Bauphysik Sanierungs-Studie: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
 
(156 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
==Sanierungs-Studie==
''Sanierungs-Studie von [[MOLL bauökologische Produkte GmbH - pro clima|MOLL bauökologische Produkte GmbH]] initiiert'':
; Lösungen für die Luftdichtheit bei energietechnischen Sanierungen von Dachkonstruktionen
----
''Auszug einer von MOLL bauökologische Produkte GmbH initiierten'' '''Sanierungs-Studie'''<ref name="Qu_02" />:
'''Lösungen für die Luftdichtheit bei energietechnischen Sanierungen von Dachkonstruktionen'''
 
'''Funktionstechnische Platzierung der Luftdichtung in Konstruktionen'''
 
'''Sub-and-Top: Vergleich des Bauschadensfreiheitspotenzials bei Dampfbremsen mit unterschiedlichem s<sub>d</sub>-Wert'''
 
''Computergestützte Simulationsberechnung des gekoppelten Wärme und Feuchtetransports'' <br />
''von Dach- und Wandkonstruktionen unter Berücksichtigung der natürlichen Klimabedingungen und innerbaustofflichen Flüssigkeitstransporte''
----
==Einführung==
==Einführung==
Es ist allgemein bekannt, dass [[Luftdichtheit]] die Voraussetzung für die Funktion einer Wärmedämmkonstruktion ist. <br />
Es ist allgemein bekannt, dass [[Luftdichtheit]] die Voraussetzung für die Funktion einer Wärmedämmkonstruktion ist. <br />
Luftdichte Konstruktionen sorgen für ein behagliches Innenraumklima und helfen Bauschäden durch Auffeuchtung infolge [[Kondensat|Kondensation]] zu vermeiden. Insbesondere [[Konvektion|konvektive Feuchteströme]] können große Mengen an  [[Baufeuchte|Feuchtigkeit]] innerhalb kürzester Zeit in eine Wärmedämmebene eintragen und damit sowohl die Tragkonstruktion als auch die [[Wärmedämmung]] in ihrer Funktion gefährden. Nicht selten führt dies zu [[Schimmel]]bildung und Beeinträchtigung der Funktion der Konstruktion.
Luftdichte Konstruktionen sorgen für ein behagliches Innenraumklima und helfen Bauschäden durch Auffeuchtung infolge [[Kondensat|Kondensation]] zu vermeiden. Insbesondere [[Konvektion|konvektive Feuchteströme]] können große Mengen an  [[Baufeuchte|Feuchtigkeit]] innerhalb kürzester Zeit in eine Wärmedämmebene eintragen und damit sowohl die Tragkonstruktion als auch die [[Wärmedämmung]] in ihrer Funktion gefährden. Nicht selten führt dies zu [[Schimmel]]bildung und Beeinträchtigung der Funktion der Konstruktion.
   
   
Bei bestehenden Dachkonstruktionen stellt sich die Frage, mit welchen Möglichkeiten die im Regelfall mangelhafte [[Luftdichtheit]] bei der energetischen Sanierung in Kombination mit einer erhöhten Dämmstärke aufgewertet werden kann.<br />
Bei bestehenden Dachkonstruktionen stellt sich die Frage, mit welchen Möglichkeiten die im Regelfall mangelhafte [[Luftdichtheit]] bei der energetischen Sanierung in Kombination mit einer erhöhten Dämmstärke aufgewertet werden kann. Dabei sind zunächst die verschiedenen Möglichkeiten hinsichtlich des Einbauortes zu prüfen.<br />
Dabei sind zunächst die verschiedenen Möglichkeiten hinsichtlich des Einbauortes zu prüfen.<br />
In der [[DIN 4108]]-7 wird unter Punkt&nbsp;5 „Planung und Ausführung“ angegeben, dass die Luftdichtheitsschicht „in der Regel […] raumseitig der Dämmebene und möglichst auch raumseitig der Tragkonstruktion anzuordnen“ ist. Diese Empfehlung der Norm setzt den idealtypischen Zustand eines Neubauvorhabens voraus. Bei einer Dachsanierung ist dieser nur unter großem Aufwand zu erreichen und mit großen Unannehmlichkeiten für die Bewohner des zu sanierenden Objekts verbunden. Dementsprechend kann gemäß der Normung die Luftdichtheit von Gebäuden in jeder Ebene des Bauteils realisiert werden.
Im Entwurf zur [[DIN 4108]]-7 wird unter Punkt&nbsp;5 „Planung und Ausführung“ angegeben, dass die Luftdichtheitsschicht „in der Regel […] raumseitig der Dämmebene und möglichst auch raumseitig der Tragkonstruktion anzuordnen“ ist. Diese Empfehlung der Norm setzt den idealtypischen Zustand eines Neubauvorhabens voraus. Bei einer Dachsanierung ist dieser nur unter großem Aufwand zu erreichen und mit großen Unannehmlichkeiten für die Bewohner des zu sanierenden Objekts verbunden. Dementsprechend kann gemäß der Normung die Luftdichtheit von Gebäuden in jeder Ebene des Bauteils realisiert werden.


Bei der Wahl der Lage einer Luftdichtungsebene muss der [[Tauwasserausfall]] in der Konstruktion entsprechend den Anforderungen der [[DIN 4108-3]] betrachtet werden.  
Bei der Wahl der Lage einer Luftdichtungsebene muss der [[Tauwasserausfall]] in der Konstruktion entsprechend den Anforderungen der [[DIN 4108-3]] betrachtet werden.  
* Verfügt eine innenseitig angeordnete [[Luftdichtung]]sebene über einen zu geringen [[Diffusionswiderstand]] ([[sd-Wert|s<sub>d</sub>-Wert]]), kann ggf. zu viel [[Luftfeuchtigkeit|Feuchtigkeit]] in die Konstruktion eindringen und in Abhängigkeit der folgenden Bauteilschichten als [[Tauwasser]] ausfallen –  
* Verfügt eine innenseitig angeordnete [[Luftdichtung]]sebene über einen zu geringen [[Diffusionswiderstand]] ([[sd-Wert|s<sub>d</sub>-Wert]]), kann ggf. zu viel [[Luftfeuchtigkeit|Feuchtigkeit]] in die Konstruktion eindringen und in Abhängigkeit der folgenden Bauteilschichten als [[Tauwasser]] ausfallen –  
* ist eine Luftdichtungsebene außenseitig mit einem zu hohen Sperrwert vorhanden, kann es bei niedrigen Widerständen innen ebenfalls zu einer Feuchteakkumulation in der Konstruktion kommen.
* ist eine Luftdichtungsebene außenseitig mit einem zu hohen Sperrwert vorhanden, kann es bei niedrigen Widerständen innen ebenfalls zu einer Feuchteakkumulation in der Konstruktion kommen.
Ziel dieser Studie ist es, die einzelnen Varianten zu untersuchen, zu bewerten und Empfehlungen für nachhaltig sichere Konstruktionen aufzuzeigen, die über ein möglichst großes [[Bauschadensfreiheitspotential]] verfügen. Fehlertolerante Aufbauten sind beim Bauen im Bestand besonders wichtig.
Ziel dieser Studie ist es, die einzelnen Varianten zu untersuchen, zu bewerten und Empfehlungen für nachhaltig sichere Konstruktionen aufzuzeigen, die über ein möglichst großes [[Bauschadensfreiheitspotenzial]] verfügen. Fehlertolerante Aufbauten sind beim Bauen im Bestand besonders wichtig.


==Funktionstechnische Platzierung der Luftdichtung in Konstruktionen==
==Funktionstechnische Platzierung der Luftdichtung in Konstruktionen==
=== [[Goldene Regel 1/3 zu 2/3]]===
{|align="right" width="260px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
- ''Dieser Artikel ist ausgelagert''
| Abb 1. '''Feuchteeinwirkung auf eine <br /> Dämmkonstruktion im Winter'''
|-
|[[Bild:BPhys GD 1 07_Dachschn.Diffusion-01-2.jpg|center|260px|]]
|- style="font-size:90%;"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Über eine Dampfbrems- und Luftdichtungsebene mit einem [[sd-Wert|s<sub>d</sub>-Werten]] von 3&nbsp;m gelangen lediglich 5&nbsp;g Wasser pro&nbsp;m² am Tag in die Konstruktion.
|-
| Abb 2. '''Feuchteeintrag in die [[Wärmedämmung|Dämmung]] <br /> durch Leckagen'''
|-
|[[Bild:BPhys GD 1 08_Dachschn.Konvektion-01-2.jpg|center|260px|]]
|- style="font-size:90%;"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Über eine 1 mm breite Fuge sind Feuchteeinträge von bis zu 800&nbsp;%g Wasser pro&nbsp;m² am Tag möglich.
|-
| '''Genaue Ergebnisse mit instationären Berechnungsmodellen'''
|- class="hintergrundfarbe1"
| width="250px"|  '''Stationäre Modelle'''
|-
|
* [[Glaser-Verfahren|Verfahren nach Glaser]] <br />
* [[Jenisch|Verfahren nach Glaser mit Jenisch-Klimadaten]] <br />
=> liefern grobe Anhaltswerte
|- class="hintergrundfarbe1"
| '''Instationäre Modelle'''
|-
|
* [[WUFI#WUFI Pro|WUFI Pro]] / [[WUFI#WUFI 2D|WUFI 2D]] <br />
* [[Delphin]] <br />
=> liefern genauste Werte für Feuchtegehalte für jede Position im Bauteil <br />
- ideal für die Berechnung der Bauteilsicherheit
|}
=== Goldene Regel 1/3 zu 2/3 ===
Die [[DIN 4108-3]] gibt einen Verweis auf die sogenannte '''20 %-Regel''', die besagt, dass ohne rechnerischen Nachweis 20&nbsp;% des Gesamt[[wärmedurchlasswiderstand]]es (bei gleich bleibenden [[Wärmeleitgruppe]]n innerhalb der Konstruktion ist das 1/5 der Gesamtwärmedämmstärke) unterhalb der diffusionshemmenden Bauteilschicht angeordnet werden darf. Wird diese Vorgabe überschritten, ist ein rechnerischer Nachweis zu führen.


===Quellen für einen Feuchtigkeitseintrag===
Hintergrund ist, dass bei Berücksichtigung der [[Normklimabedingung]]en bei Konstruktionen mit Dämmstoffen gleicher [[Wärmeleitgruppe]] von innen gesehen nach ca. 1/3 der Gesamtdämmstärke die [[Taupunkttemperatur]] (9,2&nbsp;°C) unterschritten wird. Liegt die Luftdichtungsebene hinter dem [[Taupunkt]] kann es zu einem [[Tauwasserausfall]] in unbekannter Höhe kommen. Kritische Feuchtigkeitsgehalte können bereits ab einer rel. [[Luftfeuchtigkeit]] von über 80&nbsp;% erreicht werden. Ab diesem Feuchteniveau sind zwischen 0&nbsp;°C und 50&nbsp;°C Wachstumsbedingungen für fast alle [[Schimmelpilz]]e erreicht <ref name="QuSS_03" />.
 
Darüber hinaus kann die Bildung von [[Tauwasser]] an [[Luftdichtung]]sbahnen, die im Frostbereich einer Konstruktion angeordnet werden, zur Bildung einer Eisschicht führen. Diese verhindert jede Art von Feuchtetransport durch die Luftdichtungsebene (z. B. [[Diffusion]] oder Gasaustausch durch Poren), da Eis praktisch dampfdicht ist. Als Folge können weitere bauteilschädigende [[Baufeuchte|Feuchtigkeitsmengen]] anfallen.
 
=== Quellen für einen Feuchtigkeitseintrag ===
Zwei grundlegende Ursachen für einen Feuchteeintrag in Wärmedämmkonstruktionen werden unterschieden:
Zwei grundlegende Ursachen für einen Feuchteeintrag in Wärmedämmkonstruktionen werden unterschieden:
* Eintrag durch [[Diffusion]]
* Eintrag durch [[Diffusion]]
Zeile 26: Zeile 67:
Feuchtigkeitstransporte durch [[Konvektion]] sind nicht berechenbar und führen oft zu einer Feuchtigkeitsmenge in der Konstruktion, die im Vergleich zur [[Diffusion]] mehrere hundert Mal größer sein kann.
Feuchtigkeitstransporte durch [[Konvektion]] sind nicht berechenbar und führen oft zu einer Feuchtigkeitsmenge in der Konstruktion, die im Vergleich zur [[Diffusion]] mehrere hundert Mal größer sein kann.


