Semiprobabilistisches Sicherheitskonzept
Kurzdarstellung semiprobabilistisches Sicherheitskonzept
- Nachweise nach Normen basierend auf dem semi-probabilistischem Sicherheitskonzept Anmerkung zum folgenden Kapitel
Dieses Kapitel stellt zum Zweck des Überblicks eine inhaltliche Kurzfassung der derzeit geltenden Europäischen Normenwerke dar und erhebt naturgemäß keinen Anspruch auf Vollständigkeit. Es ersetzt im Anwendungsfall keinesfalls die detaillierten Festlegungen der jeweiligen Normen, welche in jedem Fall heranzuziehen sind.
Die redaktionelle Erarbeitung erfolgte im Hinblick auf die Darstellung der Eigenschaften vom SHERPA Holzverbinder-System.
Einführung
Der Holzbau hat sich durch die verschiedenen Baukulturen der Völker, den unterschiedlichen regionalen Holzarten und nicht zuletzt von den getrennt durchgeführten Holzforschungen und den damit verbundenen Erfahrungen, regional in sehr unterschiedlichen Bauweisen weiterentwickelt. Durch die Europäisierung und dem damit einhergehenden Wunsch Handelshemmnisse abzubauen, wurde ab den 70er Jahren mit der Harmonisierung nationaler Regelungen begonnen [Step 1]. Mit der Normenserie EN 1995-1-1:2004/A1:2008 und EN 1995-1-2:2006 stehen dem Holzbau heute Dokumente zur Verfügung, die durch gesichertes Fachwissen eine auf europäischer Ebene einheitliche Bemessung von Holzbauten ermöglichen [Step 1]. Damit den regionalen Bedürfnissen und Anforderungen der Länder nachgekommen werden kann, erfolgte eine Erweiterung der Grundlagendokumente der Eurocodes durch nationale Anhänge. Für die Anwendung des Eurocode 5 EN 1995-1-1:2004/A1:2008 sind gewisse Vorkenntnisse nötig, damit ein sicherer Umgang mit den semi-probabilistischen Bemessungskonzepten erfolgen kann.
In Deutschland findet durch die DIN 1052:2008 dasselbe Sicherheitskonzept Anwendung, weshalb es unter anderem noch zu keiner vollständigen Umstellung auf den Eurocode 5 gekommen ist. Da mit der DIN 1052:2008 ein sehr gutes Normenwerk zur Verfügung steht, werden auch in anderen Ländern sehr häufig noch Bemessungsregeln daraus verwendet. Mit der Zeit wird es allerdings auch hierzu einer Angleichung kommen müssen.
Der SHERPA®-Verbinder mit der bauaufsichtlichen Zulassung Z-9.1-558 vom Deutschen Institut für Bautechnik (DIBt) unterliegt den Regeln der DIN 1052:2008. In den folgenden Punkten werden die Methoden der Berechnung von Holzbauwerken nach den semi-probabilistischen Sicherheitskonzeptender beiden Regelwerke DIN 1052:2008 und der EN 1995-1-1:2004/A1:2008 vorgestellt. Durch den Sitz der Vinzenz Harrer GmbH in Frohnleiten bei Graz, werden in bestimmten Punkten auch Angaben aus dem nationalen Anhang für Österreich ÖNORM B 1995-1-1:2009 gemacht. Im Anschluss daran werden die Nachweise für die Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit der EN 1995-1-1:2004/A1:2008 und der DIN 1052:2008 vorgestellt und auch miteinander verglichen.
Die gezeigten Rechenmodelle beinhalten nur einen kleinen Teil der beiden genannten Regelwerke und dürfen somit keinesfalls als Ersatz der jeweils gültigen Normendokumente verstanden werden.
Viele Parameter in den Berechnungskonzepten zur Dimensionierung von Bauteilen unterliegen natürlichen statistischen Streuungen. Damit die in diesem Zusammenhang entstehenden Unsicherheiten der Modellannahmen quantifiziert und das Versagensrisiko so gering wie möglich gehalten und auch bewertet werden kann, werden in den Normenwerken die Berechnungskonzepte nachdem semi-probabilistischen Sicherheitskonzept aufgebaut. Die europäischen Normenwerke zur Bemessung von Tragwerken ist der Abb. 1.1 zu entnehmen.
Abb. 1.1
Neben den Definitionen des Sicherheitskonzepts in
- EN 1990 Grundlagen der Tragwerksplanung
sind für den Bereich des konstruktiven Holzbaues weiters die Normengruppe der Einwirkungen
- EN 1991 Einwirkungen auf Tragwerke
sowie die Bemessungs- und Konstruktionsnormengruppen
- EN 1995 Bemessung und Konstruktion von Holzbauten
- EN 1993 Bemessung und Konstruktion von Stahlbauten
- EN 1992 Bemessung und Konstruktion von Betonbauten und
- EN 1998 Auslegung von Bauwerken gegen Erdbeben
von besonderer Relevanz.
