entsteht eine höhere Emission von [[CO2|CO<sub>2</sub>]], als es bei der Beheizung von luftdichten Gebäuden notwendig wäre. Entsprechend einer Untersuchung des [[Fraunhofer Gesellschaft|Instituts für Bauphysik in Stuttgart]] verschlechtert sich der U-Wert einer Wärmedämmkonstruktion um den Faktor 4,8. (mehr: [[Luftdichtung#Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der Gebäudehülle|siehe unten]]) <br clear="all" />
Die durch Undichtheiten entstehenden höheren Heizkosten führen zu einer geringeren Rentabilität der Wärmedämmung für den Bauherrn. Darüber hinaus entsteht eine höhere Emission von [[CO2|CO<sub>2</sub>]], als es bei der Beheizung von luftdichten Gebäuden notwendig wäre. Entsprechend einer Untersuchung des [[Fraunhofer Gesellschaft|Instituts für Bauphysik in Stuttgart]] verschlechtert sich der U-Wert einer Wärmedämmkonstruktion um den Faktor 4,8. (mehr: [[Luftdichtung#Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der Gebäudehülle|siehe unten]]) <br clear="all" />
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" id="ganz_oben"  
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" id="ganz_oben"  
|-
| [[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.3.jpg|center|400px]]
|-  
|-  
| Nur eine fugenfreie Wärmedämmkonstruktion hat den vollen Dämmwert.
| Nur eine fugenfreie Wärmedämmkonstruktion hat den vollen Dämmwert.
|-
| [[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.3.jpg|center|400px]]
|}  
|}  
Übertragen auf die Realität bedeutet das, dass für ein Haus mit einer Wohnfläche von 80&nbsp;m², bei dem Leckagen in der Luftdichtung vorhanden sind, eine ebenso große Energiemenge zum Beheizen benötigt wird wie für ein luftdichtes Haus mit ca. 400&nbsp;m² Wohnfläche. Unkontrollierte [[CO2|CO<sub>2</sub>]]-Emissionen fördern das Treibhausklima – die menschliche Zivilisation spürt die Auswirkungen z. B. durch eine steigende Anzahl von Unwetterkatastrophen.
Übertragen auf die Realität bedeutet das, dass für ein Haus mit einer Wohnfläche von 80&nbsp;m², bei dem Leckagen in der Luftdichtung vorhanden sind, eine ebenso große Energiemenge zum Beheizen benötigt wird wie für ein luftdichtes Haus mit ca. 400&nbsp;m² Wohnfläche. Unkontrollierte [[CO2|CO<sub>2</sub>]]-Emissionen fördern das Treibhausklima – die menschliche Zivilisation spürt die Auswirkungen z. B. durch eine steigende Anzahl von Unwetterkatastrophen.
Deshalb ist die Reduzierung der CO<sub>2</sub>-Emissionen anzustreben. Nicht nur durch Verzicht, sondern v. a. durch den Einsatz von intelligenten Lösungen helfen wir der Umwelt.
Deshalb ist die Reduzierung der CO<sub>2</sub>-Emissionen anzustreben. Nicht nur durch Verzicht, sondern v. a. durch den Einsatz von intelligenten Lösungen helfen wir der Umwelt.
<br />