'''Ausgelagerte Artikel:'''
=== Berechnungsmodelle für Diffusionsvorgänge ===
* '''[[Diffusionsberechnungsmodelle|Berechnungsmodelle für Diffusionsvorgänge]]'''
Für die Berechnung der Feuchtetransporte durch Diffusion innerhalb der Konstruktion stehen verschiedene Berechnungsmodelle mit unterschiedlicher Genauigkeit, bzw. stationäre und dynamische Rechenverfahren, zur Verfügung. <br />
* '''[[Konvektion#Berechnungsmodelle für konvektiven Eintrag|Berechnungsmodelle für konvektiven Eintrag]]'''
In der [[DIN 4108-3]] wird die [[Tauwasser]]- bzw. Verdunstungsmenge, die durch [[Diffusion]] in das betrachtete Bauteil hinein- bzw. heraus gelangen kann, mit standardisierten Klimabedingungen im stationären Berechnungsverfahren nach dem "[[Glaser-Verfahren]]" errechnet. Für die Berechnung stehen 2 Blockklimate (Winter- bzw. Sommerklima) zur Verfügung.
* '''[[Konvektion#Anreicherung der Feuchtigkeitsmenge infolge innerer Konvektion|Anreicherung der Feuchtigkeitsmenge infolge innerer Konvektion]]'''
 
* '''[[Konvektion#Eisschichten sind Dampfsperren|Eisschichten sind Dampfsperren]]'''
=== Berechnung nach DIN 4108-3 ===
* '''[[Wasserdampfdurchlässigkeit#sd-Wert und μ-Wert|s<sub>d</sub>-Wert und μ-Wert]]'''
==== Verfahren nach Glaser ====
* '''[[Wasserdampfdurchlässigkeit#Messunsicherheiten bei hochdiffusionsoffenen Materialien|Messunsicherheiten bei hochdiffusionsoffenen Materialien]]'''
Der Feuchtigkeitsströme werden bei einem pauschalierten Klima von 60 Tagen Winter (-10 °C außen / 80 % rel. Luftfeuchte und 20 °C innen / 50 % rel. Luftfeuchte) und 90 Tagen Sommer (+12 °C innen und außen / 70 % rel. Luftfeuchte, im Dachbereich 20 °C außen) berechnet. <br />
* '''[[Bauschadensfreiheit#Bewertung der Feuchtigkeitseinflüsse. Definition des Bauschadensfreiheitskriteriums|Bewertung der Feuchtigkeitseinflüsse. Definition des Bauschadensfreiheitskriteriums]]'''
Die Konstruktionen müssen folgende Grenzen einhalten: <br />
Die Tauwassermenge darf bei nicht kapillar aufnahmefähigen Bauteilschichten (z. B. bei Folien) 500 g/m² nicht überschreiten. Die Tauwassermenge in der Winterperiode muss geringer sein als die Verdunstungsmenge im Sommer.
 
==== Verfahren nach Glaser mit Jenisch-Klimadaten ====
Das Verfahren nach [[Jenisch]] rechnet je nach Region mit 12 pauschalen Klimadatensätzen, für jeden Monat einen Klimaansatz mit einer gemittelten Temperatur außen und innen. Im Winter liegen die Temperaturansätze außen nur um 0 °C (und nicht wie beim Verfahren nach Glaser bei –10 °C) und im Sommer je nach Region bei 18 °C (und nicht wie beim Verfahren nach Glaser bei 12 °C). <br />
Die Konstruktionen werden also ohne außenseitige Frostperiode berechnet und zeigen demnach deutlich unkritischere Ergebnisse als beim Verfahren nach Glaser. Die Ergebnisse sind dementsprechend zu werten. Das Verfahren nach Jenisch ist zwar noch in der [[DIN 4108-3]] erwähnt, wird heute praktisch aber nicht mehr eingesetzt. Für genaue Ergebnisse werden instationäre Rechenverfahren verwendet.
 
=== Berechnung nach [[DIN EN 15026]] ===
Wirklich realistische Ergebnisse liefern die instationären Berechnungsverfahren wie [[WUFI pro]], [[WUFI 2D]] oder [[Delphin]]. Sie berechnen den Feuchte- und
Wärmetransport in der Konstruktion basierend auf realen Klimadaten (Temperatur, Luftfeuchte, (Schlag-)Regen, Sonne, Wind usw.) bzw. Baustoffeigenschaften ([[Diffusion]], Wasseraufnahme, -speicherung und -transport usw.) und der geographischen Ausrichtung der Gebäudeteile (Neigung, Himmelsrichtung). Feuchtigkeitsgehalt und Temperatur können für jeden Punkt der betrachteten Konstruktion ausgegeben werden.
<br clear="all" />
=== Berechnungsmodelle für konvektiven Eintrag ===
{|align="right" width="260px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| colspan="2" |Abb. 3: <br /> '''1 mm Fuge = <br /> 800 g/24 h pro m Fugenlänge'''
|-
|valign="top" colspan="2" | [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01-3.jpg|center|260px|]]
|-
|'''Feuchtetransport'''
|-
|durch Dampfbremse: || 0,5 g/m² in 24 h
|-
|durch 1 mm Fuge: || '''800 g/m''' in 24 h
|-
|'''Erhöhung Faktor:''' || '''1.600'''
|-
|''Randbedingungen:''
|-
|''Dampfbremse [[sd-Wert|s<sub>d</sub>-Wert]]'' || ''= 30 m''
|-
|''Innentemperatur'' || ''= +20 °C''
|-
|''Außentemperatur'' || ''= 0 °C''
|-
|valign="top"|''Druckdifferenz'' || ''= 20 Pa - entspr.<br /> Windstärke 2-3''
|-
|colspan="2"|Messung: [[Institut für Bauphysik]], Stuttgart <ref name="QuSS_11" />
|}
Der Antrieb der Konvektion ist der Druckunterschied zwischen dem Inneren eines Gebäudes und der Außenluft. Der Druckunterschied resultiert aus der Windanströmung des Gebäudes von außen und dem Aufsteigen der beheizten Luft innerhalb des bewohnten Raums. <br />
Ab WUFI pro 5.0 steht für die Berechnung von konvektiven Feuchteeinträgen ein Luftinfiltrationsmodell zur Verfügung. Es kann auf Grundlage eines Austausches mit der Innenraumluft einen konvektiven Feuchteeintrag simulieren. Das setzt voraus, dass die Undichtheit der Konstruktion bekannt ist, denn diese dient dazu, den Feuchtigkeitseintrag zu quantifizieren. <br />
Bei der Sanierung kann die Qualität der Innenbekleidung selten genau ermittelt werden. Sie hat einen entscheidenden Einfluss auf den Feuchteeintrag durch Diffusion und Konvektion. <br />
Aus Gründen der Bauteilsicherheit wird deshalb der Feuchtetransport durch Leckagen in eine Konstruktion berechnet, in dem diffusionshemmende innere Bauteilschichten (z. B. Dampfbremsebenen oder Innenbekleidungen) unberücksichtigt bleiben. Da es sich hier nur um Diffusionsströme handelt und der Antrieb der Luftdruckunterschiede fehlt, können in der Realität die Feuchtigkeitsbelastungen durch Konvektion wesentlich höher sein. <br />
Bei Luftströmungen durch Leckagen konzentriert sich der Feuchteeintrag auf eine kleine Fläche. Dadurch ist dieser um ein Vielfaches höher, als es die Rechenergebnisse darstellen können . Durch Konvektion kann durch eine Fuge von 1 mm Breite und 1 m Länge (= 1/1000 m²) eine Feuchtigkeitsmenge von 800 g/m und Tag durch Konvektion in die Wärmedämmkonstruktion gelangen.<br />
So viel Feuchtigkeit kann auch die diffusionsoffenste Unterspannbahn nicht austrocknen lassen, zumal der Diffusionsstrom eines dünnen Bauteils bei einer geringen/fehlenden Druckdifferenz in der Praxis viel niedriger ist, als es die s<sub>d</sub>-Werte vermuten lassen (siehe Absatz [[#sd-Wert und μ-Wert|s<sub>d</sub>-Wert und μ-Wert]]).
 
=== Anreicherung der Feuchtigkeitsmenge infolge innerer Konvektion ===
Konvektionsströme können auch innerhalb von Konstruktionen auftreten. Durch die Erwärmung der Konstruktion von außen beim direkten Bescheinen durch die Sonne kann Feuchtigkeit innerhalb des Bauteils aufsteigen und sich ggf. an Stellen sammeln, an denen weitere Konvektionsvorgänge, z. B. durch [[Wechsel]], unterbrochen sind.
 
=== Eisschichten sind Dampfsperren ===
Kommt es zu einem  [[Tauwasser]]ausfall an Materialschichten, die im Frostbereich liegen (z. B. an außen liegenden Luftdichtungsbahnen), kann sich dort bei Minustemperaturen eine Eisschicht bilden. Infolge der verhinderten Austrocknung nach außen aus der Konstruktion heraus kommt es zur weiteren Bildung von sehr großen [[Kondensat]]mengen, die wiederum gefrieren. Das Resultat ist eine verringerte Dämmwirkung des eingesetzten Dämmstoffes sowie eine starke Gefährdung der in der Konstruktion enthaltenen Materialien.
 
=== s<sub>d</sub>-Wert und μ-Wert ===
Entscheidend für die [[Tauwasser]]bildung ist zunächst der [[Wasserdampfdiffusionswiderstand|μ-Wert (Dampfdiffusionswiderstandszahl [-])]]. Er beschreibt die „Qualität“ des Baumaterials hinsichtlich einer Sperrwirkung. Der s<sub>d</sub>-Wert (äquivalente Luftschichtdicke [m]) berücksichtigt zusätzlich die Stärke eines Baustoffes. Mit zunehmender Materialstärke verlängert sich die Zeitdauer, die ein Wassermolekül für den Transportvorgang durch den Baustoff benötigt. <br />
[[Unterspannbahn]]en sind [[diffusionsoffen]] und haben einen niedrigen s<sub>d</sub>-Wert. Aufgrund der geringen Schichtdicke ist der [[Wasserdampfdiffusionswiderstand|μ-Wert]] jedoch vergleichsweise hoch. <br />
In Zahlen: Eine [[Unterspannbahn]] mit einem [[Mikroporöse Membran|mikroporösen Funktionsfilm]] hat bei einem s<sub>d</sub>-Wert von 0,02 m und einer Dicke von 0,50 mm einen [[Wasserdampfdiffusionswiderstand|μ-Wert]] von 40. Im Vergleich mit einem faserförmigen [[Wärmedämmstoff]] (μ-Wert =1) hat die Bahn eine um den Faktor 40 höhere Diffusionsdichtheit. Dadurch kann es auch an diffusionsoffenen Bahnen zu einem [[Tauwasser]]ausfall kommen.
 
[[Mikroporöse Membran|Mikroporöse Bahnen]] lassen wesentlich weniger Feuchtigkeit austrocknen, als der [[Wasserdampfdiffusionswiderstand|μ-Wert]] und s<sub>d</sub>-Wert vermuten lassen. Grund hierfür ist die geringe bzw. fehlende Druckdifferenz an diesem dünnen Bauteil unter den wechselnden klimatischen Bedingungen.
 
: Hintergrund: Antrieb für einen [[Diffusion]]sstrom sind immer Druckdifferenzen. Befindet sich auf beiden Seiten das gleiche Klima (z. B. 10 °C und 80 % rel. [[Luftfeuchtigkeit]]), dann findet kein Feuchtigkeitstransport durch Diffusion statt. Erst wenn Temperatur oder rel. Feuchtigkeit auf beiden Seiten des Bauteils unterschiedlich sind, wollen sich Moleküle über [[Diffusion]] von einer Seite zur anderen bewegen. Bei Bahnen bestehen wegen der geringen Dicke des Materials keine Temperaturunterschiede. Relevant ist die Differenz der relativen [[Luftfeuchtigkeit]] beidseitig der Bahn. Diese sind im Winter (bei [[Tauwasser]]gefahr) an der Bahn denkbar gering, wenn innenseitig 80 % relative [[Luftfeuchtigkeit]] und mehr bestehen und außenseitig ähnliche Feuchtigkeitssituationen vorhanden sind.
 
Sicherheitsvorteile bieten hier [[Unterdeckbahn|Unterdeck-]] und [[Unterspannbahn]]en mit [[Luftdichtungsbahn monolithisch|monolithischen Funktionsfilmen]]. Im Falle eines [[Kondensat]]ausfalls an der Innenseite der Bahn innerhalb der Konstruktion wird Feuchtigkeit aktiv durch [[Diffusion]] entlang der Molekülketten aus dem Bauteil heraus transportiert. Unter Feuchteeinfluss verringert sich der Diffusionswiderstand von pro clima [[DASAPLANO 0,01 connect]] – die Gefahr von Eisbildung sinkt. Bei [[mikroporöse Membran|mikroporösen Membran]]en hingegen kommt es durch [[Tauwasser]]bildung auf der Bahn zu einer verringerten Diffusionsfähigkeit. Feuchtigkeit kann ausschließlich passiv im gasförmigen Zustand durch die Bahnen hindurchgelangen – die Gefahr von Eisbildung ist höher als bei [[Luftdichtungsbahn monolithisch|monolithischen Membranen]].
 