Die Bemessung und Konstruktion von Holzbauten wird in Europa einheitlich durch die Normenwerke
• EN 1995-1-1:2004/A1:2008 | Bemessung und Konstruktion von Holzbauten Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau | |
• EN 1995-1-2:2006 | Bemessung und Konstruktion von Holzbauten Teil 1-2: Allgemeine Regeln - Bemessung für den Brandfall | |
• EN 1995-2: 2006 | Bemessung und Konstruktion von Holzbauten Teil 2: Brücken |
Neben den angeführten „Grundlagendokumenten“ besteht für die jeweiligen nationalen Normeninstitute noch die Möglichkeit der Herausgabe von sog. „nationalen Anhängen“, in denen nationale Festlegungen, Erläuterungen und Ergänzungen zu den Grundlagendokumenten definiert werden können. All diese Dokumente (ÖNORM EN 199x und ÖNORM B 199x) sind als geschlossene Einheit anzuwenden, und das Vermischen mit anderen Normenserien (ÖNORM B 4xxx, ÖNORM ENV 199x) ist nichtzulässig.
Grundsätzliches zur Bemessung nach Grenzzuständen
Allgemeines
Die auf dem semi-probabilistischem Sicherheitskonzept basierende Normenfamilie der Eurocodes und einzelner nationaler Normen, wie zum Beispiel dieDIN 1052:2008, definieren über Grenzzustände die konstruktive Zuverlässigkeit der Tragsicherheit, Gebrauchstauglichkeit und Dauerhaftigkeit von Tragwerken. Werden die Grenzzustände überschritten, können die an ein Tragwerk gestellten Anforderungen nicht mehr gesichert erfüllt werden.
Grenzzustände der Tragfähigkeit (engl.: Ultimate Limit State (ULS))
Grenzzustände der Tragfähigkeit sind Zustände, bei deren Überschreitung es zu einem Einsturz des Tragwerks oder anderen Formen des Versagens (plastische Deformationen) kommen kann.
Kennzeichen der Grenzzustände der Tragfähigkeit sind:
- Gleichgewichtsverlust des gesamten Tragwerkes oder einzelner Tragwerksteile (Montagezustände berücksichtigen)
- Stabilitätsverluste (besonders bei schlanken Bauteilen)
- Eintritt von Versagensmechanismen am Gesamtsystem oder einzelner Tragwerksteile
Grenzzustände der Gebrauchstauglichkeit (engl.: Serviceability Limit State (SLS))
Die Verformungen bzw. Durchbiegungen eines Tragwerkes infolge von Beanspruchungen sollen in definierten Grenzen gehalten werden, um mögliche Schäden (wie z. B. Rissbildungen) an Bauteilen, wie Decken, Fußboden, Trennwänden, Installationen, etc. zu vermeiden. Auch gilt es, die Anforderungen hinsichtlich der Benutzbarkeit (Durchbiegungen, Schwingungen) und des Erscheinungsbildes bzw. des Wohlbefindens der Nutzer zu erfüllen.
Nachweise durch die Methode der Teilsicherheitsbeiwerte
Das in den Eurocodes und der DIN 1052:2008 verankerte Sicherheitskonzept beruht - im Gegensatz zum deterministischen Sicherheitskonzept mit einem globalen Sicherheitsbeiwert („Verfahren mit zulässigen Spannungen“) - auf der Nachweisführung mit sogenannten Teilsicherheitsbeiwerten.
Diese Sicherheitsfaktoren werden verwendet, um das Versagensrisiko einer Tragstruktur, mit den für die Berechnung verbundenen Modellannahmen, so niedrig wie möglich zu halten. Dabei ist zu zeigen, dass in allen maßgebenden Bemessungssituationen beim Ansatz der Bemessungswerte für Einwirkungen oder deren Auswirkungen, für die Tragwiderstände keiner der maßgebenden Grenzzustände überschritten wird. Ein Vorteil dieser Methode ist die eindeutige Trennung der wichtigsten Einflussfaktoren für die Bemessung von Tragwerken.
Zu den wichtigsten Einflussfaktoren gehören:
- Einwirkungen: Nutzlasten, Schnee, Wind, Temperaturen, . . .
- Baustoffeigenschaften: Festigkeiten, Steifigkeiten,. . .
- geometrische Größen: Abmessungen, Geometrien, . . .
All diese Einflussfaktoren sind Zufallsgrößen, die statistischen Streuungen unterliegen.
In Abb. 1.2 ist dieser Zusammenhang an Hand typischer Verteilungsfunktionen für die Einwirkung E und die Tragfähigkeit R eines Bauteils grafisch dargestellt. Beide Zufallskenngrößen weisen dabei streuenden Charakter auf. Ein Versagen lässt sich in dieser Darstellung durch den Zusammenhang R − E < 0 definieren. Für den Fall R − E = 0 wird dementsprechend gerade der Grenzzustanderreicht. Auf Grund der Tatsache, dass für die beiden Verteilungsfunktionen - insbesondere an den Verteilungsenden - im Allgemeinen unzureichende empirische Kenntnisse vorliegen, begnügt man sich im Rahmen des semi-probabilistischen Sicherheitskonzeptes damit dafür Sorge zu tragen, dass zwischen definierten Werten (charakteristischen Werten bzw. Bemessungswerten) der Verteilungsfunktionenein ausreichender Sicherheitsabstand gewährleistet bleibt.
Durch das einheitliche Konzept der Eurocodes mit den Teilsicherheitsbeiwerten kann die Bemessung von Tragwerken baustoffunabhängig erfolgen und die Berechnungen für alle Baustoffe auf denselben Konzepten basieren.