Häuser in Mitteleuropa benötigen nach einer Erhebung aus dem Jahr 2000 im Durchschnitt 22&nbsp;l&nbsp;Öl/m² (220&nbsp;KWh/m²) Wohnfläche für die Raumheizung, ein [[Passivhaus]] braucht nur 1&nbsp;l, ein "[[3 Liter Haus]]", wie der Name schon sagt, 3&nbsp;l&nbsp;Öl/m² – vorausgesetzt die Luftdichtung ist perfekt. Fugen in der Luftdichtungsebene von Gebäuden führen zu einer Vervielfachung des Energiebedarfs je Quadratmeter Wohnfläche.
Häuser in Mitteleuropa benötigen nach einer Erhebung aus dem Jahr 2000 im Durchschnitt 22&nbsp;l&nbsp;Öl/m² (220&nbsp;KWh/m²) Wohnfläche für die Raumheizung, ein [[Passivhaus]] braucht nur 1&nbsp;l, ein "[[3 Liter Haus]]", wie der Name schon sagt, 3&nbsp;l&nbsp;Öl/m² – vorausgesetzt die Luftdichtung ist perfekt. Fugen in der Luftdichtungsebene von Gebäuden führen zu einer Vervielfachung des Energiebedarfs je Quadratmeter Wohnfläche.
Zeile 70: Zeile 72:
== Unangenehmes Raumklima im Sommer ==
== Unangenehmes Raumklima im Sommer ==
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 12 Dachschn.Sommer kuehl-02.jpg|center|250px|Kühle Räume bei sommerlicher Hitze]]
|[[Bild:BPhys GD 1 11 Dachschn.Sommer warm-02.jpg|center|250px|Schnelle Aufheizung durch Luftströmung]]
|-  
|-  
| Kühle Räume bei sommerlicher Hitze || Schnelle Aufheizung durch Luftströmung
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Kühle Räume bei sommerlicher Hitze || Schnelle Aufheizung durch Luftströmung
|-
|[[Bild:BPhys GD 1 12 Dachschn.Sommer kuehl-02.jpg|right|250px|Kühle Räume bei sommerlicher Hitze]]
|[[Bild:BPhys GD 1 11 Dachschn.Sommer warm-02.jpg|right|250px|Schnelle Aufheizung durch Luftströmung]]
|}
|}
Der [[sommerlicher Wärmeschutz|sommerlichen Hitzeschutz]] wird charakterisiert durch die Zeitdauer in Stunden, in der die unter der Dacheindeckung herrschende Wärme bis an die Innenseite der Konstruktion gelangt ([[Phasenverschiebung]]), und durch die damit verbundene Steigerung der Innenraumtemperatur in Grad Celsius (°C) im Vergleich zur Außentemperatur ([[Temperaturamplitudendämpfung|Amplitudendämpfung]]).
Der [[sommerlicher Wärmeschutz|sommerlichen Hitzeschutz]] wird charakterisiert durch die Zeitdauer in Stunden, in der die unter der Dacheindeckung herrschende Wärme bis an die Innenseite der Konstruktion gelangt ([[Phasenverschiebung]]), und durch die damit verbundene Steigerung der Innenraumtemperatur in Grad Celsius (°C) im Vergleich zur Außentemperatur ([[Temperaturamplitudendämpfung|Amplitudendämpfung]]).
Zeile 92: Zeile 94:
== Ungesundes Raumklima im Winter ==
== Ungesundes Raumklima im Winter ==
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"   
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |  [[Bild:BPhys GD 1 14 Dachschn. Kaltluft-01.jpg|center|250px|Trockene Kaltluft <br /> dringt durch Fugen ein]]
| [[Bild:BPhys GD 1 16 Diagramm LF sinkt-01.jpg|center|250px|Zu geringe rLF ist nachteilig für die Gesundheit und die Behaglichkeit]]
|- valign="top"  
|- valign="top"  
| Trockene Kaltluft <br /> dringt durch Fugen ein || Zu geringe Luftfeuchte: <br /> nachteilig für die Gesundheit
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Trockene Kaltluft <br /> dringt durch Fugen ein || Zu geringe Luftfeuchte: <br /> nachteilig für die Gesundheit
|-
|[[Bild:BPhys GD 1 14 Dachschn. Kaltluft-01.jpg|right|250px|Trockene Kaltluft <br /> dringt durch Fugen ein]]
|[[Bild:BPhys GD 1 16 Diagramm LF sinkt-01.jpg|right|250px|Zu geringe rLF ist nachteilig für die Gesundheit und die Behaglichkeit]]
|}
|}
In der Heizperiode sollte die relative [[Luftfeuchtigkeit]] in bewohnten Räumen bei behaglichen 40 – 60 % liegen. Ein zu trockenes Raumklima ist gesundheitsschädlich.
In der Heizperiode sollte die relative [[Luftfeuchtigkeit]] in bewohnten Räumen bei behaglichen 40 – 60 % liegen. <br /> Ein zu trockenes Raumklima ist gesundheitsschädlich.


; Trockene Kaltluft dringt durch Fugen ein
; Trockene Kaltluft dringt durch Fugen ein
Zeile 111: Zeile 113:




* '''Mehr zum Thema'''  
* '''Mehr zum Thema''' Sättigungswerte, Behaglichkeit, gesundheitliche Aspekte, siehe: '''[[Luftfeuchtigkeit]]'''
** Sättigungswerte, Behaglichkeit, gesundheitliche Aspekte, siehe: '''[[Luftfeuchtigkeit]]'''