=== Messunsicherheiten bei hochdiffusionsoffenen Materialien ===
Eine für die Bestimmung des Diffusionswiderstandes maßgebliche Norm, die [[DIN EN ISO 12572]], enthält im Abschnitt 9 „Messgenauigkeit“ eine Auflistung über mögliche Fehlerquellen. Es werden neben der Qualität der Prüfkörper sowie der Genauigkeit der Messeinrichtungen auch die Klimarandbedingungen während der Messung (Luftdruckschwankungen) als mögliche das Messergebnis fehlerhaft beeinflussende Ursachen angegeben. Die DIN EN ISO 12572 ist entsprechend den Angaben unter Abschnitt 9.8 nicht für die Messung der Eigenschaften von hohen [[Wasserdampfdiffusions-Durchlasskoeffizient]]en (d. h. mit s<sub>d</sub> < 0,1 m) geeignet. Aus den beschriebenen Gründen ist in der [[DIN 4108-3]] für Messungen nach [[DIN EN ISO 12572]] bei der Diffusionsberechnung auf diffusionsoffeneren Materialien ein s<sub>d</sub>-Wert von 0,1 m anzusetzen.
 
=== Bewertung der Feuchtigkeitseinflüsse. Definition des Bauschadensfreiheitskriteriums ===
{|align="right" width="260px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| Abb 4.  <br /> '''Schimmelpilze wachsen auch unter ungünstigen Umgebungsbedingungen'''
|-
| [[Bild:Wohngesund Schimmel 1.jpg|center|260px|]]
|- style="font-size:90%;"
|Sedlbauer und Krus <ref name="QuSS_03" /> geben für das Erreichen von Wachstumsbedingungen für fast alle im Baubereich relevanten [[Schimmelpilz]]e ein rel. [[Luftfeuchtigkeit]] von 80 % an. Der optimale Bereich liegt je nach Spezies bei 90 bis 96 % rel. [[Luftfeuchtigkeit]].
|}
Die in den Abb. 1 + 2 beschriebenen Feuchtigkeitseinträge können innerhalb von Bauteilen zu einer erhöhten rel. [[Luftfeuchtigkeit]] bis hin zur  [[Kondensat]]bildung führen. In Kombination mit einer ausreichend hohen  Temperatur an der Stelle des erhöhten Feuchtegehaltes kann es bei  ausreichend langer Einwirkung und einer geeigneten Nahrungsquelle zur  Auskeimung von [[Schimmelpilz]]sporen kommen. [[Schimmelpilz]]e gelten  als so genannte „Erstkolonisierer“, da sie auch „unter biologisch  ungünstigen Umgebungsbedingungen“ <ref name="QuSS_03" /> gedeihen können.
 
Sedlbauer und Krus <ref name="QuSS_03" /> geben für das Erreichen von Wachstumsbedingungen für fast  alle im Baubereich relevanten [[Schimmelpilz]]e eine rel. [[Luftfeuchtigkeit]] von 80 % an. Der optimale Bereich liegt je nach  Spezies bei 90 bis 96 % rel. Luftfeuchtigkeit. Die in den Zeiträumen  erhöhter Feuchtegehalte vorhandene Temperatur muss für die Auskeimung  der Sporen, bzw. für das Wachstum des Pilzes im Bereich zwischen 0 und  50 °C liegen. Die ideale Wachstumstemperatur liegt bei etwa 30 °C.


Bei  dieser Temperatur können auf [[Mineralwolle]] ab einer rel.  [[Luftfeuchtigkeit]] von 92 % Schimmelpilze auskeimen und wachsen. Ist  die Temperatur geringer, sind erhöhte rel. Luftfeuchten für die  Besiedelung erforderlich. <br />
„Verunreinigungen  durch Staub, Fingerabdrücke und Luftverschmutzung (Küche, Rückstände  beim Duschen usw.) oder Ausdünstungen des Menschen“ reichen aus, um auf  weniger geeigneten Untergründen die Voraussetzungen für einen Bewuchs  mit [[Schimmelpilz]]en zu verbessern. Diese Randbedingungen haben einen  Einfluss auf die Höhe der erforderlichen rel. Luftfeuchtigkeit bzw.  Temperatur, die für das Auskeimen erforderlich ist. Temperaturen  unterliegen im Tag-Nacht-Wechsel Schwankungen, die dazu führen können,  dass zeitweise keine Bedingungen für das Schimmelpilzwachstum vorliegen.  In <ref name="QuSS_03" /> wird nach Zöld angegeben, dass bei Temperaturen unter 20 °C  Schimmelpilzgefährdung vorliegt, wenn über 5 Tage an mehr als 12 Stunden  eine rel. Luftfeuchtigkeit oberhalb von 75 % in der Konstruktion  herrscht. Das Kriterium für eine durch mögliches Schimmelpilzwachstum  gefährdete Konstruktion kann wie folgt definiert werden:
# '''Temperatur im Tagesmittel über 0 °C'''
# '''Rel. [[Luftfeuchtigkeit]] im Tagesmittel dauerhaft über 90 %'''
# '''Temperatur und rel. Luftfeuchte müssen über lange Zeit in diesem Bereich vorhanden sein.'''
<br clear="all" />


===Untersuchte Konstruktionen===
=== Untersuchte Konstruktionen ===
Im ersten Teil dieser Studie werden auf Grundlage der formulierten Kriterien folgende Konstruktionen auf ihre mögliche [[Schimmel]]wahrscheinlichkeit hin untersucht. Diese werden mit [[WUFI pro]] des [[Fraunhofer Gesellschaft|Fraunhofer-Institutes]] mit dem Klimadatensatz für Holzkirchen vergleichend für folgende Konstruktionen durchgeführt:
Im ersten Teil dieser Studie werden auf Grundlage der formulierten Kriterien folgende Konstruktionen auf ihre mögliche [[Schimmel]]wahrscheinlichkeit hin untersucht. Diese werden mit [[WUFI pro]] des [[Fraunhofer Gesellschaft|Fraunhofer-Institutes]] mit dem Klimadatensatz für Holzkirchen vergleichend für folgende Konstruktionen durchgeführt:


* [[Steildach]] mit 40° [[Dachneigung]] nach Norden orientiert, [[Dacheindeckung]] aus grauen Dachziegeln
* [[Steildach]] mit 40° [[Dachneigung]] nach Norden orientiert, [[Dacheindeckung]] aus grauen Dachziegeln
* [[Sparren]]höhe Bestand: 12 cm mit [[Vollsparrendämmung]] aus faserförmigen [[Dämmstoff|Dämmmaterialien]]
* [[Sparren]]höhe Bestand: 12 cm mit [[Vollsparrendämmung]] aus faserförmigen [[Dämmstoff|Dämmmaterialien]]
** Sorptionsfähiger Dämmstoff (z. B. [[Holzweichfaser]] oder [[Zellulose]])
** Sorptionsfähiger Dämmstoff (z. B. [[Holzfaserdämmstoff]] oder [[Zellulose]])
** Nicht sorptionsfähiger Dämmstoff (z. B. [[Mineralwolle]]) (Rohdichte = 60&nbsp;kg/m³)
** Nicht sorptionsfähiger Dämmstoff (z. B. [[Mineralwolle]]) (Rohdichte = 60&nbsp;kg/m³)


Sorptionsfähige Dämmstoffe bieten ein zusätzliches Sicherheitsplus. Sie können Feuchtespitzen im Bauteil an den Grenzschichten abpuffern. Dies erfolgt z. B. bei [[Holzweichfaser]]- bzw. [[Zellulose]]dämmstoffen durch Aufnahme der Feuchtigkeit in die Zellen des enthaltenen Holzanteils.
Sorptionsfähige Dämmstoffe bieten ein zusätzliches Sicherheitsplus. Sie können Feuchtespitzen im Bauteil an den Grenzschichten abpuffern. Dies erfolgt z. B. bei [[Holzfaser]]- bzw. [[Zellulose]]dämmstoffen durch Aufnahme der Feuchtigkeit in die Zellen des enthaltenen Holzanteils.


Das Innenklima wird entsprechend den Annahmen des WTA-Merkblatts6-2-01/D<ref name="Qu_1" /> (in [[WUFI]] enthalten) mit normaler Feuchtelast festgelegt, wie es in Räumen bewohnter Häuser (Schlaf- und Wohnräume, Bäder und Küchen) vorhanden ist. Die angegebenen Konstruktionen werden zur Abschätzung des Einflusses der Dichtheit der Innenbekleidung mitvollflächig vorhandener Gipsbauplatte (Stärke&nbsp;10&nbsp;mm) und ohne Gipsbauplatte berechnet, um den Einfluss von Profilbrettschalungen bzw. mangelhaft luftdichten Innenbekleidungen zu berücksichtigen.  
Das Innenklima wird entsprechend den Annahmen des WTA-Merkblatts6-2-01/D<ref name="QuSS_09" /> (in [[WUFI]] enthalten) mit normaler Feuchtelast festgelegt, wie es in Räumen bewohnter Häuser (Schlaf- und Wohnräume, Bäder und Küchen) vorhanden ist. Die angegebenen Konstruktionen werden zur Abschätzung des Einflusses der Dichtheit der Innenbekleidung mitvollflächig vorhandener Gipsbauplatte (Stärke&nbsp;10&nbsp;mm) und ohne Gipsbauplatte berechnet, um den Einfluss von Profilbrettschalungen bzw. mangelhaft luftdichten Innenbekleidungen zu berücksichtigen.  


Die folgenden dargestellten Fälle 1, 2 und 4 werden mit nicht sorptiven Dämmmaterialien ([[Mineralfaser]]) betrachtet. Bei Fall&nbsp;3 wurde ein Dämmstoff mit sorptiven Eigenschaften eingesetzt ([[Zellulose]]).
=== Ergebnisdiskussion ===
 
; ... der nachfolgend beschriebenen 4 Fälle
====Ergebnisdiskussion====
Untersucht wird die Feuchtigkeitssituation an der Grenzfläche der [[Luftdichtung]]sbahn. Dazu wird  
Untersucht wird die Feuchtigkeitssituation an der Grenzfläche der [[Luftdichtung]]sbahn. Dazu wird  
* die relative [[Luftfeuchtigkeit]] in Abhängigkeit von der herrschenden Temperatur im Grenzbereich zur [[Luftdichtung]]sbahn (Fall 1, 3, 4) bzw. zur [[Holzweichfaser]]platte (Fall&nbsp;2) berechnet.
* die relative [[Luftfeuchtigkeit]] in Abhängigkeit von der herrschenden Temperatur im Grenzbereich zur [[Luftdichtung]]sbahn (Fall 1, 3, 4) bzw. zur [[Holzfaserdämmplatte]] (Fall&nbsp;2) berechnet.
* der Wassergehalt der [[Wärmedämmung]] in der Grenzschicht berechnet.
* der Wassergehalt der [[Wärmedämmung]] in der Grenzschicht berechnet.


====Ziel:====
;Ziel:
Innerhalb von wärmegedämmten Konstruktionen treten die höchsten rel. [[Luftfeuchtigkeit]]en bzw. Feuchtigkeitsgehalte an der Grenzschicht beim Wechsel von Materialien mit unterschiedlichen [[Wasserdampfdiffusionswiderstand|μ-Wert]]en auf. Der Wassergehalt der [[Wärmedämmung]] in der äußersten Schicht (1&nbsp;mm) und die relative Luftfeuchtigkeit sollen nicht signifikant erhöht sein.
Innerhalb von wärmegedämmten Konstruktionen treten die höchsten rel. [[Luftfeuchtigkeit]]en bzw. Feuchtigkeitsgehalte an der Grenzschicht beim Wechsel von Materialien mit unterschiedlichen [[Wasserdampfdiffusionswiderstand|μ-Wert]]en auf. Der Wassergehalt der [[Wärmedämmung]] in der äußersten Schicht (1&nbsp;mm) und die relative Luftfeuchtigkeit sollen nicht signifikant erhöht sein.