Abb 1.2
Es bedeuten:
E | Beanspruchung | |
Emean | Mittelwert der Beanspruchung | |
Ek | charakteristischer Wert der Beanspruchung | |
Ed | Bemessungswert der Beanspruchung | |
R | Widerstand | |
Rmean | Mittelwert des Widerstandes | |
Rk | charakteristischer Wert des Widerstandes | |
Rd | Bemessungswert des Widerstandes |
Auf Grund der zum Teil stark streuenden Eigenschaften des Roh- und Werkstoffes Holz hinsichtlich mechanischer Eigenschaften, des orthotropen (unterschiedliche Eigenschaften in Richtung der Längs-, Radial- und Tangentialachse) Material- und Feuchteverhaltens (Schwinden und Quellen in den genannten Richtungen) sowie Inhomogenitäten in der Baustoffstruktur, werden in Ergänzung zum semi-probabilistischem Sicherheitskonzept für die Bemessung und Konstruktion von Holztragwerken eine Reihe weiterer Faktoren verwendet.
Diese ermöglichen zum Beispiel die Berücksichtigung unterschiedlicher Feuchtegehalte und der Dauer der Lasteinwirkung auf das Tragverhalten, der Berücksichtigung einer verminderten Querschnittsfläche infolge von Rissen oder auch das zeitabhängige Verformungsverhalten zur Berücksichtigung des Kriechverhaltens von Holzkonstruktionen.
Einwirkungen und Einwirkungskombinationen
Begriffe im Zusammenhang mit Einwirkungen
Unter Einwirkungen im Sinne des europäischen Normenkonzeptes versteht man übergeordnet:
- „eine Gruppe von Kräften (Lasten), die auf ein Tragwerk wirken (direkte Einwirkungen)“,
sowie
- „eine Gruppe von aufgezwungenen Verformungen oder einer Beschleunigung, die z. B. durch Temperaturänderungen, Feuchtigkeitsänderung, ungleiche Setzung oder Erdbebenhervorgerufen werden (indirekte Einwirkungen).
“Die nachfolgende Abbildung enthält einen Überblick über die gegebenenfalls zu berücksichtigenden „Einwirkungs-Normen“ nach EN 1991.
Abb. 1.3:
Auswirkungen von Einwirkungen auf ein Tragwerk
Durch die Einwirkungen auf ein Tragwerk kommt es zu Beanspruchungen von Bauteilen(z. B. Schnittkräfte, Spannungen, Dehnungen) oder Reaktionen des Gesamttragwerks (z. B. Durchbiegungen, Verdrehungen).
Einteilung der Einwirkungen
- ständige Einwirkungen
Einwirkungen (direkte Einwirkungen wie z. B. das Eigengewicht von Konstruktionen, Gebäudeausrüstungen,... . Indirekte Auswirkungen wie Schwinden, ungleichmäßige Setzungen, ...) von denen vorausgesetzt wird, dass sie während der gesamten Nutzungsdauer in die gleiche Richtung wirken und deren zeitliche Größenänderungen vernachlässigt werden können.
- veränderliche Einwirkungen
Einwirkungen (z. B. Nutzlasten auf Decken, Schneelasten, Windlasten) die nicht immer in die gleiche Richtung wirken und deren zeitliche Größenänderungen nicht vernachlässigbar sind.
- außergewöhnliche Einwirkungen
Einwirkungen (z. B. Brand, Explosionen, Erdbeben, Fahrzeuganprall, ... ) die in der Regel von kurzer Dauer, aber von bedeutender Größenordnung sind und die während der geplanten Nutzungsdauer mit keiner nennenswerten Wahrscheinlichkeit auftreten können.
- Bemessungswert einer Einwirkung
Wert einer Einwirkung, der durch Multiplikation des repräsentativen Wertes mit dem Teilsicherheitsbeiwert ermittelt wird.
- charakteristischer Wert einer Einwirkung
wichtigster repräsentativer Wert einer Einwirkung.
Kombination von Einwirkungen (ohne Ermüdung)
Da Einwirkungen auf ein Tragwerk meistens in Kombinationen mit anderen veränderlichen Einwirkungen auftreten, müssen unterschiedliche Kombinationen mit der Berücksichtigung von Auftretenswahrscheinlichkeiten auf ein Tragwerk angesetzt werden. Für die Bemessungssituationen wird unterschieden in
- ständige Situationen, die den üblichen Nutzungsbedingungen des Tragwerks entsprechen;
- vorübergehende Situationen, die sich auf zeitlich begrenzte Zustände des Tragwerks beziehen (Bauzustand, Instandsetzungen,. . . )
- außergewöhnliche Situation, die sich auf außergewöhnliche Bedingungen für das Tragwerk beziehen, z. B. Brand, Explosionen, Anprall oder Folgen lokalen Versagens;
- Situationen bei Erdbeben, die die Bedingungen bei Erdbebeneinwirkungen auf das Tragwerk umfassen.
„Die gewählten Bemessungssituationen müssen alle Bedingungen, die während der Ausführung und Nutzung des Tragwerks vernünftigerweise erwartet werden können, hinreichend genau erfassen.“
Für die Kombinationsregeln gilt der Allgemeine Grundsatz:
Jede Einwirkung sollte eine dominierende Einwirkung (Leiteinwirkung mit einem Maximum) oder eine außergewöhnliche Einwirkung (Erdbeben, Fahrzeuganprall, ...) aufweisen. Die Auswirkungen der übrigen Einflüsse (Begleiteinwirkungen) sind, sofern aus physikalischen oder betrieblichen Gründen sinnvoll, zu berücksichtigen. Dabei soll jede Einwirkung auch als Leiteinwirkung auftreten. Daraus lässt sich ableiten, dass die Anzahl der unterschiedlichen Lastfallkombinationen zumindest jener der unterschiedlichen von einander unabhängigen Einwirkungen entspricht. Aus allen Kombinationen ist jene mit den ungünstigsten Auswirkungen auf das Tragverhalten der Struktur maßgebend. Die Integration der Einwirkungen erfolgt mit Hilfe von Teilsicherheitsbeiwerten gG und gQ und Kombinationsbeiwerten y .