Zeile 118: Zeile 119:
<!--
<!--
==Definition Luftdichtung und Überblick über die Auswirkungen mangelhafter Luftdichtung==
==Definition Luftdichtung und Überblick über die Auswirkungen mangelhafter Luftdichtung==
Unter Luftdichtung versteht man den Schutz der Wärmedämmung in der [[Hüllfläche|Gebäudehülle]] vor eindringender [[Feuchtigkeit]]. Die Güte der Luftdichtheit bestimmt sich durch die Fugenfreiheit. Je mehr Fugen, bzw. Undichtheiten sich in der inneren [[Hüllfläche|Gebäudehülle]], z. B. der [[Dampfbremse]]  befinden, d.h. je undichter die [[Hüllfläche|Gebäudehülle]] ist, umso schlechter ist die Luftdichtung. Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] haben große bauphysikalische Auswirkungen:  
Unter Luftdichtung versteht man den Schutz der Wärmedämmung in der [[Hüllfläche|Gebäudehülle]] vor eindringender [[Feuchtigkeit]]. Die Güte der Luftdichtheit bestimmt sich durch die Fugenfreiheit. Je mehr Fugen, bzw. Undichtheiten sich in der inneren [[Hüllfläche|Gebäudehülle]], z. B. der [[Dampfbremse]]  befinden, d. h. je undichter die [[Hüllfläche|Gebäudehülle]] ist, umso schlechter ist die Luftdichtung. Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] haben große bauphysikalische Auswirkungen:  


{|align="right"
{|align="right"
Zeile 132: Zeile 133:




'''Weiterführende Details und Hintergrundwissen:'''
'''Details und Hintergrundwissen:'''


==Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der [[Hüllfläche|Gebäudehülle]]==
==Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der [[Hüllfläche|Gebäudehülle]]==
Die Auswirkungen der mangelhaften [[Luftdichtheit]] wurden vom [[Fraunhofer Gesellschaft|Fraunhofer Institut für Bauphysik]] in Stuttgart, Deutschland, in einer Messstudie 1989 untersucht und in verschiedenen Fachzeitschriften veröffentlicht <ref name="QU1" />:
Die Auswirkungen der mangelhaften [[Luftdichtheit]] wurden vom [[Fraunhofer Gesellschaft|Fraunhofer Institut für Bauphysik]] in Stuttgart, Deutschland, in einer Messstudie 1989 untersucht und in verschiedenen Fachzeitschriften veröffentlicht <ref name="QU1" />:
{|align="right"
|[[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.3.jpg|right|thumb|200px|Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor&nbsp;4,8]]
|}


Geprüft wurde die [[Wärmedurchgangskoeffizient|Wärmedämmwirkung]] und der [[Baufeuchte|Feuchtedurchgang]] bei einer innen liegenden Dampfbremse zusammen mit einer [[Wärmedämmung]] aus [[Mineralfaser|Mineralwolle]] mit 14&nbsp;cm Dämmstärke (ehemaliger Wärmedämmstandard in Deutschland).<br />  
Geprüft wurde die [[Wärmedurchgangskoeffizient|Wärmedämmwirkung]] und der [[Baufeuchte|Feuchtedurchgang]] bei einer innen liegenden Dampfbremse zusammen mit einer [[Wärmedämmung]] aus [[Mineralfaser|Mineralwolle]] mit 14&nbsp;cm Dämmstärke (ehemaliger Wärmedämmstandard in Deutschland).<br />  
Zeile 152: Zeile 149:
Vorab sei gesagt: Die Messergebnisse waren alarmierend und schreckten die Fachwelt auf.
Vorab sei gesagt: Die Messergebnisse waren alarmierend und schreckten die Fachwelt auf.


===Luftdichtung – die Voraussetzung, dass die Wärmedämmung wirklich dämmt===
=== Luftdichtung – die Voraussetzung, dass die Wärmedämmung wirklich dämmt ===
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|[[Bild:BPhys GD 2 Luft 03_Waermedurchg_d.jpg|right|thumb|200px|Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |  [[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.3.jpg|right|250px|Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor&nbsp;4,8]]
|[[Bild:BPhys GD 2 Luft 03_Waermedurchg_d.jpg|right|250px|Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor&nbsp;4,8 || Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen
|}
|}
Bei der Untersuchung der Wärmedämmwirkung der 14&nbsp;cm dicken [[Wärmedämmung]] mit der fugenfreien [[Dampfbremse]] bestätigte der gemessene [[Wärmedurchgangskoeffizient|U-Wert]] den rechnerischen von 0,30&nbsp;W/m²K.
Bei der Untersuchung der Wärmedämmwirkung der 14&nbsp;cm dicken [[Wärmedämmung]] mit der fugenfreien [[Dampfbremse]] bestätigte der gemessene [[Wärmedurchgangskoeffizient|U-Wert]] den rechnerischen von 0,30&nbsp;W/m²K.
Zeile 165: Zeile 166:
<br clear="all" />
<br clear="all" />