 
=== Fall 1: 35 mm Holzfaserunterdeckplatte ===
===Fall 1: 35 mm Holzweichfaser===
{|align="right" valign="top" style="margin: 0 0 0 15px;"
{|align="right" valign="top"
|[[Bild:BPhys_GD_3SS_05_LD_aussen_LDB_ohne-01.jpg|right|thumb|200px|'''1a: Ohne''' Luftdichtung innen]]
|[[Bild:BPhys_GD_3SS_05_LD_aussen_LDB_ohne-01.jpg|right|thumb|200px|'''1a: Ohne''' Luftdichtung innen]]
|[[Bild:BPhys_GD_3SS_06_LD_aussen_LDB_mit_ganz-01.jpg|right|thumb|200px|'''1b: Mit''' Luftdichtung innen]]
|[[Bild:BPhys_GD_3SS_06_LD_aussen_LDB_mit_ganz-01.jpg|right|thumb|200px|'''1b: Mit''' Luftdichtung innen]]
|}
|}
* Überdämmung der Sparren mit [[Holzweichfaser]] 35 mm,  
* Überdämmung der Sparren mit Holzfaserunterdeckplatte 35 mm,  
* darunter außenliegende diffusionsoffene Luftdichtung (s<sub>d</sub> = 0,02 m),
* darunter außenliegende diffusionsoffene Luftdichtung (s<sub>d</sub> = 0,02 m),
* Faserförmige [[Zwischensparrendämmung]], nicht sorptiver [[Dämmstoff]] 120 mm
* Faserförmige [[Zwischensparrendämmung]], nicht sorptiver [[Dämmstoff]] 120 mm
Zeile 85: Zeile 204:
<br clear="all" />
<br clear="all" />
;Berechnungen zu Fall 1b - mit Luftdichtung innen
;Berechnungen zu Fall 1b - mit Luftdichtung innen
{|align="right" valign="top"
{|align="right" valign="top" style="margin: 0 0 0 15px;"
|valign="top"|[[Bild:BPhys_GD_3SS_12_1b_Ergebnis_1.jpg|right|thumb|200px|Feuchte an 84 Tagen > 90 %,  <br /> an 6 Tagen [[Tauwasser]] <br />'''=> Erhöhte [[Schimmel]]wahrscheinlichkeit''']]
|valign="top"|[[Bild:BPhys_GD_3SS_12_1b_Ergebnis_1.jpg|right|thumb|200px|Feuchte an 84 Tagen > 90 %,  <br /> an 6 Tagen [[Tauwasser]] <br />'''=> Erhöhte [[Schimmel]]wahrscheinlichkeit''']]
|valign="top"|[[Bild:BPhys_GD_3SS_13_1b_Ergebnis_2.jpg|right|thumb|200px|Max. Feuchtegehalt an der Grenzschicht länger als 1 Monat erhöht - bis 60 kg/m³]]
|valign="top"|[[Bild:BPhys_GD_3SS_13_1b_Ergebnis_2.jpg|right|thumb|200px|Max. Feuchtegehalt an der Grenzschicht länger als 1 Monat erhöht - bis 60 kg/m³]]
Zeile 94: Zeile 213:
<br clear="all" />
<br clear="all" />


===Fall 2: 50-50-Lösung===
=== Fall 2: 1:1 Lösung ===
{|align="right"
{|align="right" style="margin: 0 0 0 15px;"
|[[Bild:BPhys_GD_3SS_07_50-50-loesung.jpg|right|thumb|200px|'''2:''' '''50-50-Lösung''']]
|[[Bild:BPhys GD 3SS 07 1-1 Sanierungsloesung.jpg|right|thumb|200px|'''2:''' '''1:1 Lösung''']]
|}
|}
Die Luftdichtungsebene liegt zwischen zwei gleich starken Dämmschichten: 50&nbsp;% der [[Wärmedämmung]] vor der [[Luftdichtung]]sebene – 50&nbsp;% der [[Wärmedämmung]] auf den [[Sparren]]. Beide [[Dämmstoff]]e haben die gleiche [[Wärmeleitzahl]]&nbsp;λ.  
''ehemals: '''50-50-Lösung'''''
* Überdämmung der Sparren mit [[Holzweichfaser]] 120&nbsp;mm,  
 
Die Luftdichtungsebene liegt zwischen zwei gleich starken Dämmschichten: 50&nbsp;% der [[Wärmedämmung]] vor der [[Luftdichtung]]sebene – 50&nbsp;% der [[Wärmedämmung]] auf den [[Sparren]].  
* Überdämmung der Sparren mit '''[[Holzfaser]]unterdeckplatten''' 120&nbsp;mm,  
* darunter mittig liegende diffusionsoffene Luftdichtung (s<sub>d</sub> = 0,02&nbsp;m),
* darunter mittig liegende diffusionsoffene Luftdichtung (s<sub>d</sub> = 0,02&nbsp;m),
* Faserförmige [[Zwischensparrendämmung]], nicht sorptiver [[Dämmstoff]] 120&nbsp;mm
* Faserförmige [[Zwischensparrendämmung]], nicht sorptiver [[Dämmstoff]] 120&nbsp;mm
Zeile 107: Zeile 228:


;Berechnungen  
;Berechnungen  
{|align="right" valign="top"
{|align="right" valign="top" style="margin: 0 0 0 15px;"
|valign="top"|[[Bild:BPhys_GD_3SS_14_2_Ergebnis_1.jpg|right|thumb|200px|Feuchte an 7 Tagen > 90 %,  <br /> kein [[Tauwasser]] <br />'''=> Geringe [[Schimmel]]wahrscheinlichkeit''']]
|valign="top"|[[Bild:BPhys_GD_3SS_14_2_Ergebnis_1.jpg|right|thumb|200px|Feuchte an 7 Tagen > 90 %,  <br /> kein [[Tauwasser]] <br />'''=> Geringe [[Schimmel]]wahrscheinlichkeit''']]
|valign="top"|[[Bild:BPhys_GD_3SS_15_2_Ergebnis_2.jpg|right|thumb|200px|Nur sehr geringe Feuchtegehalte an der Grenzschicht]]
|valign="top"|[[Bild:BPhys_GD_3SS_15_2_Ergebnis_2.jpg|right|thumb|200px|Nur sehr geringe Feuchtegehalte an der Grenzschicht]]
|}
|}
Werden 50 % der Wärmedämmung (des Gesamt[[wärmedurchlasswiderstand]]es) vor der Luftdichtungsebene angeordnet, treten rel. [[Luftfeuchtigkeit]]en oberhalb von 90&nbsp;% nur eine Woche innerhalb der Winterperiode auf. [[Tauwasser]]bildung findet dabei nicht statt. An der Grenzschicht entstehen keine maßgeblichen Feuchtemengen. Ist eine intakte Innenbekleidung vorhanden, liegt die rel. Luftfeuchtigkeitan der Grenzschicht Dämmstoff–Luftdichtungsbahn ganzjährig unterhalb von 90&nbsp;%. [[Schimmelpilz]]wachstum ist hier entsprechend <ref name="Qu_2" /> nicht möglich, auch wenn die innere Luftdichtungsebene (Innenbekleidung) Fehlstellen aufweist.
Werden 50 % der Wärmedämmung (des Gesamt[[wärmedurchlasswiderstand]]es) vor der Luftdichtungsebene angeordnet, treten rel. [[Luftfeuchtigkeit]]en oberhalb von 90&nbsp;% nur eine Woche innerhalb der Winterperiode auf. [[Tauwasser]]bildung findet dabei nicht statt. An der Grenzschicht entstehen keine maßgeblichen Feuchtemengen. Ist eine intakte Innenbekleidung vorhanden, liegt die rel. Luftfeuchtigkeitan der Grenzschicht Dämmstoff–Luftdichtungsbahn ganzjährig unterhalb von 90&nbsp;%. [[Schimmelpilz]]wachstum ist hier entsprechend <ref name="QuSS_03" /> nicht möglich, auch wenn die innere Luftdichtungsebene (Innenbekleidung) Fehlstellen aufweist.
<br clear="all" />
<br clear="all" />


===Fall 3: 30-70-Lösung===
=== Fall 3: 2:1 Lösung ===
{|align="right"
{|align="right" style="margin: 0 0 0 15px;"
|[[Bild:BPhys_GD_3SS_08_30-70-regel.jpg|right|thumb|200px|'''3:''' bei sorptiven Dämmstoffen und '''30-70-Regel''']]
|[[Bild:BPhys GD 3SS 08 2-1-Regel.jpg|right|thumb|200px|'''3:''' bei sorptiven Dämmstoffen und '''2:1-Regel''']]
|}
|}
* Überdämmung der Sparren mit [[Holzweichfaser]] 60 mm,  
''ehemals: '''70-30-Lösung'''''
* Überdämmung der Sparren mit '''[[Holzfaser]]unterdeckplatten''' 60 mm,  
* darunter liegende diffusionsoffene [[Luftdichtung]] (s<sub>d</sub> = 0,02 m),
* darunter liegende diffusionsoffene [[Luftdichtung]] (s<sub>d</sub> = 0,02 m),
* Faserförmige [[Zwischensparrendämmung]], sorptiver [[Dämmstoff]] 120 mm <br />(z. B. [[Holzweichfaser]] oder [[Zellulose]]) in 120&nbsp;mm Stärke.
* Faserförmige [[Zwischensparrendämmung]], sorptiver [[Dämmstoff]] 120 mm <br />(z. B. [[Holzfaserdämmung]] oder [[Zellulose]]) in 120&nbsp;mm Stärke.
<br clear="all" />
<br clear="all" />  
;Berechnungen  
;Berechnungen  
{|align="right" valign="top"
{|align="right" valign="top" style="margin: 0 0 0 15px;"
|valign="top"|[[Bild:BPhys_GD_3SS_16_3_Ergebnis_1.jpg|right|thumb|200px|Feuchte an 45 Tagen > 90 %,  <br /> kein [[Tauwasser]] <br /> '''=> Geringe [[Schimmel]]wahrscheinlichkeit <br /> mit sorptivem Dämmstoff''']]
|valign="top"|[[Bild:BPhys_GD_3SS_16_3_Ergebnis_1.jpg|right|thumb|200px|Feuchte an 45 Tagen > 90 %,  <br /> kein [[Tauwasser]] <br /> '''=> Geringe [[Schimmel]]wahrscheinlichkeit <br /> mit sorptivem Dämmstoff''']]
|valign="top"|[[Bild:BPhys_GD_3SS_17_3_Ergebnis_2.jpg|right|thumb|200px|Unkritische Feuchtegehalte in der Grenzschicht]]
|valign="top"|[[Bild:BPhys_GD_3SS_17_3_Ergebnis_2.jpg|right|thumb|200px|Unkritische Feuchtegehalte in der Grenzschicht]]
|}
|}
&nbsp;&nbsp;
Werden Dämmstoffe eingesetzt, die in der Lage sind, Feuchtigkeit kurzfristig durch [[Sorption]] zu speichern, kann das Verhältnis von [[Zwischensparrendämmung|Zwischensparren]]- zu [[Aufdachdämmung]] auf 1/3 oberhalb der [[Sparren]] und 2/3 zwischen den Sparren festgelegt werden. Bei dem betrachteten Beispiel sind 120&nbsp;mm Zwischensparren- und 60&nbsp;mm Aufdachdämmung durch eine diffusionsoffene Luftdichtungsbahn von einander getrennt. Bei dieser Konstruktion treten Feuchtegehalte von 90&nbsp;% an der Grenzschicht über längere Zeiträume auf. Zum Teil wird diese Grenze überschritten. Durch die sorptiven Eigenschaften von z. B. [[Zellulose]] oder [[Holzfaserdämmung]] sind diese Feuchtigkeitsgehalte tolerierbar. Die Feuchtigkeitsgehalte an der Grenzschicht zwischen der Dämmebene und der Luftdichtungsbahn sind unkritisch.
Werden Dämmstoffe eingesetzt, die in der Lage sind, Feuchtigkeit kurzfristig durch [[Sorption]] zu speichern, kann das Verhältnis von [[Zwischensparrendämmung|Zwischensparren]]- zu [[Aufdachdämmung]] auf 30&nbsp;% oberhalb der [[Sparren]] und 70&nbsp;% zwischen den Sparren festgelegt werden. Voraussetzung ist, dass die eingesetzten Dämmmaterialien die gleiche [[Wärmeleitzahl]] besitzen. Bei dem betrachteten Beispiel sind 120&nbsp;mm Zwischensparren- und 60&nbsp;mm Aufdachdämmung durch eine diffusionsoffene Luftdichtungsbahn von einander getrennt. Bei dieser Konstruktion treten Feuchtegehalte von 90&nbsp;% an der Grenzschicht über längere Zeiträume auf. Zum Teil wird diese Grenze überschritten. Durch die sorptiven Eigenschaften von z. B. [[Zellulose]] oder [[Holzweichfaser]] sind diese Feuchtigkeitsgehalte tolerierbar. Die Feuchtigkeitsgehalte an der Grenzschicht zwischen der Dämmebene und der Luftdichtungsbahn sind unkritisch.
 