Kombinationsregeln für Nachweise in den Grenzzuständen der Tragfähigkeit
Kombination von Einwirkungen bei ständigen (Normalsituationen) und vorübergehenden (Bausituationen) Bemessungssituationen (= Grundkombination)
mit
Bemessungswert einer Einwirkung | ||
„gemeinsame Auswirkungen von“ (Summenbildung) | ||
„ist zu kombinieren“ | ||
charakteristischer Wert der ständigen Einwirkung j | ||
Teilsicherheitsbeiwert für die ständige Einwirkung j | ||
charakteristischer Wert der dominierenden veränderlichen Einwirkung | ||
Teilsicherheitsbeiwert für die dominierende veränderliche Einwirkung | ||
charakteristischer Wert der begleitenden veränderlichen Einwirkung i | ||
Teilsicherheitsbeiwert für die begleitende veränderliche Einwirkung i | ||
Kombinationsbeiwert einer veränderlichen Einwirkung |
Da das Aufstellen der Lastkombinationen mit einem relativ großen Rechenaufwand verbunden ist, werden in der DIN 1052:2008 vereinfachte Regeln gemäß Gleichung (1.2) für die Anwendungen im Hochbau 1a angegeben.
Anmerkung:
In der EN 1990 sind keine Vereinfachungen für die Einwirkungskombinationen zu finden.
a Ermittlung der Schnittgrößen nach Theorie I. Ordnung
Kombination von Einwirkungen bei außergewöhnlichen Bemessungssituationen (Brandfall, Explosionen, ...)
mit
Bemessungswert der Einwirkungskombination bei einer außergewöhnlichen Bemessungssituation | ||
Bemessungswert einer außergewöhnlichen Einwirkung | ||
Beiwert für häufige Werte der dominierenden veränderlichen Einwirkung | ||
Beiwert für quasi ständige Werte der dominierenden veränderlichen Einwirkung | ||
Beiwert für quasi ständige Werte der begleitenden veränderlichen Einwirkungen |
Kombinationen von Einwirkungen für Bemessungssituation bei Erdbeben
mit
Bemessungswert der Einwirkungskombination für die Bemessungssituation bei Erdbeben | ||
charakteristischer Wert der Erdbebenlast | ||
Wichtungsfaktor (siehe EN 1998) |
Kombinationsregeln für Nachweise in den Grenzzuständen der Gebrauchstauglichkeit
Die Kombinationen der Einwirkungen sollen an das Bauwerksverhalten und an die Nutzung desGebäudes und den damit verbundenen Gebrauchstauglichkeitskriterien angepasst werden.
Allgemein ist die Bedingung zu erfüllen.
mit
Bemessungswert der Einwirkungen auf Gebrauchstauglichkeitsniveau
Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
- charakteristische Kombination
Verwendung für nicht umkehrbare Auswirkungen auf ein Tragwerk
- häufige Kombination
Verwendung für umkehrbare Auswirkungen auf ein Tragwerk
- quasi-ständige Kombination
Verwendung für Langzeitauswirkungen (z. B. Erscheinungsbild) auf ein Tragwerk
Teilsicherheitsbeiwerte für Einwirkungen
Mit Hilfe der Teilsicherheitsbeiwerte werden die Modellunsicherheiten und Größenabweichungen der Einwirkungen und Auswirkungen berücksichtigt.