===Luftdichtung – die Voraussetzung für [[Bauschadensfreiheit]]===
=== Luftdichtung – die Voraussetzung für [[Bauschadensfreiheit]] ===
Bei der oben erwähnten Studie vom [[Fraunhofer Gesellschaft|Fraunhofer Institut für Bauphysik]] wurde neben der Wärmedämmwirkung auch der [[Baufeuchte|Feuchteeintrag]] in die [[Konstruktion]] gemessen. Die [[Dampfbremse]] hatte einen Diffusionswiderstand ([[sd-Wert|s<sub>d</sub>-Wert]]) von 30&nbsp;m (mvtr von 150&nbsp;MNs/g). Die Messung bestätigte den rechnerischen [[Baufeuchte|Feuchteeintrag]] in die [[Konstruktion]] von 0,5&nbsp;g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m (mvtr von 10&nbsp;MNs/g) sind die [[Baufeuchte|Feuchtemengen]] für [[Konstruktion]]en problemlos.  
Bei der oben erwähnten Studie vom [[Fraunhofer Gesellschaft|Fraunhofer Institut für Bauphysik]] wurde neben der Wärmedämmwirkung auch der [[Baufeuchte|Feuchteeintrag]] in die [[Konstruktion]] gemessen. Die [[Dampfbremse]] hatte einen Diffusionswiderstand ([[sd-Wert|s<sub>d</sub>-Wert]]) von 30&nbsp;m (mvtr von 150&nbsp;MNs/g). Die Messung bestätigte den rechnerischen [[Baufeuchte|Feuchteeintrag]] in die [[Konstruktion]] von 0,5&nbsp;g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m (mvtr von 10&nbsp;MNs/g) sind die [[Baufeuchte|Feuchtemengen]] für [[Konstruktion]]en problemlos.  
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"| [[Bild:BPhys GD 1 05 Konvekt Fuge Feuchte1-01-3.jpg|right|thumb|200px|800 g Tauwasser <br /> durch 1 mm Fuge]]
|-
|valign="top"| [[Bild:BPhys GD 2 Luft 05_Feuchtedurchg_d.jpg|right|thumb|200px|Abhängigkeit des [[Feuchte]]eintrags von der Fugenbreite]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 05 Konvekt Fuge Feuchte1-01-3.jpg|right|250px|800 g Tauwasser durch 1 mm Fuge]]
| [[Bild:BPhys GD 2 Luft 05_Feuchtedurchg_d.jpg|right|250px|Abhängigkeit des [[Feuchte]]eintrags von der Fugenbreite]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | 800 g Tauwasser durch 1 mm Fuge || Abhängigkeit des Feuchteeintrags von der Fugenbreite
|}
|}
Im zweiten Versuch wurde der [[Baufeuchte|Feuchteeintrag]] über die Fugen ermittelt:  
Im zweiten Versuch wurde der [[Baufeuchte|Feuchteeintrag]] über die Fugen ermittelt:  


Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz betrug der [[Baufeuchte|Feuchtigkeitseintrag]] durch [[Konvektion]] '''800&nbsp;g/m Fuge pro Tag'''. <br />
Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz (entspr. Windstärke 2-3) betrug der [[Baufeuchte|Feuchtigkeitseintrag]] durch [[Konvektion]] '''800&nbsp;g/m Fuge pro Tag'''. Bei einer Fugenbreite von 3&nbsp;mm waren es 1.700&nbsp;g/m.
Bei der Fugenbreite von 3&nbsp;mm waren es 1.700&nbsp;g/m.  
 
'''Hintergrund:'''<br />
Bei Luftströmungen durch Leckagen konzentriert sich der Feuchteeintrag auf eine kleine Fläche. Dadurch ist dieser um ein Vielfaches höher, als es die Berechnungsergebnisse darstellen können. Durch Konvektion kann durch eine Fuge von 1 mm Breite und 1 m Länge (= 1/1000 m²) eine Feuchtigkeitsmenge von 800 g/m und Tag durch Konvektion in die Wärmedämmkonstruktion gelangen. So viel Feuchtigkeit kann auch die diffusionsoffenste Unterdeckbahn nicht austrocknen lassen.  <br />
Der Antrieb der Konvektion ist der Druckunterschied zwischen dem Inneren eines Gebäudes und der Außenluft. Der Druckunterschied resultiert aus der Windanströmung des Gebäudes von außen und dem Aufsteigen der beheizten Luft innerhalb des bewohnten Raums. <br />
Ab [[WUFI pro|WUFI pro 5.0]] steht für die Berechnung von konvektiven Feuchteeinträgen ein Luftinfiltrationsmodell zur Verfügung. Es kann auf Grundlage eines Austausches mit der Innenraumluft einen konvektiven Feuchteeintrag simulieren. Das setzt voraus, dass die Undichtheit der Konstruktion bekannt ist, denn diese dient dazu, den Feuchtigkeitseintrag zu quantifizieren.
<br clear="all" />
<br clear="all" />