Bei einer Sanierung kann ein bereits im Bauteil vorhandener nicht sorptiver Dämmstoff (z. B. [[Mineralwolle]]) in der Konstruktion verbleiben, wenn bis zur Luftdichtungsebene (Sparrenoberkante) mindestens 40&nbsp;mm eines sorptiven Dämmmaterials (z. B. [[Holzfaserdämmung]] oder [[Zellulose]]) ergänzt werden.


Bei einer Sanierung kann ein bereits im Bauteil vorhandener nicht sorptiver Dämmstoff (z. B. [[Mineralwolle]]) in der Konstruktion verbleiben, wenn bis zur Luftdichtungsebene (Sparrenoberkante) mindestens 40&nbsp;mm eines sorptiven Dämmmaterials (z. B. [[Holzweichfaser]] oder [[Zellulose]]) ergänzt werden.
<br clear="all" />
<br clear="all" />


===Fall 4: [[Sub-and-Top]]-Lösung===
==== Luftdichtungsbahnen mit monolithischer Funktionsschicht ====
{|align="right"
{|align="right" width="260px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
|[[Bild:BPhys_GD_3SS_09_LD_innen_Sub_and_Top-01.jpg|right|thumb|200px|'''4:''' '''[[Sub-and-Top]]'''-Lösung]]
| Abb. 18 '''Vergrößerung des monolithischen porenfreien Funktionsfilms der DASAPLANO-Bahnen'''
|-
|[[Bild:Tech_membran_monolithisch_TEEE.jpg|center|200px|]]
|- style="font-size:90%;"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Aktiver Feuchtetransport entlang der Molekülketten erhöht das Austrocknungsvermögen.
|-
| Abb. 19 '''Vergrößerung eines mikroporösen Funktionsfilmes'''
|-
|[[Bild:Tech_membran_mikroporen.jpg|center|200px|]]
|- style="font-size:90%;"
| Passiver Feuchtetransport durch Poren (Gasaustausch) vergrößert die Gefahr von Eisbildung im Bauteil.
|}
Wird die Luftdichtungsebene wie in Fall 2 (1:1-Lösung) bzw. Fall 3 (2:1-Lösung) beschrieben oberhalb der Sparrenlage verlegt, sollte eine diffusionsoffene Luftdichtungsbahn mit einem feuchtevariablen und monolithischen Funktionsfilm eingesetzt werden. Die pro clima [[DASAPLANO-Bahnen]] verfügen über entsprechendene Filme aus monolithischen Polymermischungen und bieten der Konstruktion folgende Vorteile:
 
; - Luftdichtheit: Die monolithischen Funktionsfilme der [[DASAPLANO-Bahnen]] gewährleisten eine 100 %ige [[Luftdichtheit]]. Im Gegensatz zu herkömmlichen Luftdichtungsbahnen mit mikroporösen Filmen (Abb. 19) sind DASAPLANO-Bahnen absolut porenfrei (Abb. 18).
 
; - Diffusionsoffenheit: Der monolithische Funktionsfilm ermöglicht einen aktiven Feuchtigkeitstransport durch das Bahnenmaterial.
Steht [[Kondensat]] innenseitig in Tropfenform an einer DASAPLANO-Bahn an, wird diese entlang der Molekülketten aktiv nach außen weiter transportiert. Dadurch wird die Gefahr von Eisbildung (= Dampfsperre) an der Luftdichtungsbahn im Vergleich zu einer Bahn mit mikroporösen Funktionsfilmen deutlich reduziert.
 
; - [[Feuchtevariabilität]]: Der Funktionsfim der [[DASAPLANO 0,01 connect]] hat feuchtevariable Eigenschaften. Dadurch sinkt der [[Diffusionswiderstand]] der Bahnen bei Kondensatbildung bis auf einen s<sub>d</sub>-Wert von 0,01 m. Dadurch wird der üblichen Erhöhung des Diffusionswiderstandes, z. B. infolge des Porenverschlusses durch Wasser, optimal vorgebeugt.
 
Soll die Luftdichtungsbahn oberhalb der Sparren verlegt werden, bieten [[DASAPLANO-Bahnen]] bei der 1:1- bzw. 2:1-Lösung im Vergleich zu mikroporösen Luftdichtungsbahnen die beste Performance.<br clear="all" />
 
=== Fall 4: [[Sub-and-Top]]-Lösung ===
{|align="right" style="margin: 0 0 0 15px;"
|[[Bild:BPhys GD 3SS 09 Sub und Top Loesung.jpg|right|thumb|200px|'''4:''' '''[[Sub-and-Top]]'''-Lösung]]
|}
|}
Die [[Luftdichtung]]sebene wird schlaufenförmig ([[Sub-and-Top]]) auf der Innenbekleidung und über die Tragkonstruktion geführt.
Die [[Luftdichtung]]sebene wird schlaufenförmig ([[Sub-and-Top]]) auf der Innenbekleidung und über die Tragkonstruktion geführt.
* Überdämmung der [[Sparren]] mit [[Holzweichfaser]] 35 mm,  
* Überdämmung der [[Sparren]] mit [[Holzfaser]]unterdeckplatten 35 mm,  
* innen liegende [[Luftdichtung]], [[Sub-and-Top]]-verlegt (s<sub>d</sub> = [[Feuchtevariabilität|feuchtevariabel]] 0,05 - 2,0 m),
* innen liegende [[Luftdichtung]], [[Sub-and-Top]]-verlegt (s<sub>d</sub> = [[Feuchtevariabilität|feuchtevariabel]] 0,05 - 2,0 m),
* Faserförmige [[Zwischensparrendämmung]], nicht sorptiver [[Dämmstoff]] 120&nbsp;mm
* Faserförmige [[Zwischensparrendämmung]], nicht sorptiver [[Dämmstoff]] 120&nbsp;mm
<br clear="all" />
<br clear="all" />
;Berechnungen  
;Berechnungen  
{|align="right" valign="top"
{|align="right" valign="top" style="margin: 0 0 0 15px;"
|valign="top"|[[Bild:BPhys_GD_3SS_20_4_Ergebnis_1.jpg|right|thumb|200px|Keine  Feuchte > 90 %,  <br /> kein [[Tauwasser]] <br />'''=> Schimmel sehr unwahrscheinlich''']]
|valign="top"|[[Bild:BPhys_GD_3SS_20_4_Ergebnis_1.jpg|right|thumb|200px|Keine  Feuchte > 90 %,  <br /> kein [[Tauwasser]] <br />'''=> Schimmel sehr unwahrscheinlich''']]
|valign="top"|[[Bild:BPhys_GD_3SS_21_4_Ergebnis_2.jpg|right|thumb|200px|Unkritische Feuchtegehalte in der Grenzschicht]]
|valign="top"|[[Bild:BPhys_GD_3SS_21_4_Ergebnis_2.jpg|right|thumb|200px|Unkritische Feuchtegehalte in der Grenzschicht]]
Zeile 149: Zeile 296:
Die [[Sub-and-Top]]-Verlegung der Sanierungs-Dampfbremse [[DASATOP]] stellt die sichere Luftdichtheit her und schützt durch den [[Feuchtevariabilität|feuchtevariablen s<sub>d</sub>-Wert]] die Wärmedämmung in allen Schichten vor bauteilschädigenden, erhöhten Feuchtigkeitsgehalten.
Die [[Sub-and-Top]]-Verlegung der Sanierungs-Dampfbremse [[DASATOP]] stellt die sichere Luftdichtheit her und schützt durch den [[Feuchtevariabilität|feuchtevariablen s<sub>d</sub>-Wert]] die Wärmedämmung in allen Schichten vor bauteilschädigenden, erhöhten Feuchtigkeitsgehalten.


Die Sanierungs-Dampfbremse kann mit allen faserförmigen Dämmstoffen kombiniert werden. Eine Luftdichtungsbahn oberhalb der Zwischensparrendämmung ist dabei nicht erforderlich. Durch den Einsatz der Sanierungs-Dampfbremse liegt das Feuchtigkeitsniveau in der Wärmedämmung unmittelbar unter der Holzweichfaserplatte im unschädlichen Bereich. Die Feuchtigkeitsspitze von 85&nbsp;% tritt nur sehr kurz bei Temperaturen um den Gefrierpunkt auf. Es treten keine materialschädigenden Feuchtegehalte auf. Unter diesen Randbedingungen können [[Schimmelpilz]]e bei den verwendeten Materialien weder auskeimen, noch ist ein weiteres [[Schimmelpilz]]wachstum möglich. <br />
Die Sanierungs-Dampfbremse kann mit allen faserförmigen Dämmstoffen kombiniert werden. Eine Luftdichtungsbahn oberhalb der Zwischensparrendämmung ist dabei nicht erforderlich. Durch den Einsatz der Sanierungs-Dampfbremse liegt das Feuchtigkeitsniveau in der Wärmedämmung unmittelbar unter der Holzfaserunterdeckplatte im unschädlichen Bereich. Die Feuchtigkeitsspitze von 85&nbsp;% tritt nur sehr kurz bei Temperaturen um den Gefrierpunkt auf. Es treten keine materialschädigenden Feuchtegehalte auf. Unter diesen Randbedingungen können [[Schimmelpilz]]e bei den verwendeten Materialien weder auskeimen, noch ist ein weiteres [[Schimmelpilz]]wachstum möglich. <br />
Konstruktionen mit dieser Sanierungs-Dampfbremse sind bei luftdichter Verlegung und Verklebung keiner Gefahr von [[Schimmelpilz]]bildung im Bauteil ausgesetzt. Sie bieten damit die '''größte Sicherheit''' für alle faserförmigen Dämmstoffe und für die Konstruktion.
Konstruktionen mit dieser Sanierungs-Dampfbremse sind bei luftdichter Verlegung und Verklebung keiner Gefahr von [[Schimmelpilz]]bildung im Bauteil ausgesetzt. Sie bieten damit die '''größte Sicherheit''' für alle faserförmigen Dämmstoffe und für die Konstruktion.  
<br clear="all" />
<br clear="all" />


=== [[Luftdichtungsbahn_monolithisch|Luftdichtungsbahnen mit monolithischer Funktionsschicht]]===
=== Fazit Vergleich Luftdichtung außen zu Luftdichtung und Dampfbremse innen ===
- ''Dieser Artikel ist ausgelagert''
Berechnungen mit [[Diffusionsberechnungsmodelle|instationären Simulationsverfahren]] können Risiken der Tauwasserbildung darstellen und lassen Rückschlüsse auf das [[Bauschadensfreiheitspotenzial]] einer Konstruktion zu. Werden Konstruktionen mit außen liegenden Luftdichtungen ohne ausreichende Überdämmung betrachtet, zeigt das Ergebnis rel. [[Luftfeuchtigkeit]]en oberhalb von 90&nbsp;% und große [[Tauwasser]]bildung an den Grenzschichten der Wärmedämmung zur Luftdichtung. Es besteht die Gefahr von [[Schimmel]]bildung in der Konstruktion.


===Fazit Vergleich Luftdichtung außen zu Luftdichtung und Dampfbremse innen===
Sind Innenbekleidungen nicht vollflächig fugenfrei vorhanden, kann es zu einem hohen [[Tauwasser]]ausfall innerhalb der Konstruktion kommen. Die innere Dämmschicht kann im Bereich von Zwischenwänden, z. B. bei Undichtheiten im Giebelmauerwerk, luftdurchströmt werden. Die Wahrscheinlichkeit von [[Schimmelpilz]]wachstum steigt nochmals.
Berechnungen mit [[Diffusionsberechnungsmodelle|instationären Simulationsverfahren]] unter realen Klimabedingungen ermöglichen eine wirklichkeitsgetreue Abbildung der tatsächlichen Vorgänge in der Konstruktion. Sie können Risiken der Tauwasserbildung darstellen und lassen Rückschlüsse auf das [[Bauschadensfreiheitspotential]] einer Konstruktion zu. Werden Konstruktionen mit außen liegenden Luftdichtungen ohne ausreichende Überdämmung betrachtet, zeigt das Ergebnis rel.[[Luftfeuchtigkeit]]en oberhalb von 90&nbsp;% und große [[Tauwasser]]bildung an den Grenzschichten der Wärmedämmung zur [[Luftdichtung]]. Als Folge besteht bei Konstruktionen, wie in Fall 1 dargestellt, eine erhöhte Wahrscheinlichkeit von [[Schimmel]]bildung in der Konstruktion.
 