Grenzustände der Tragfähigkeit | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Einwirkungskombination | ständige Einwirkung Gd | veränderliche Einwirkung Qd | |||||||||||||||||||||||||||
Leit- einwirkung |
Begleit- einwirkung | ||||||||||||||||||||||||||||
günstig | ungünstig | weitere | |||||||||||||||||||||||||||
ständige und vorübergehende Bemessungssituation |
G,j;sup · G k,j;sup | G,j;inf · G k,j;inf | Q,1 · Q k,1 | Q,i · 0,i · Q k,i | |||||||||||||||||||||||||
G,j;sup = 1,35 ( G,j;sup = 1,10 (1,35) ) |
für STR/GEO: bei ungünstiger Wirkung (für Nachweise der Lagesicherheit (EQU): z. B. Abhebekräfte infolge Windsog) | ||||||||||||||||||||||||||||
ständige Einwirkung Gd | veränderliche Einwirkung Qd | ||||||||||||||||||||||||||||
Leit- einwirkung |
Begleiteinwirkung | ||||||||||||||||||||||||||||
günstig | ungünstig | Haupt (falls vorhanden) |
weitere | ||||||||||||||||||||||||||
außergewöhnliche Bemessungssituation |
G k,j;sup | G k,j;inf | Ad | ( 1,1 oder 2,1) · Q k,i | 2,i · Q k,i | ||||||||||||||||||||||||
Erbeben | G k,j;sup | G k,j;inf | - | f · Q Ek oder A Ed | 2,i · Q k,i | ||||||||||||||||||||||||
Grenzzustände der Gebrauchstauglichkeit | |||||||||||||||||||||||||||||
ständige Einwirkung Gd | veränderliche Einwirkung Qd | ||||||||||||||||||||||||||||
ungünstig | günstig | dominierende | weitere | ||||||||||||||||||||||||||
charakteristisch | G k,j;sup | G k,j;inf | - | Q k,1 | 0,i · Q k,i | ||||||||||||||||||||||||
häufig | G k,j;sup | G k,j;inf | - | 1,1 · Q k,1 | 2,i · Q k,i | ||||||||||||||||||||||||
charakteristisch | G k,j;sup | G k,j;inf | - | 2,1 · Q k,1 | 2,i · Q k,i | ||||||||||||||||||||||||
Anmerkung: Für die außergewöhnliche Bemessungssituation und Erdbeben im Grenzzustand der Tragfähigkeit, sowie Nachweise im Grenzzustand der Gebrauchstauglichkeit werden die Teilsicherheitsbeiwerte mit G,j = 1,0 berücksichtigt. |
Tab. 1.1: empfohlene Teilsicherheitsbeiwerte nach EN 1990:2002 (Zusammenfassung)
Kombinationsbeiwerte 0, 1 und 2
Mit Hilfe der Kombinationsbeiwerte 0, 1 und 2 wird die reduzierte Wahrscheinlichkeit des gleichzeitigen Auftretens der ungünstigen Auswirkungen mehrerer unabhängiger veränderlicher Einwirkungen berücksichtigt.
Die Einwirkungen werden unterteilt in
- charakteristischer Wert einer Einwirkung
Der charakteristische Wert einer Einwirkung wird so gewählt, dass er während des Bezugszeitraumes nicht überschritten wird. - seltener Wert
Der Kombinationswert einer selten auftretenden veränderlichen Einwirkung wird begleitend mit einer veränderlichen Einwirkung verwendet. - häufiger Wert einer veränderlichen Einwirkung
Der Kombinationswert einer häufig auftretenden veränderlichen Einwirkung wird so gewählt, dass die Überschreitungshäufigkeit innerhalb der Nutzungsdauer auf einen bestimmten Wert begrenzt bleibt. - quasi-ständiger Wert einer veränderlichen Einwirkung
Der Kombinationswert einer quasi-ständig auftretenden veränderlichen Einwirkung wird so gewählt, dass der Überschreitungszeitraum einen wesentlichen Teil des Bezugszeitraumes ausmacht.
Einwirkungen | 0 | 1 | 2 |
---|---|---|---|
Nutzlasten im Hochbau (siehe EN 1991-1-1) | |||
Kategorie A: Wohngebäude | 0,7 | 0,5 | 0,3 |
Kategorie B: Bürogebäude | 0,7 | 0,5 | 0,3 |
Kategorie C: Versammlungsbereiche | 0,7 | 0,7 | 0,6 |
Kategorie D: Verkaufsflächen | 0,7 | 0,7 | 0,6 |
Kategorie E: Lagerflächen | 1,0 | 0,9 | 0,8 |
Fahrzeugverkehr im Hochbau Kategorie F: Fahrzeuggewicht ≤ 30 kN Kategorie G: 30 kN < Fahrzeuggewicht ≤ 160 kN |
0,7 0,7 |
0,7 0,5 |
0,6 0,3 |
Kategorie H: Dächer | 0 | 0 | 0 |
Schneelasten im Hochbau (siehe EN 1991-1-3)a | |||
- Finnland, Island, Norwegen, Schweden | 0,7 | 0,5 | 0,2 |
- für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe über 1.000 m ü. NN | 0,7 | 0,5 | 0,2 |
- für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe niederiger als 1.000 m ü. NN | 0,5 | 0,2 | 0 |
Windlasten im Hochbau (siehe EN 1991-1-4) | 0,6 | 0,2 | 0 |
Temperaturanwendungen (ohne Brand) im Hochbau, siehe EN 1991-1-5 | 0,6 | 0,5 | 0 |
Anmerkung: Die Festlegung der Kombinationsbeiwerte erfolgt im nationalen Anhang. | |||
a Bei nicht ausdrücklich genannten Ländern sollten die maßgebenden örtlichen Bedingungen betrachtet werden. |
Tab. 1.2: empfohlene Kombinationsbeiwerte nach EN 1990:2002
Basisvariable
Bemessungswert der Beanspruchbarkeit (Tragfähigkeit)
Der Bemessungswert der Tragfähigkeit eines Querschnitts, Bauteils bzw. einer Verbindung wird im Holzbau mit Hilfe der Gleichung (1.9) berechnet.
mit
Xk bzw. Rk | charakteristischer Wert einer Festigkeitseigenschaft bzw. Beanspruchbarkeit | |
kmod | Modifikationsbeiwert zur Berücksichtigung der Lasteinwirkungsdauer und der Nutzungsklasse, siehe Tab. 1.8 und 1.9 | |
M | Teilsicherheitsbeiwert einer Baustoffeigenschaft, siehe Tab. 1.6 und 1.7 |
Der Modifikationsbeiwert ist ein Sicherheitsfaktor, der den Einfluss des Tragverhaltens durch unterschiedliche Feuchtegehalte und die Dauer der Lasteinwirkung berücksichtigt. Der Sicherheitsfaktor M ist der Teilsicherheitsbeiwert der Baustoffeigenschaften mit Berücksichtigung der Modellunsicherheiten und Größenabweichungen (Streuungen).