=== Kondensation - Taupunkt - Tauwassermenge ===
Der [[Baufeuchte|Feuchtigkeitseintrag]] führt an den Außenbauteilen zur Kondensation und bildet einen Wasserfilm, der die Diffusionsfähigkeit des Bauteils reduziert. Bei Frost bildet sich aus dem Wasserfilm eine diffusionsdichte Eisschicht. So kann ein diffusionsoffenes Bauteil auf der Außenseite zu einer diffusionsdichten Sperrschicht werden und zu einem noch höheren [[Tauwasserausfall]] in der [[Konstruktion]] führen.
Der [[Baufeuchte|Feuchtigkeitseintrag]] führt an den Außenbauteilen zur Kondensation und bildet einen Wasserfilm, der die Diffusionsfähigkeit des Bauteils reduziert. Bei Frost bildet sich aus dem Wasserfilm eine diffusionsdichte Eisschicht. So kann ein diffusionsoffenes Bauteil auf der Außenseite zu einer diffusionsdichten Sperrschicht werden und zu einem noch höheren [[Tauwasserausfall]] in der [[Konstruktion]] führen.


{| align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1"
| colspan="2" style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;"| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> ⇒ es fällt früher Tauwasser aus.
|-
| valign="top" width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''1. Feuchtephysik der Luft bei 50 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|400px|]]
| valign="top" width="400px" | '''2. Feuchtephysik der Luft bei 65 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|400px|]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20&nbsp;°C / 50&nbsp;% rel. Luftfeuchte wird der Taupunkt bei 8,7&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 5,35&nbsp;g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65&nbsp;% rel. Luftfeuchte wird der Taupunkt schon bei 13,2&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 7,95&nbsp;g/m³ Luft aus.
|}


{|align="right"
Der [[Tauwasserausfall]] beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20&nbsp;°C und 50&nbsp;% relativer [[Feuchtigkeit]] bei 8,7&nbsp;°C liegt.
|valign="top"| [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|right|thumb|200px|Bei einem Innenklima von 20&nbsp;°C / 50&nbsp;% rel. Luftfeuchte wird der Taupunkt bei 8,7&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 5,35&nbsp;g/m³ Luft aus.]]
|valign="top"| [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|right|thumb|200px|Bei erhöhter Raumluftfeuchtigkeit von 65&nbsp;% rel. Luftfeuchte wird der Taupunkt schon bei 13,2&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 7,95&nbsp;g/m³ Luft aus.]]
|}
Der [[Tauwasserausfall]] beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20&nbsp;°C und 50&nbsp;% relativer [[Feuchtigkeit]] bei 9,2&nbsp;°C liegt.


Aus jedem Kubikmeter Luft, der in eine [[Konstruktion]] eindringt und auf -5&nbsp;°C abkühlt kondensieren 5,35&nbsp;g Wasser.
Aus jedem Kubikmeter Luft, der in eine [[Konstruktion]] eindringt und auf -5&nbsp;°C abkühlt kondensieren 5,35&nbsp;g Wasser.
Zeile 207: Zeile 221:
Sichtbarer [[Schimmel]] ist erkennbar und kann beseitigt werden. [[Schimmel]] in der [[Konstruktion]] kann jahrelang, unter Umständen jahrzehntelang unerkannt bleiben und zu gravierenden Gesundheitsschädigungen führen.
Sichtbarer [[Schimmel]] ist erkennbar und kann beseitigt werden. [[Schimmel]] in der [[Konstruktion]] kann jahrelang, unter Umständen jahrzehntelang unerkannt bleiben und zu gravierenden Gesundheitsschädigungen führen.


{|align="right"
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" id="ganz_oben"  
|[[Bild:BPhys GD 2 Luft 08 schimmel d.jpg|right|thumb|200px|Der schimmelkritische Bereich liegt bei 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C<br /> bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C]]
|-
|}
| [[Bild:BPhys GD 2 Luft 08 schimmel d.jpg|center|400px]]
[[Schimmel]] tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d.h. [[Tauwasserausfall|Tauwasser]] ausfällt, sondern bereits dann, wenn die relative [[Luftfeuchtigkeit]] an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.  
|-
| Der schimmelkritische Bereich liegt <br /> bei <50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C <br /> bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C
|}  
 
[[Schimmel]] tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d. h. [[Tauwasserausfall|Tauwasser]] ausfällt, sondern bereits dann, wenn die relative [[Luftfeuchtigkeit]] an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.  