Sind Innenbekleidungen nicht vollflächig fugenfrei vorhanden, kann es zu einem hohen [[Tauwasser]]ausfall innerhalb der Konstruktion kommen. Die innere Dämmschicht kann im Bereich von Zwischenwänden, z. B. bei Undichtheiten im Giebelmauerwerk, luftdurchströmt werden – in den kalten Jahreszeiten können sich große Mengen [[Tauwasser]] bilden. Die Wahrscheinlichkeit von [[Schimmelpilz]]wachstum steigt nochmals.


Die Bestimmung der [[sd-Wert|s<sub>d</sub>-Werte]] hochdiffusionsoffener Materialien kann entsprechendden Anmerkungen der [[DIN EN ISO 12572]] einem hohen [[Wasserdampfdurchlässigkeit#Messunsicherheiten bei hochdiffusionsoffenen Materialien|Messfehler]] unterliegen. Die Erhöhung des [[Diffusionswiderstand]]es der [[Luftdichtung]]sbahn um 0,01&nbsp;m (von 0,02 auf 0,03&nbsp;m) verursacht eine Erhöhung des max. Feuchtegehaltes an der Grenzschicht Dämmstoff/Luftdichtungsbahn in der Berechnung von Fall&nbsp;1 mit Innenbekleidung um mehr als 60&nbsp;%. Steigt der Wert auf 0,04&nbsp;m erhöht sich der max. Feuchtegehalt um über das Doppelte (120&nbsp;%) des Ausgangswertes. Leichte Abweichungen des Diffusionswiderstandes erhöhten also die Gefahr von [[Schimmelpilz]]bildung enorm.<br />
Die Bestimmung der [[sd-Wert|s<sub>d</sub>-Werte]] hochdiffusionsoffener Materialien kann entsprechendden Anmerkungen der [[DIN EN ISO 12572]] einem hohen [[Wasserdampfdurchlässigkeit#Messunsicherheiten bei hochdiffusionsoffenen Materialien|Messfehler]] unterliegen. Die Erhöhung des [[Diffusionswiderstand]]es der [[Luftdichtung]]sbahn um 0,01&nbsp;m (von 0,02 auf 0,03&nbsp;m) verursacht eine Erhöhung des max. Feuchtegehaltes an der Grenzschicht Dämmstoff/Luftdichtungsbahn in der Berechnung von Fall&nbsp;1 mit Innenbekleidung um mehr als 60&nbsp;%. Steigt der Wert auf 0,04&nbsp;m erhöht sich der max. Feuchtegehalt um über das Doppelte (120&nbsp;%) des Ausgangswertes. Leichte Abweichungen des Diffusionswiderstandes erhöhten also die Gefahr von [[Schimmelpilz]]bildung enorm.<br />
Wird die Luftdichtungsebene in die Mitte der Wärmedämmebene verlegt (50-50-Lösung), sinken die rel. Luftfeuchten an der Grenzschicht unterhalb kritischer Werte.<br />
Wird die Luftdichtungsebene in die Mitte der Wärmedämmebene verlegt (1:1-Lösung), sinken die rel. Luftfeuchten an der Grenzschicht unterhalb kritischer Werte.<br />
Bei dieser Vorgehensweise können alle faserförmigen Dämmstoffe zwischen den Sparren eingesetzt werden.
Bei dieser Vorgehensweise können alle faserförmigen Dämmstoffe zwischen den Sparren eingesetzt werden.


Alternativ kann bei der Verwendung von sorptiven [[Dämmstoffe]]n, wie z. B. [[Holzweichfaser]] und [[Zellulose]], die Stärke der Aufdachdämmung auf 1/3 der Gesamtdämmstärke verringert werden (30-70-Lösung). Ist bereits eine Dämmung vorhanden, müssen mindestens 40 mm der Dämmung vor der [[Luftdichtung]]sebene aus einer sorptiven Dämmung bestehen.<br />
Alternativ kann bei der Verwendung von sorptiven [[Dämmstoff]]en, wie z. B. [[Holzfaserdämmung]] und [[Zellulose]], die Stärke der Aufdachdämmung auf 1/3 der Gesamtdämmstärke verringert werden (2:1-Lösung). Ist bereits eine Dämmung vorhanden, müssen mindestens 40 mm der Dämmung vor der [[Luftdichtung]]sebene aus einer sorptiven Dämmung bestehen.
 
Die beiden vorgestellten Lösungen wurden aufgrund verschiedener im Markt erhältlichen Qualitäten von Holzfaserplatten produktunabhängig ermittelt. Hersteller von [[Holzfaserplatte]]n können von diesen Angaben abweichende Aufbauten empfehlen. Diese haben genaue Kenntnis über die technischen Eigenschaften ihrer Produkte, so dass die für die [[Aufdachdämmung]] erforderlichen Schichtdicken geringer ausfallen können. <br />
Bei von unseren Angaben abweichenden Bauteilen wenden Sie sich für Freigaben und Konstruktionsempfehlungen bitte direkt an den Lieferanten/Hersteller der Holzfaserplatten.
 
Die sicherste Lösung stellt im Vergleich die Konstruktion mit der [[Sub-and-Top]] verlegten Dachsanierungs-Dampfbremse [[DASATOP]] dar. Sie kann mit allen faserförmigen Dämmstoffen kombiniert werden. Die Wärmedämmung ist durch die innenseitig verlegte Dampfbremse mit einem [[sd-Wert|s<sub>d</sub>-Wert]] bis zu 2&nbsp;m ausreichend vor der Befeuchtung aus dem Innenraum geschützt. An keiner Stelle innerhalb der Konstruktion treten schimmelkritische Feuchtigkeiten auf.
Die sicherste Lösung stellt im Vergleich die Konstruktion mit der [[Sub-and-Top]] verlegten Dachsanierungs-Dampfbremse [[DASATOP]] dar. Sie kann mit allen faserförmigen Dämmstoffen kombiniert werden. Die Wärmedämmung ist durch die innenseitig verlegte Dampfbremse mit einem [[sd-Wert|s<sub>d</sub>-Wert]] bis zu 2&nbsp;m ausreichend vor der Befeuchtung aus dem Innenraum geschützt. An keiner Stelle innerhalb der Konstruktion treten schimmelkritische Feuchtigkeiten auf.


Mit der speziellen Dachsanierungs-Dampfbremse ist es nicht erforderlich, das Bauteil zum Schutz vorschädlicher Tauwasserbildung mit einer zusätzlichen Aufdachdämmung zu versehen.
Mit der [[DASATOP]] ist es nicht erforderlich, das Bauteil zum Schutz vorschädlicher Tauwasserbildung mit einer zusätzlichen Aufdachdämmung zu versehen.




{{Textrahmen01|
{{Textrahmen01|
==10 Punkte führen zur dauerhaft sicheren Konstruktion==
=== Zehn Punkte führen zur dauerhaft sicheren Konstruktion ===
# Als optimal sicher gelten Konstruktionen, die mit [[Dampfbremse|Dampfbrems-]] und [[Luftdichtung]]sebenen die [[Goldene Regel 1/3 zu 2/3]] (1/3 innen, 2/3 außen) einhalten.
# Als optimal sicher gelten Konstruktionen, die mit [[Dampfbremse|Dampfbrems-]] und [[Luftdichtung]]sebenen die [[Goldene Regel 1/3 zu 2/3]] (1/3 innen, 2/3 außen) einhalten (siehe Abschnitt [[#Goldene Regel 1/3 zu 2/3|Goldene Regel 1/3 zu 2/3]]).
# Je weiter die Luftdichtungsebene in Richtung Innenraum liegt, umso sicherer werden die Konstruktionen. Je weiter außen sich die Luftdichtungsebene befindet, umso problematischer ist die Konstruktion: Das [[Bauschadensfreiheitspotential]] ist dann verringert.
# Je weiter die Luftdichtungsebene in Richtung Innenraum liegt, umso sicherer werden die Konstruktionen. Je weiter außen sich die Luftdichtungsebene befindet, umso problematischer ist die Konstruktion: Das [[Bauschadensfreiheitspotenzial]] ist dann verringert.
# Vollflächige, fugenfreie Innenbekleidungen verhindern bei außen verlegten Luftdichtungsbahnen Feuchteeintrag durch [[Konvektion]].
# Vollflächige, fugenfreie Innenbekleidungen verhindern bei außen verlegten Luftdichtungsbahnen Feuchteeintrag durch [[Konvektion]].
# [[Sub-and-Top]]-Lösungen der [[DASATOP]] bieten das größte [[Bauschadensfreiheitspotential]] mit allen faserförmigen Dämmstoffen, da sich diese unterhalb der Wärmedämmung im warmen Bereich befindet (wärmer als die Taupunkttemperatur). Auf den Sparren kann sie den [[Diffusionswiderstand]] einer [[Unterspannbahn]] annehmen.
# [[Sub-and-Top]]-Lösungen der [[DASATOP]] bieten das größte [[Bauschadensfreiheitspotenzial]] mit allen faserförmigen Dämmstoffen, da sich diese unterhalb der Wärmedämmung im warmen Bereich befindet (wärmer als die Taupunkttemperatur). Auf den Sparren kann sie den [[Diffusionswiderstand]] einer [[Unterspannbahn]] annehmen.
# Werden sorptive Dämmstoffe, wie z. B. [[Holzweichfaser]] oder [[Zellulose]], verwendet, kann die 30-70-Lösung in Verbindung mit einer Luftdichtungsbahn mit einer feuchteaktiven, luftdichten [[Monolithische Membran|monolithischen Membran]] ([[TEEE]]) mit der [[SOLITEX UD]]/[[SOLITEX PLUS|PLUS]] als Luftdichtungsebene gewählt werden.
# Werden sorptive Dämmstoffe, wie z. B. [[Holzfaserdämmung]] oder [[Zellulose]], verwendet, kann die 2:1-Lösung in Verbindung mit einer Luftdichtungsbahn mit einer feuchteaktiven, luftdichten [[Monolithische Membran|monolithischen Membran]] mit der [[DASAPLANO 0,01 connect]] als Luftdichtungsebene gewählt werden.
# Konstruktionen können mit nicht sorptiven [[Dämmstoffe]]n, wie z. B. [[Mineralwolle]], als sicher angesehen werden, wenn die Luftdichtungsebene raumseitig von 50&nbsp;% des Gesamt[[wärmedurchlasswiderstand]]es liegt.
# Konstruktionen können mit nicht sorptiven [[Dämmstoff]]en, wie z. B. [[Mineralwolle]], als sicher angesehen werden, wenn die Luftdichtungsebene raumseitig von 50&nbsp;% des Gesamt[[wärmedurchlasswiderstand]]es liegt.
# Vorteilhaft als Luftdichtungsbahn bei Fall 2 und Fall 3 ist eine diffusionsoffene [[Unterspannbahn]] mit [[Monolithische Membran|monolithischer Membran]], z. B. [[SOLITEX UD]], welche die Feuchtigkeit aktiv entlang der Molekülketten transportieren kann. Dadurch wird die Gefahr von Eisbildung und damit einer sprunghaften Erhöhung des [[Diffusionswiderstand]]es bei unvorhergesehenem Feuchteeintrag verringert.
# Vorteilhaft als Luftdichtungsbahn bei Fall 2 und Fall 3 ist eine diffusionsoffene [[Unterspannbahn]] mit [[Monolithische Membran|monolithischer Membran]], z. B. [[DASAPLANO 0,01 connect]], welche die Feuchtigkeit aktiv entlang der Molekülketten transportieren kann. Dadurch wird die Gefahr von Eisbildung und damit einer sprunghaften Erhöhung des [[Diffusionswiderstand]]es bei unvorhergesehenem Feuchteeintrag verringert.
# Empfehlenswert ist immer die Durchführung einer baubegleitenden Qualitätssicherung. Bei der Sanierung von außen kann die Luftdichtheit mittels [[Blower Door|Überdrucktest]], kombiniert mit künstlichem Nebel, durchgeführt werden. Leckagen lassen sich dann aufspüren und abdichten.
# Empfehlenswert ist immer die Durchführung einer baubegleitenden Qualitätssicherung. Bei der Sanierung von außen kann die Luftdichtheit mittels [[Blower Door|Überdrucktest]], kombiniert mit künstlichem Nebel, durchgeführt werden. Leckagen lassen sich dann aufspüren und abdichten.
# Der [[Diffusionswiderstand]] von diffusionsoffenen Luftdichtungsbahnen muss äußerst genau eingehalten werden und auch bei hoher relativer [[Luftfeuchtigkeit|Feuchtigkeit]] gelten.
# Der [[Diffusionswiderstand]] von diffusionsoffenen Luftdichtungsbahnen muss äußerst genau eingehalten werden und auch bei hoher relativer [[Luftfeuchtigkeit|Feuchtigkeit]] gelten.
Zeile 185: Zeile 333:
}}
}}