Einwirkungen und Umgebungseinflüsse
Klassen der Lasteinwirkungsdauer (KLED)
Die Klassifizierung der Dauer der Einwirkung auf ein Gebäude bzw. Tragwerk ist Tab. 1.3 und 1.4 zu entnehmen.
KLED | Größenordnung der akkumulierten Lasteinwirkungsdauer |
Beispiele |
ständig | länger als 10 Jahre | Eigenlasten von Tragwerken, Ausrüstungen, festen Einbauten und haustechnischen Anlagen |
lang | 6 Monate bis 10 Jahre | Lagerstoffe |
mittel | 1 Woche bis 6 Monate | Nutzlasten, Schneelasten bei Geländehöhe größer 1.000 m ü. NN |
kurz | kürzer als eine Woche | Schneelasten bei Geländehöhen bis 1.000 m ü. NN, Windlasten |
sehr kurz | kürzer als 1 Minute | außergewöhnliche Lasten, Anpralllasten, Erdbebenlasten |
Tab. 1.3: Zuordnung von Tragwerken in KLED nach DIN 1052:2008
Einwirkung | KLED |
Wichten und Flächenlasten nach DIN 1055-1 | ständig |
Lotrechte Nutzlasten nachDIN 1055-3 A Spitzböden, Wohn- und Aufenthaltsräume |
mittel mittel kurz mittel lang mittel kurz mittel kurz kurz kurz kurz |
Horizontale Nutzlasten nach DIN 1055-3 | |
Horizontale Nutzlasten infolge von Personen auf Brüstungen, Geländern und anderen Konstruktionen, die als Absperrung dienen |
kurz |
Horizontallasten zur Erzielung einer ausreichenden Längs- und Queraussteifung | a |
Horizontallasten für Hubschrauberlandeplätze auf Dachdecken - für horizontale Nutzlasten - für den Überrollschutz |
kurz sehr kurz |
Windlasten nach DIN 1055-4 | kurz |
Schneelasten und Eislasten nach DIN 1055-5 - Geländehöhen des Bauwerksstandortes NN ≤ 1.000 m - Geländehöhen des Bauwerksstandortes NN > 1.000 m |
kurz mittel |
Anpralllasten nach DIN 1055-9 | sehr kurz |
Horizontallasten aus Kran- und Maschinenbetrieb nach DIN 1055-10 | kurz |
a entsprechend der zugehörigen Lasten |
Tab. 1.4: Zuordnung von Tragwerken in KLED nach DIN 1052:2008
Nutzungsklasse (NKL)
Durch die hygroskopischen Eigenschaften des Holzes passt sich die Holzfeuchte durch Feuchtigkeitsaufnahme und Feuchtigkeitsabgabe an die Umgebungsfeuchte an. Die sich einstellende Holzfeuchte beeinflusst die technologischen Eigenschaften des Holzes (mit zunehmender Feuchtigkeit nehmen die Festigkeit und der E-Modul ab). Wegen des Umwelteinflusses auf Holzbauteile ist es notwendig, die Tragwerke in Nutzungsklassen zu unterteilen. Sie kennzeichnen die klimatischen Verhältnisse der Umgebungdes Bauwerkes während seiner Lebensdauer.
Nutz- ungs- klasse |
Umgebungsklima | Holzfeuchte der meisten Nadelhölzer |
Tragwerks- bzw. Gebäudetyp | |
Temperatur | relative Luft- feuchte a | |||
1 | 20 °C | ≤ 65% | ≤ 12% | Innenräume von Wohn-, Schul- und Verwaltungsbauten |
2 | 20 °C | ≤ 85% | ≤ 20% | Innenräume von Nutzbauten wie Lagerhallen, Reithallen und Industriehallen sowie überdachte Konstruktionen im Freien, deren Bauteile nicht der freien Bewitterung ausgesetzt sind (30° Regeneinfallswinkel) |
3 | - | > 85% | > 20% | Bauteile im Freien mit konstruktivem Holzschutz |
a Die relative Luftfeuchte darf in den Nutzungsklassen 1 und 2 maximal für einige Wochen im Jahr die angegebenen Werte übersteigen. |
Tab. 1.5: Zuordnung von Tragwerken in Nutzungsklassen nach ÖNORM B 1995-1-1 und DIN 1052:2008
Zur Verminderung von Schwindrissen und Maßänderungen sollten die verwendeten Holzbauteile für die Nutzungsklassen 1 und 2 mit einer Einbaufeuchte u ≤ 20 %, und für die Nutzungsklasse 3 mit u ≤ 25 % begrenzt werden (lt. DIN 1052:2008).
Teilsicherheitsbeiwerte für Baustoffeigenschaften und Widerstände
Tab. 1.6: empfohlene Teilsicherheitsbeiwerte für |
Tab. 1.7: empfohlene Teilsicherheitsbeiwerte für |
Baustoffeigenschaften
Modifikationsbeiwerte der Festigkeiten zur Berücksichtigung der Nutzungsklasse und Lasteinwirkungsdauer
Anmerkung:
Setzt sich eine Lastkombination aus unterschiedlichen Lasteinwirkungsdauern zusammen, ist in der Regel der Wert für kmod mit der kürzeren Dauer zu verwenden. Besteht eine Verbindung aus Holzteilen mit unterschiedlichen zeitabhängigem Verhalten so ist kmod mit kmod,1 und kmod,2 der beiden Holzteile mit zu ermitteln.