Die Reduzierung der Oberflächentemperatur auf den Bauteiloberflächen kann durch [[Wärmebrücke]]n oder durch mangelhafte Luftdichtung verursacht werden. [[Wärmebrücke]]n kühlen das Gebäude aus wie Kühlrippen. Bei mangelhafter Luftdichtung dringt kalte Luft von außen ein, hinterströmt die inneren Bauteile (Gipsbauplatten oder Holzverkleidungen) und führt zur Absenkung der Oberflächentemperatur.  
Die Reduzierung der Oberflächentemperatur auf den Bauteiloberflächen kann durch [[Wärmebrücke]]n oder durch mangelhafte Luftdichtung verursacht werden. [[Wärmebrücke]]n kühlen das Gebäude aus wie Kühlrippen. Bei mangelhafter Luftdichtung dringt kalte Luft von außen ein, hinterströmt die inneren Bauteile (Gipsbauplatten oder Holzverkleidungen) und führt zur Absenkung der Oberflächentemperatur.  
Zeile 216: Zeile 234:
Je kälter und je windiger es draußen ist, umso mehr  kühlen die inneren Bauteilschichten aus.
Je kälter und je windiger es draußen ist, umso mehr  kühlen die inneren Bauteilschichten aus.


Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20&nbsp;°C Lufttemperatur hat Luft mit 50&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 9,2&nbsp;°C und Luft mit 65&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 13,2&nbsp;°C. Der schimmelkritische Bereich liegt bei der 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C und bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C.
Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20&nbsp;°C Lufttemperatur hat Luft mit 50&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 8,7&nbsp;°C und Luft mit 65&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 13,2&nbsp;°C. Der schimmelkritische Bereich liegt bei der 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C und bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C.
<br clear="all" />
<br clear="all" />


===[[Thermografie]] zeigt niedrige Oberflächentemperatur durch [[Wärmebrücke]]n und Undichtheiten===
=== Thermografie zeigt niedrige Oberflächentemperatur durch Wärmebrücken und Undichtheiten ===


{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"|[[Bild:BPhys GD 2 Luft 09_Balken_color.jpg|right|thumb|150px|Balkendurchdringung in einer Außenwand]]
|- valign="top"
|valign="top"|[[Bild:BPhys GD 2 Luft 10_Balken_thermo.jpg|right|thumb|150px|[[Thermografie]] ]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Balkendurchdringung Außenwand || align="center" | Thermografie
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 09_Balken_color.jpg|center|250px|Balkendurchdringung in einer Außenwand]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 10_Balken_thermo.jpg|center|250px|Thermografie]]
|- valign="top"
| colspan="2" | Dachflächenfenster
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 11_DFF_color.jpg|center|250px|]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 12_DFF_thermo.jpg|center|250px|Thermografie ]]
|- valign="top"
| colspan="2" | Außenecke in einem Dachgeschosszimmer
|-
| [[Bild:BPhys GD 2 Luft 13_Ecke_color.jpg|center|250px|Außenecke in einem Dachgeschosszimmer]]
| [[Bild:BPhys GD 2 Luft 14_Ecke_thermo.jpg|center|250px|Thermografie]]
|}
|}


Zeile 229: Zeile 260:


Die Bilder  zeigen deutlich, wie die kalte Luft an den Bauteilen entlang strömt und die Oberflächen abkühlt.
Die Bilder  zeigen deutlich, wie die kalte Luft an den Bauteilen entlang strömt und die Oberflächen abkühlt.
<br clear="all" />
{|align="right"
|valign="top"|[[Bild:BPhys GD 2 Luft 11_DFF_color.jpg|right|thumb|150px|[[Dachflächenfenster]]]]
|valign="top"|[[Bild:BPhys GD 2 Luft 12_DFF_thermo.jpg|right|thumb|150px|[[Thermografie]] ]]
| width="20px"|
|valign="top"|[[Bild:BPhys GD 2 Luft 13_Ecke_color.jpg|right|thumb|150px|Außenecke in einem Dachgeschosszimmer]]
|valign="top"|[[Bild:BPhys GD 2 Luft 14_Ecke_thermo.jpg|right|thumb|150px|[[Thermografie]] ]]
|}
<br clear="all" />
<br clear="all" />


Zeile 248: Zeile 271:
Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z. B. Hurrikans) weiter beschleunigen. Die Investition in eine gute [[Wärmedämmung]], sei es beim Neubau oder beim [[Sanieren|Sanieren/Modernisieren]] ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.
Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z. B. Hurrikans) weiter beschleunigen. Die Investition in eine gute [[Wärmedämmung]], sei es beim Neubau oder beim [[Sanieren|Sanieren/Modernisieren]] ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.


Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen [[Energiebedarf]] besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1&nbsp;°C führt immerhin zu einer Verringerung des Heiz[[energiebedarf]]s, d.h. der Heizkosten um 6&nbsp;%. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die  Wohnraumtemperatur von 22&nbsp;°C auf 20&nbsp;°C zu senken. Die Reduzierung von 20&nbsp;°C auf 10&nbsp;°C, zur Kompensation der  enormen Heizkosten, ist bestimmt nicht erstrebenswert.
Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen [[Energiebedarf]] besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1&nbsp;°C führt immerhin zu einer Verringerung des Heiz[[energiebedarf]]s, d. h. der Heizkosten um 6&nbsp;%. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die  Wohnraumtemperatur von 22&nbsp;°C auf 20&nbsp;°C zu senken. Die Reduzierung von 20&nbsp;°C auf 10&nbsp;°C, zur Kompensation der  enormen Heizkosten, ist bestimmt nicht erstrebenswert.


<!--===Ökologische Konsequenzen===
<!--===Ökologische Konsequenzen===
Zeile 270: Zeile 293:


==Gesetze und Normen in Deutschland==
==Gesetze und Normen in Deutschland==
Die Erkenntnisse über die Auswirkungen der [[Luftdichtheit]]  wurden in Deutschland 1995 (6 Jahre nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3.&nbsp;[[Wärmeschutzverordnung]] über die [[Luftdichtheit]] gesetzlich bindend und führten zur Vornorm der [[DIN 4108]]-7. Im Jahre 2000 folgten die [[Energieeinsparverordnung]] und die [[DIN 4108]]-7.
Die Erkenntnisse über die Auswirkungen der [[Luftdichtheit]]  wurden in Deutschland 1995 (6 J. nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3.&nbsp;[[Wärmeschutzverordnung]] über die [[Luftdichtheit]] gesetzlich bindend und führten zur Vornorm der [[DIN 4108]]-7. Im Jahre 2000 folgten die [[Energieeinsparverordnung]] und die [[DIN 4108]]-7. 2020 das Gebäude-Energie-Gesetz (GEG).


Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000&nbsp;€ sind keine Seltenheit.
Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000&nbsp;€ sind keine Seltenheit.


==Realisierung einer funktionierenden Luftdichtheit==
== Realisierung einer funktionierenden Luftdichtheit ==
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"| [[Bild:Pc-gd verarb DB+ Verklebung 01.jpg|right|thumb|200px|Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband]]
|- valign="top"
|valign="top"| [[Bild:Pc-gd verarb DB+ Drempel 02.jpg|right|thumb|200px|Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband || Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb DB+ Verklebung 01.jpg|center|250px|Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd_verarb_DB+_mineralisch_02.jpg|center|250px|Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband || Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern
|-
|-
|valign="top"| [[Bild:Pc-gd verarb_INTELLO_Verklebung_01.jpg|right|thumb|200px|Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb_INTELLO_Verklebung_01.jpg|center|250px|Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband]]
|valign="top"| [[Bild:Pc-gd verarb INTELLO Drempel 01.jpg|right|thumb|200px|Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern]]
| [[Bild:Pc-gd verarb INTELLO Drempel 01.jpg|center|250px|Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern]]
|}
|}
Um eine funktionierende Luftdichtung zu erreichen, müssen die [[Dampfbremse]]n untereinander mit Klebebändern  verbunden werden. Anschlüsse zu angrenzenden Bauteilen werden mit Luftdichtungsklebern dauerhaft zuverlässig hergestellt.  
Um eine funktionierende Luftdichtung zu erreichen, müssen die [[Dampfbremse]]n untereinander mit Klebebändern  verbunden werden. Anschlüsse zu angrenzenden Bauteilen werden mit Luftdichtungsklebern dauerhaft zuverlässig hergestellt.  


Zeile 298: Zeile 327:
Eine hohe Anfangsklebkraft bei kalten Temperaturen ist erforderlich, da die  Luftdichtung meist dann erstellt wird, wenn die Heizung noch nicht funktioniert.
Eine hohe Anfangsklebkraft bei kalten Temperaturen ist erforderlich, da die  Luftdichtung meist dann erstellt wird, wenn die Heizung noch nicht funktioniert.
<br clear="all" />
<br clear="all" />
Eine sehr hohe Endklebkraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach [[FLIB|FLiB]] eingeteilt in 2 Substratklassen: [[PE]]-Folie und Holz. [[PE]]-Folien sollten eine Oberflächenspannung von mehr als 40&nbsp;mN/m haben. Aber auch [[PE]]-Folien mit nur 30&nbsp;mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d.h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.  
Eine sehr hohe Endklebkraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach [[FLIB|FLiB]] eingeteilt in 2 Substratklassen: [[PE]]-Folie und Holz. [[PE]]-Folien sollten eine Oberflächenspannung von mehr als 40&nbsp;mN/m haben. Aber auch [[PE]]-Folien mit nur 30&nbsp;mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d. h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.  
{|align="right"
 