== Sub-and-Top-Vergleich des Bauschadensfreiheitspotenzials bei Dampfbremsen mit unterschiedlichem s<sub>d</sub>-Wert ==
{|align="right" valign="top"
|-
| colspan="2" align="center" | '''Besondere Sicherheit bei der Sanierung mit <br />feuchtevariablen [[Sub-and-Top]]-Bahnen'''
|-
|valign="top"|[[Bild:BPhys GD 3SS 22 Sub + Top-01.jpg|right|thumb|200px|'''Sub-and-Top-Prinzip'''<br />Im Gefach (Sub) diffusionsdichter <br />Auf den Sparren (Top) hochdiffusionsoffen]]
|valign="top"|[[Bild:BPhys GD 3SS 24 Sanbro Diagr Diffus DASASTOP PFADE-01.jpg|right|thumb|200px|Abb.23: <br />'''[[DASATOP]] [[sd-Wert|s<sub>d</sub>]] 0,05 m - 2 m'''<br />Im trockenen Bereich:<br /> s<sub>d</sub> 2 m: entspricht [[Dampfbremse]]<br />Im feuchten Bereich:<br /> s<sub>d</sub> 0,05 m: entspricht [[Unterdeckbahn]]]]
|-
| ||valign="top"|[[Bild:BPhys GD 3SS 23 Sanbro Diagr Diffus DASASTOP PFADE-01.jpg|right|thumb|200px|Abb.24: <br />'''Bahn [[sd-Wert|s<sub>d</sub>]] 2 m und 5 m'''<br />Im trockenen Bereich:<br /> s<sub>d</sub> 2 bzw. 5 m: entspr. Dampfbremse<br />Im feuchten Bereich:<br /> s<sub>d</sub> 2 bzw. 5 m: entspr. Dampfbremse]]
|}


==Einzelnachweise==
In dem ersten Teil dieser Studie wurde zwischen Sanierungssystemen unterschieden, die für die Dachsanierung von außen geeignet sind. Dabei wurden diffusionsoffene Bahnen zur Herstellung der [[Luftdichtheit]] verglichen mit Systemlösungen, die zugleich leicht [[diffusionshemmend]] sind.
 
In der folgenden Ausarbeitung werden reine [[Sub-and-Top]]-Lösungen betrachtet, die sowohl unterhalb der Wärmedämmung, als auch über die Tragkonstruktion der Konstruktion verlegt werden.
 
'''Dabei sind zwei grundlegende Varianten zu unterscheiden:'''
 
: 1. Systeme aus Dampfbrems- und Luftdichtungsbahnen mit feuchtevariablem (veränderlichem) Diffusionswiderstand
Diese verfügen über einen in Abhängigkeit von der umgebenden mittleren [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]] [[Feuchtevariabilität|variablen]] [[Diffusionswiderstand]]. Bei der Dachsanierungs-Dampfbremse [[DASATOP]] kann dieser Werte zwischen 0,05 und 2 m (siehe Abb. 23) annehmen, je nachdem welche mittlere [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]] sich in unmittelbarer Nähe der Bahn einstellt.<br />
Informationen zur genauen Wirkungsweise der [[Feuchtevariabilität]] enthält die [[Bauphysik Studie|Studie]] „Berechnung des Bauschadensfreiheitspotenzials von Wärmedämmkonstruktionen im Holz- und Stahlbau“ <ref name="Qu_10" />.
 
: 2. Systeme aus Dampfbrems- und Luftdichtungsbahnen mit konstantem (unveränderlichem) Diffusionswiderstand
Bei diesem Bahnenkonzept werden Funktionsfilme eingesetzt, die keine Veränderung des [[Diffusionswiderstand]]es bei unterschiedlicher rel. Luftfeuchtigkeit aufweisen. Beispielhaft sind die Diffusionswiderstände zweier Bahnen mit dem [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m bzw. 5 m in Abb. 24 dargestellt.
 
=== Vergleichende Betrachtung der Rücktrocknungsreserven ===
Werden Bahnen [[Sub-and-Top]] verlegt, ist klar, dass diese oberseitig der Tragkonstruktion einen möglichst geringen
[[Diffusionswiderstand]] annehmen sollten. [[sd-Wert|s<sub>d</sub>-Wert]]e unterhalb von 0,1 m sind ideal, damit durch hohe Diffusionsoffenheit möglichst große Mengen an [[Feuchtigkeit]] vom [[Sparren]] abtrocknen können.<br />
Feuchtevariable Dampfbremsen für [[Zwischensparrendämmung]]en erreichen einen [[sd-Wert|s<sub>d</sub>-Wert]] im feuchten Bereich von ca. 0,25 m. Sie bieten daher ein geringeres [[Bauschadensfreiheitspotenzial]] als die [[DASATOP]].
 
Wird der Diffusionsstrom durch ein Material nach [[DIN 4108]]-3 im stationären Zustand mittels Berechnung der [[Wasserdampfdiffusionsstromdichte]] g [kg/m² x h] erfasst, wird die Leistungsfähigkeit unterschiedlich dichter Bahnen deutlich.
 
Die [[Wasserdampfdiffusionsstromdichte]] wird ermittelt durch die Differenz der Wasserdampfteildrücke p<sub>i</sub> (innen) [Pa] und p<sub>a</sub> (außen) [Pa] dividiert durch den [[Wasserdampfdiffusions-Durchlasswiderstand]] Z [m² x h x Pa/kg]. Durch Multiplikation mit 24 erhält man den [[Wasserdampfdurchgang]] (W<sub>DD</sub>) [g/m² x 24 h].
 
Beispielhaft wird der Diffusionsstrom bei Erreichen des Taupunktes kombiniert mit einer winterlichen Außentemperatur
berechnet. Für p<sub>i</sub> wird ein Wert von 1.163 Pa (9,2°C / 100 % [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]] (Taupunkttemperatur bei Normklima)) und für p<sub>a</sub> ein Wert von 208 Pa (-10°C / 80 % rel. Luftfeuchtigkeit) zugrunde gelegt.
<br clear="all" />
 
==== W<sub>DD</sub>-Werte für verschiedene s<sub>d</sub>-Werte ====
{|class="wikitable" cellpadding="0" cellspacing="0" rules="all" style="background: #ffffff; font-size:80%; padding: 0 0 0 0;" align="right"
|- align="center"
|s<sub>d</sub>-Wert [m] || [[Wasserdampfdurchgang|W<sub>DD</sub>]] [g/m² x 24 h]
|- align="center"
| width="80" | 0,05  || width="100" | ~ 320
|- align="center"
| 0,10  || ~ 160
|- align="center"
| 0,50  || ~ 32
|- align="center"
| 2,0  || ~ 8
|- align="center"
| 5,0  || ~ 3
|- align="center"
| 50,0  || ~ 0,3
|}
Deutlich reduzieren sich die möglichen [[Wasserdampfdurchgang|Wasserdampfdurchgänge]] bereits bei geringen Erhöhungen der [[sd-Wert|s<sub>d</sub>-Wert]]e. Dies hat Auswirkungen auf die Sicherheit einer Konstruktion.
 
Diese Betrachtung kann nicht unmittelbar auf instationäre Berechnungen übertragen werden, da sich p<sub>i</sub> und p<sub>a</sub> durch das in der Berechnung verwendete reale Klima und in Abhängigkeit von der Lage in der Konstruktion ständig ändern. Für die Austrocknungssituation sind die Werte beispielsweise aufgrund der geringeren Druckdifferenzen auf beiden Seiten der Bahnen geringer. <br clear="all" />
 
=== Berechnung des Bauschadensfreiheitspotenzials ===
Für die Berechnung von Konstruktionen mit [[Sub-and-Top]] verlegten Bahnen ist die Betrachtung der Entfeuchtungsleistung der Tragkonstruktion (hier Sparren) maßgebend. Bei nicht eng an den [[Sparren]] anliegenden Bahnen kann es während der kalten Jahreszeit zu einer [[Tauwasser]]bildung oberseitig der Sparren kommen. Diese muss durch das Bahnenmaterial aus der Konstruktion heraustrocknen können. Dafür ist es erforderlich, die Wärme- und Feuchteströme zweidimensional zu betrachten. Wärme und Feuchteströme erfolgen nicht ausschließlich von innen nach außen. Diffusionsströme können auch innerhalb der Konstruktion stattfinden, z. B. von den Sparrenflanken durch geeignete Dampfbrems- und Luftdichtungsbahnen in die Wärmedämmebene.
 
Um die Entfeuchtungsleistung darzustellen, wird über die Holzfeuchte der Sparren die zusätzliche Feuchtigkeitsmenge eingebracht. Diese wird mit einem [[Materialfeuchte]]gehalt von 80 % (= 2.300 g Wasser pro lfm Sparren) in der Berechnung berücksichtigt und simuliert einen Feuchtigkeitsausfall zwischen Dampfbrems-/Luftdichtungsbahn und Sparren. Aus der errechneten Rücktrocknungsmenge kann anschließend das [[Bauschadensfreiheitspotenzial]] in [g] H<sub>2</sub>O/[m] Sparren pro Jahr errechnet werden. Im Normalfall haben die Sparren einen Feuchtigkeitsgehalt von ca. 300 g pro lfm.
 
;Das [[Bauschadensfreiheitspotenzial]] beschreibt
* wie tolerant die Konstruktion bei unvorhergesehener Feuchtebelastung ist und
* wie viel Wasser in eine Konstruktion (unvorhergesehen) eindringen kann und sie trotzdem bauschadensfrei bleibt.
 
=== Untersuchte Konstruktionen .===
# Steildach mit 40° Dachneigung nach Norden orientiert, Dacheindeckung aus grauen Dachziegeln
# Sparrenhöhe 12 cm mit Vollsparrendämmung aus [[Mineralwolle]] (Dichte = 60 kg/m³)
Die Festlegung des Innenklimas erfolgt mit normaler Feuchtelast.
 
 
Jeder der folgenden 3 Fälle wird mit 3 unterschiedlichen Dampfbremsen - [[Sub-and-Top]]-verlegt - betrachtet:
* Dampfbremse [[DASATOP]] [[sd-Wert|s<sub>d</sub>-Wert]] feuchtevariabel 0,05 bis über 2 m
* Dampfbremse s<sub>d</sub>-Wert 2 m konstant
* Dampfbremse s<sub>d</sub>-Wert 5 m konstant
 
{|align="left" valign="top" width="100%"
|-
| colspan="3" | <div style="font-size:120%">'''Berechnung des [[Bauschadensfreiheitspotenzial]]s''' - Standort Holzkirchen, Dach : <br /> <br /><div>
|-
|valign="top" | '''Fall 1 : Diffusionsoffene Unterdeckung (s<sub>d</sub>-Wert = 0,1 mm)'''
|valign="top" | '''Fall 2 : Unterdeckplatte aus 60 mm Holzfaser '''
|valign="top" | '''Fall 3 : Unterdeckplatte aus 50 mm Polyurethan vlieskaschiert '''
|-
|valign="top" | Die [[Unterdeckung]] hat in der Berechnung <br /> einen [[sd-Wert|s<sub>d</sub>-Wert]] von 0,1 m.
|valign="top" | Diese wird zur Vermeidung von Wärmebrücken als <br /> zusätzliche [[Aufsparrendämmung]] eingesetzt <br />([[sd-Wert|s<sub>d</sub>-Wert]] = 0,3 m).
|valign="top" | [[Aufsparrendämmung]] wie bei Fall 2, <br />jedoch [[sd-Wert|s<sub>d</sub>-Wert]] = 2,5 m.
|-
|valign="top"|[[Bild:BPhys GD 3SS 25 vergl mit Unterdachbahn sd 01-01.jpg|left|thumb|300px|Ergebnis für diffusionsoffene [[Unterdeckbahn]]]]
|valign="top"|[[Bild:BPhys GD 3SS 26 vergl HWF-01.jpg|left|thumb|300px|Ergebnis für 60 mm [[Holzfaser]]unterdeckplatte außen ]]
|valign="top"|[[Bild:BPhys GD 3SS 27 vergl mit XPS 35 mm 01-01.jpg|left|thumb|300px|Ergebnis mit 50 mm [[Polyurethan]] außen ]]
|}
<br clear="all" />
 
=== Ergebnisdiskussion ===
{{Textrahmen vario|Sicherheitsformel |Je höher die Sicherheitsreserve einer Konstruktion, d. h. das [[Bauschadensfreiheitspotenzial]] ist, desto besser ist die Konstruktion bei unvorhergesehenen Feuchtebelastungen vor [[Schimmel]] geschützt.}}
Untersucht wird das Austrocknungsvermögen des in den Sparren vorhandenen erhöhten Feuchtigkeitsgehaltes. Dieser wird vergleichend über einen Zeitraum von 3 Jahren für jeden der Fälle mit den unterschiedlichen Dampfbremsbahnen dargestellt.
 