Baustoff (Bezugsnorm) | Nutzungsklasse | Baustoff (Bezugsnorm) | Nutzungsklasse | ||||
Vollholz (EN 14081-1) Brettschichtholz (EN 14080) Furnierschichtholz (EN 14374, EN 14279) Sperrholz (EN 636-1, -2, -3) |
OSB/2a (EN 300) Spanplatten Typ P4a, P5 (EN 312) Holzfaserplatten, hart: HB.LAa, HB.LA1, HB.LA2 (EN 622-2) | ||||||
Lasteinwirkungsdauer | 1 | 2 | 3 | Lasteinwirkungsdauer | 1 | 2 | |
ständig | 0,60 | 0,60 | 0,50 | ständig | 0,30 | 0,20 | |
lang | 0,70 | 0,70 | 0,55 | lang | 0,45 | 0,30 | |
mittel | 0,80 | 0,80 | 0,65 | mittel | 0,65 | 0,45 | |
kurz | 0,90 | 0,90 | 0,70 | kurz | 0,85 | 0,60 | |
sehr kurz | 1,10 | 1,10 | 0,90 | sehr kurz | 1,10 | 0,80 | |
Baustoff (Bezugsnorm) | Nutzungsklasse | Baustoff (Bezugsnorm) | Nutzungsklasse | ||||
OSB/3, OSB/4 (EN 300) Spanplatten Typ P6a, P7 (EN 312) |
Holzfaserplatten, mittelhart: MBH.LA1a, MBH.LA2a (EN 622-3) MBH.HLS1, MBH.HLS2 (EN 622-3) Holzfaserplatten, MDF: MDF.LAa, MDF.HLS (EN 622-5) | ||||||
Lasteinwirkungsdauer | 1 | 2 | 3 | Lasteinwirkungsdauer | 1 | 2 | |
ständig | 0,40 | 0,30 | - | ständig | 0,20 | - | |
lang | 0,50 | 0,40 | - | lang | 0,40 | - | |
mittel | 0,70 | 0,55 | - | mittel | 0,60 | - | |
kurz | 0,90 | 0,70 | - | kurz | 0,80 | 0,45 | |
sehr kurz | 1,10 | 0,90 | - | sehr kurz | 1,10 | 0,80 | |
a Anwendungen nur für Nutzungsklasse 1 erlaubt |
Tab. 1.8: empfohlene Modifikationsbeiwerte nach EN 1995-1-1:2004/A:2008
Baustoff (Bezugsnorm) | Nutzungsklasse | Baustoff (Bezugsnorm) | Nutzungsklasse | ||||
Vollholz, Brettschichtholz Balkenschichtholz, Furnierschichtholz Brettsperrholz, Sperrholz |
Kunstharzgebundene Spanplatten Zementgebundene Spanplatten Faserplatten, Typ HB.HLA2 (DIN EN 622-2:2004-07) | ||||||
Lasteinwirkungsdauer | 1 | 2 | 3 | Lasteinwirkungsdauer | 1 | 2 | |
ständig | 0,60 | 0,60 | 0,50 | ständig | 0,30 | 0,20 | |
lang | 0,70 | 0,70 | 0,55 | lang | 0,45 | 0,30 | |
mittel | 0,80 | 0,80 | 0,65 | mittel | 0,65 | 0,45 | |
kurz | 0,90 | 0,90 | 0,70 | kurz | 0,85 | 0,60 | |
sehr kurz | 1,10 | 1,10 | 0,90 | sehr kurz | 1,10 | 0,80 | |
Baustoff (Bezugsnorm) | Nutzungsklasse | Baustoff (Bezugsnorm) | Nutzungsklasse | ||||
OSB-Platten, Typen OSB/2a, OSB/3 und OSB/4 (DIN EN 300:2006-09) |
Faserplattena, Typ MBH.LA2 (DIN EN 622-3:2004-07) Gipskartonplatten, Typen GKBa, GKFa, GKBI und GKFI (DIN 18180) | ||||||
Lasteinwirkungsdauer | 1 | 2 | 3 | Lasteinwirkungsdauer | 1 | 2 | |
ständig | 0,40 | 0,30 | - | ständig | 0,20 | 0,15 | |
lang | 0,50 | 0,40 | - | lang | 0,40 | 0,30 | |
mittel | 0,70 | 0,55 | - | mittel | 0,60 | 0,45 | |
kurz | 0,90 | 0,70 | - | kurz | 0,80 | 0,60 | |
sehr kurz | 1,10 | 0,90 | - | sehr kurz | 1,10 | 0,80 | |
a nur Nutzungsklasse 1 |
Tab. 1.9: empfohlene Modifikationsbeiwerte nach DIN 1052:2008
Baustoff (Bezugsnorm) | Nutzungsklasse | Baustoff (Bezugsnorm) | Nutzungsklasse | ||||
1 | 2 | 3 | 1 | 2 | |||
Vollholz (EN 14081-1) Brettschichtholz (EN 14080) Furnierschichtholz (EN 14374, EN 14279) |
0,60 | 0,80 | 2,00 | OSB/21 (EN 300) Spanplatten, Typ P41, Typ P5 (EN 312) Holzfaserplatten, hart: HB.LA1, HB.LA1, HB.LA2 (EN 622-2) Holzfaserplatten, MDF: MDF.LA1, MDF.HLS (EN 622-5) |
2,25 | 3,00 | |
Sperrholz (EN 636-11, -22,-3) |
0,80 | 1,00 | 2,50 | ||||
OSB/3, OSB/4 (EN 300) |
1,50 | 2,25 | - | Holzfaserplatten, mittelhart: MBH.LA11, MBH.LA2,1 MBH.HLS1, MBH.HLS2 (EN 622-3) |
3,00 | 4,00 | |
Spanplatten, Typ P61, P7 (EN 312) | |||||||
1 Verwendung nur in Nutzungsklasse 1 2 Verwendung nur in Nutzungsklasse 1 und 2 | |||||||