|valign="top"| [[Bild:BPhys GD 2 Luft 25_Intello_Nass_Fenster.jpg|right|thumb|200px|Kondensatausfall an gedämmten [[Dachflächenfenster]] nach Verputz- und Estricharbeiten]]
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|- valign="top"  
| Kondensatausfall an gedämmten Dachflächenfenster nach Verputz- und Estricharbeiten
|-
| [[Bild:BPhys GD 2 Luft 25_Intello_Nass_Fenster.jpg|center|250px|Kondensatausfall an gedämmten Dachflächenfensternach Verputz- und Estricharbeiten]]
|}
|}
Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.  
Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.  
Zeile 311: Zeile 344:
Die '''Dauerhaftigkeit''' ist eine der grundlegenden Eigenschaften der Klebebandverbindung. Gebäude stehen  statistisch gesehen mindestens 30 Jahre, bevor sie umgebaut, saniert oder modernisiert werden. Diese Zyklen können aber auch durchaus länger sein.  Versprödende Bestandteile, wie Harze sollten in Verbindungsmitteln also vermieden werden. Einfache Klebebänder, wie man sie zum Verkleben von Paketen verwendet, verspröden schon nach inigen Jahren. Im Baubereich angewendet würden sie die Luftdichtheit nicht dauerhaft sicherstellen und einfach abfallen.
Die '''Dauerhaftigkeit''' ist eine der grundlegenden Eigenschaften der Klebebandverbindung. Gebäude stehen  statistisch gesehen mindestens 30 Jahre, bevor sie umgebaut, saniert oder modernisiert werden. Diese Zyklen können aber auch durchaus länger sein.  Versprödende Bestandteile, wie Harze sollten in Verbindungsmitteln also vermieden werden. Einfache Klebebänder, wie man sie zum Verkleben von Paketen verwendet, verspröden schon nach inigen Jahren. Im Baubereich angewendet würden sie die Luftdichtheit nicht dauerhaft sicherstellen und einfach abfallen.


===Anschlüsse von Dampfbremsen an angrenzende Bauteile===
=== Anschlüsse von Dampfbremsen an angrenzende Bauteile ===
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"|[[Bild:Pc-gd verarb DB+ Drempel 02.jpg|right|thumb|200px|Anschluss [[Drempel]] mit Luftdichtungskleber]]
|- valign="top"
|valign="top"|[[Datei:04 ld-db Anschluss-Drempel-Holzbau.png|right|thumb|260px|Anschluss Drempel im Holzbau]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Anschluss an glatte, nicht mineralische Untergründe || Anschluss Drempel im Holzbau
|}
|-
{|align="right"
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb DB+ Drempel 01.jpg|center|250px|Anschluss [[Drempel]] mit Luftdichtungskleber]]
|valign="top"|[[Bild:Pc-gd verarb INTELLO mineralisch 02.jpg|right|thumb|200px|Anschluss Giebelwand mit Luftdichtungskleber]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:04 ld-db Anschluss-Drempel-Holzbau.png|center|250px|Anschluss Drempel im Holzbau]]
|valign="top"|[[Datei:05 ld-db Anschluss-Ortgang-auf-Putz-Anschlusskleber.png|right|thumb|260px|Anschluss Ortgang auf Putz mit Anschlusskleber]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Anschluss Giebelwand mit Luftdichtungskleber || Anschluss Ortgang auf Putz mit Anschlusskleber
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb INTELLO mineralisch 02.jpg|center|250px|Anschluss Giebelwand mit Luftdichtungskleber]]
| [[Bild:05 ld-db Anschluss-Ortgang-auf-Putz-Anschlusskleber.png|center|250px|Anschluss Ortgang auf Putz mit Anschlusskleber]]
|}
|}


Zeile 362: Zeile 399:


==Weblinks==
==Weblinks==
*[http://vht-darmstadt.de/luftdichtheit/warum.html Erläuterungen zur Luft- und Winddichtheit] - der [[Versuchsanstalt für Holz- und Trockenbau|VHT Darmstadt]]
*[[Fachverband Luftdichtheit im Bauwesen|FLIB - Fachverband Luftdichtheit im Bauwesen e.V.]] - Bundesweite fachliche Dachorganisation
*[[Fachverband Luftdichtheit im Bauwesen|FLIB - Fachverband Luftdichtheit im Bauwesen e.V.]] - Bundesweite fachliche Dachorganisation




[[Kategorie:Wohngesundheit]][[Kategorie:Luftdichtung innen| Luftdichtung]][[Kategorie:Bauphysik]][[Kategorie:Baumaterial]][[Kategorie:Glossar]]
[[Kategorie:Wohngesundheit]][[Kategorie:Luftdichtung innen| Luftdichtung]][[Kategorie:Bauphysik]][[Kategorie:Baumaterial]][[Kategorie:Glossar]]