Anmerkung: Universalkeilzinkenverbindungen nach EN 387 bei denen sich in Verbindungen die Faserrichtung verändert dürfen nicht in Nutzungsklasse 3 verwendet werden. |
Tab. 1.10: empfohlene Verformungsbeiwert nach EN 1995-1-1:2004/A1:2008
Anmerkung zu EN 1995-1-1:2004/A1:2008
Besteht eine Verbindung aus Holzbauteilen mit dem gleichen zeitabhängigen Verhalten, so ist der Wert von kdef zu verdoppeln. Wenn eine Verbindung aus Holz- und/oder Holzwerkstoffen mit unterschiedlichem zeitabhängigen Verhalten besteht, ist in der Regel der Wert für kdef mit den Verformungsbeiwerten kdef,1 und kdef,2 der beteiligten Holzbaustoffe mittels zu berechnen.
Baustoff (Bezugsnorm) | Nutzungsklasse | Baustoff (Bezugsnorm) | Nutzungsklasse | ||||
1 | 2 | 3 | 1 | 2 | |||
Vollholz Brettschichtholz Furnierschichtholz Balkenschichtholz Brettsperrholz |
0,60 | 0,80 | 2,00 | Kunstharzgebundene Spanplatte |
2,25 | 3,00 | |
Zementgebundene Spanplatten | |||||||
Faserplatten, Typ HB.LA2 (DIN 622-2:2004-07) | |||||||
Sperrholz | 0,80 | 1,00 | 2,50 | Faserplatten, Typ MBH.LA2 (DIN 622-3:2004-07) |
3,00 | 4,00 | |
Furnierschichtholzc | |||||||
OSB-Platten | 1,50 | 2,25 | - | Gipskartonplatten | |||
a Die Werte für kdef für Vollholz, dessen Feuchte beim Einbau im Fasersättigungsbereich oder darüber liegt und im eingebauten Zustand austrocknen kann, sind um 1,0 zu erhöhen. b mit allen Furnieren faserparallel |
Tab. 1.11: empfohlene Verformungsbeiwert nach DIN 1052:2008
Anmerkung DIN 1052:2008
Ist der ständige Lastanteil > 70 % der Gesamtlast soll die Steifigkeit Druck beanspruchter Bauteile um den Faktor 1 / (1+kdef) abgemindert werden. Bei Tragwerken aus Bauteilen mit unterschiedlichen zeitabhängigen Verformungsverhalten sollen die Steifigkeiten der einzelnen Bauteile um den Faktor 1 / (1+kdef) abgemindert werden.
Besteht eine Verbindung aus Holzbaustoffen mit unterschiedlichen kdef-Werten ist das arithmetische Mittel zu verwenden. Bei Stahlblech-Holz-Verbindungen ist der Verformungsbeiwert des Holzes zu verwenden.
Materialkennwerte
Baustoffeigenschaften werden durch charakteristische Werte angegeben, der einem angenommenen Fraktilwert einer statistischen Verteilung entspricht. In der Regel sind das die
- 5 %-Quantilwerte bei Festigkeiten und Rohdichten, und
- 5 %-Quantilwerte oder Mittelwerte bei Steifigkeiten
Vollholz
- Dieser Abschnitt ist ausgelagert, siehe: Vollholz
Brettschichtholz
- Dieser Abschnitt ist ausgelagert, siehe: Brettschichtholz
Nachweise im Grenzzustand der Tragfähigkeit
Allgemeines
Im Zuge der Nachweisführung für Tragwerke / Bauwerke sind nach EN 1990 folgende Bedingungen zu erfüllen:
- EQU (equilibrium)
Verlust der Lagesicherheit des Tragwerks oder eines seiner Teile, die als Starrkörper betrachtet werden dürfen
- STR (structural failure)
Versagen oder übermäßige Verformungen des gesamten Tragwerks oder von Tragwerksteilen, wobei die Tragfähigkeit von Bauteilen und deren Festigkeit maßgebend wird (Stabilität)
- GEO (geotechnic)
Versagen oder übermäßige Verformungen des Baugrundes
- FAT (fatique)
Ermüdungsversagen des gesamten Tragwerks oder von Tragwerksteilen
mit | ||
Ed,dst | Bemessungswerte der Auswirkungen der destabilisierenden Einwirkungen | |
Rd,stb | Bemessungswerte der Auswirkungen der stabilisierenden Einwirkungen | |
Ed | Bemessungswerte der Auswirkungen der Einwirkungen | |
Rd | Bemessungswerte der zugehörigen Tragfähigkeiten |