Bei allen Konstruktionen ist erkennbar, dass bei der Variante mit der feuchtevariablen [[DASATOP]] die Materialfeuchte aus
dem Sparren am schnellsten entweichen kann.
 
Unkritische Feuchtegehalte in den Sparren werden bei Unterschreitung des Fasersättigungspunktes des Holzes erreicht. Wird dieser für einen Vergleich der Austrocknungsgeschwindigkeit herangezogen, trocknet der Sparren in der Konstruktion mit der [[DASATOP]] etwa dreimal schneller aus als mit der Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m. Im Vergleich zu einer Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ermöglicht die [[DASATOP]] eine fünfmal schnellere Austrocknung bei Konstruktionen mit [[Aufdachdämmung]]en. Bei Konstruktionen ausschließlich mit der diffusionsoffenen Unterdeckbahn bietet die [[DASATOP]] sogar eine über achtmal schnellere Trocknung als eine Konstruktion mit einer Dampfbremse mit einem s<sub>d</sub>-Wert von 5 m.
 
=== Fazit Vergleich von Sub-and-Top-verlegten Dampfbrems- und Luftdichtungssystemen ===
Die [[Sub-and-Top]]-Verlegung mit [[Feuchtevariabilität|feuchtevariablen]] Dampfbrems- und Luftdichtungsbahnen ist aus bauphysikalischer Sicht die beste Lösung für die Sicherheit der Konstruktion und bietet bei unvorhergesehenen
Feuchtigkeitsbelastungen das größte [[Bauschadensfreiheitspotenzial]].
 
Unkritische Holzfeuchtigkeiten werden bei der Verwendung der [[DASATOP]] in den Sparren im Vergleich zu Bahnen mit
s<sub>d</sub>-Werten von 2 m bzw. 5 m ca. dreimal bzw. ca. fünfmal (z. T. sogar achtmal) schneller erreicht.
 
Bei der [[Sub-and-Top]]-Verlegung erfüllt die Bahn unterhalb der [[Wärmedämmung]] (Sub) die Funktion einer [[Dampfbremse]].
Bei der Verlegung über den Sparren (Top) ist hingegen die Funktion einer [[Unterspannbahn]] von Vorteil, damit Feuchtigkeit
möglichst ungehindert austrocknen kann. Dann kann bei nicht perfekt an den Sparren anliegenden Bahnen ein resultierender Feuchtegehalt an den Sparrenflanken wieder zügig austrocknen. Feuchtevariable Dampfbremsen für [[Zwischensparrendämmung]]en erreichen einen s<sub>d</sub>-Wert im feuchten Bereich von ca. 0,25 m. Sie bieten daher ein geringeres [[Bauschadensfreiheitspotenzial]] als die [[DASATOP]].
 
Der feuchtegesteuerte [[Diffusionswiderstand]] ermöglicht die sichere Verlegung der Bahnen in allen Details, z. B. bei
Auswechslungen, [[Kehle]]n und [[Grat]]en bzw. zergliederten Konstruktionen. Der [[Diffusionswiderstand]] kann an jeder
Stelle der Bahn einen der jeweiligen Situation klimagesteuert angepassten [[sd-Wert|s<sub>d</sub>-Wert]] zwischen 0,05 und 2 m annehmen. Die Bahnen können sowohl längs als auch quer verlegt werden.
 
Vorteilhaft erweist sich die Verwendung von diffusionsoffenen Bahnen außen bzw. die Anordnung einer diffusionsoffenen
[[Aufdachdämmung]] aus faserförmigen Dämmstoffen.
 
Werden Bahnen mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] für die [[Sub-and-Top]]-Verlegung eingesetzt, sinkt das [[Bauschadensfreiheitspotenzial]] erheblich. Im Winter schützen die Bahnen im Sub-Bereich die Wärmedämmung wie feuchtevariable Bahnen gegen Feuchteeintritt. Im Sommer bieten sie jedoch keine zusätzliche Trocknungsmöglichkeit aus der
Konstruktion heraus. Fällt [[Kondensat]] an den Sparrenoberseiten aus, kann dieses nur langsam heraus trocknen: Die Gefahr
eines [[Bauschaden]]s nimmt drastisch zu.
 
Wärmedämmkonstruktionen sollten grundsätzlich mit möglichst hohen Sicherheitsreserven versehen werden. Dann besteht bei [[unvorhergesehen]]en Feuchtebelastungen ein zusätzlicher Schutz vor [[Bauschaden|Bauschäden]] und [[Schimmel]]. Damit ist auch der Verarbeiter optimal vor Schäden und Haftungsansprüchen geschützt. Die [[Sub-and-Top]]-Verlegung von [[Feuchtevariabilität|feuchtevariablen]] Dampfbrems- und Luftdichtungsbahnen mit einem möglichst geringen [[sd-Wert|s<sub>d</sub>-Wert]] bei hohen [[Relative Luftfeuchtigkeit|rel. Luftfeuchtigkeit]]en bieten bei der [[Dachsanierung]] von außen aus bauphysikalischer Sicht den besten Schutz.
 
=== Ziel des Bauens ===
Ziel des Bauens sind nicht nur energieeffiziente Gebäude und hoher klimatischer Wohnkomfort, sondern insbesondere
Gebäude mit [[Wohngesundheit|wohngesund]]em Raumklima. Hier spielen nicht nur toxikologische Aspekte, z. B. durch Emissionen von Baustoffen, eine Rolle, sondern vor allem die [[Schimmel]]freiheit auf und in der Konstruktion. Sporen von [[Schimmelpilz]]en schädigen das Immunsystem und fördern/führen zu Allergien; die Ausscheidungen der Schimmelpilze
([[MVOC]]) können zu physischen und psychischen Gesundheitsbelastungen führen. Befinden sich Schimmelpilze in einem trockenen Klima, verlieren sie viel von ihrer Gefährlichkeit. Werden [[Schimmelpilz]]e hingegen wieder befeuchtet, wird ihre Gefährlichkeit in altbekannter Weise wieder reaktiviert.
 
Befinden sich Schimmelpilze auf der raumseitigen Oberfläche von Bauteilen (z. B. durch [[Wärmebrücke]]n oder Oberflächen[[kondensat]]), sind sie sichtbar, können erkannt und bei Bedarf beseitigt werden. Befinden sich Schimmelquellen
aber innerhalb einer Konstruktion, bleiben sie unerkannt. In jährlichen Abständen werden sie durch [[Feuchtigkeit]] reaktiviert – die Gesundheit der Bewohner wird permanent gefährdet.
 
Ziel des Bauens sollte es sein, die bauphysikalische Sicherheit nicht bis zum Letzten auszureizen, sondern gerade in
Bezug auf [[Schimmel]] das höchstmögliche Sicherheitspotenzial zu generieren.
 
{{Textrahmen01|
=== Acht Punkte führen zu dauerhaft sicherer Konstruktion und Verarbeitung ===
# Optimal sicher sind Konstruktionen mit [[Feuchtevariabilität|feuchtevariablen]] Dampfbrems- und Luftdichtungsbahnen mit einem besonders geringen [[Diffusionswiderstand]] im feuchten Bereich von < 0,10 m.
# [[Sub-and-Top]]-Bahnen mit besonders niedrigem Diffusionswiderstand bei Feuchtigkeitsausfall können über den Sparren im Frostbereich liegen. Die Gefahr von Eisbildung ist aufgrund der hohen möglichen Austrocknung und der Diffusionscharakteristik der Konstruktion praktisch ausgeschlossen.
# Unkritische Sparrenfeuchten werden mit der [[DASATOP]] dreimal bzw. fünfmal (z. T. achtmal) so schnell erreicht. Der erhöhte Schutz vor [[Schimmel]]bildung ist dabei gewährleistet.
# Die Wärmedämmung wird durch Verlegung im Gefachbereich vor nutzungsbedingten Feuchtigkeiten aus dem Innenraum durch [[sd-Wert|s<sub>d</sub>-Wert]]e bis zu 2 m geschützt. Schädliche [[Tauwasser]]bildung in der Dämmebene kann nicht erfolgen.
# Außen diffusionsoffene Konstruktionen haben größere Rücktrocknungsreserven als Konstruktionen mit diffusionshemmenden Bauteilschichten (z. B. Schaumdämmstoffe).
# Empfehlenswert ist immer die Durchführung einer baubegleitenden Qualitätssicherung. Bei der Sanierung von außen kann die Luftdichtheit mittels Überdrucktest, kombiniert mit künstlichem Nebel, durchgeführt werden. Leckagen lassen sich dann aufspüren und abdichten.
# Die Befestigung der Bahn bei der [[Sub-and-Top]]-Verlegung sollte mit dünnen Leisten mechanisch erfolgen. Eine zusätzliche Verklebung ist mit einem Luftdichtungsanschlusskleber möglich. Klebebänder haften auf den staubigen Untergründen der alten Sparren nicht.
# Blendfreie Bahnen mit dunklerer Farbe sind aus Gründen der Unfallrelevanz und des Verlegekomforts hellen, insbesondere weißen Bahnen vorzuziehen.
}}
 
== Einzelnachweise ==
<references>
<references>
<ref name="Qu_1"> WTA Merkblatt 6-2-01/D: „''Simulationwärme- und feuchtetechnischer Prozesse''“, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. -WTA- Referat 6 Physikalisch-Chemische Grundlagen, München, 05/2002</ref>
<ref name="QuSS_03">Tagung Schimmelpilze im Wohnbereich: ''Schimmelpilz aus bauphysikalischer Sicht - Beurteilung durch aw-Werte oder Isoplethensysteme?'', Klaus Sedlbauer, Martin Krus, [[Fraunhofer Gesellschaft|Fraunhofer IBP, Holzkirchen]], 26.06.2002</ref>
<ref name="Qu_2">Tagung Schimmelpilze im Wohnbereich: „''Schimmelpilz aus bauphysikalischer Sicht - Beurteilung durch aw-Werte oder Isoplethensysteme?''“, Klaus Sedlbauer, Martin Krus, [[Fraunhofer Gesellschaft|Fraunhofer IBP, Holzkirchen]], 26.06.2002</ref>
<ref name="QuSS_11">Deutsche Bauzeitung; Heft 12/89, Seite 1639 ff.</ref>
<ref name="Qu_02"> pro clima: WISSEN 2010/11 [[WISSEN 2010/11 - pro clima#Sanierungs-Studie|"''Sanierungs-Studie''"]], 2010, S. 74-83 - zum '''[[WISSEN 2010/11 - pro clima#Sanierungs-Studie|Download]]'''</ref>
<ref name="QuSS_09"> WTA Merkblatt 6-2-01/D: „''Simulationwärme- und feuchtetechnischer Prozesse''“, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. -[[WTA]]- Referat 6 Physikalisch-Chemische Grundlagen, München, 05/2002</ref>
<ref name="Qu_10"> ''Moll bauökologische Produkte GmbH'': WISSEN 2014/15 [[WISSEN 2014/15 - pro clima#Studie|"''Studie „Berechnung des Bauschadensfreiheitspotenzial von Wärmedämmkonstruktionen in Holz- und Stahlbauweise“, 08/2006 '']], 2010, S. 50-66 </ref>
</references>
</references>


==Siehe auch==
== Download der Sanierungs-Studie ==
* [[Konstruktionsdetails]]
{|align="left" style="border-style:solid; border-width:1px; margin: 0px 15px 0px 0px;" class="rahmenfarbe1"
|[[Bild:Pc_00_WISSEN_2012_03.3_Sanierungs-Studie.png|right|70px|verweis=http://de.proclima.com/media/downloads/de_w_Bauphysik-Sanierungs-Studie_2.pdf]]
|}
:Umfang: 18 Seiten 
:Format: DIN A4
:Datei: PDF ca. 1,2 MB
:'''[http://de.proclima.com/media/downloads/de_w_Bauphysik-Sanierungs-Studie_2.pdf  Download]'''
<br clear="all" />
 


{{NAV Bphys gd1}}  
{{NAV Bphys gd1}}  


[[Kategorie:Konstruktion]][[Kategorie:Wohngesundheit]][[Kategorie:Qualitätssicherung]][[Kategorie:Bauphysik]][[Kategorie:Glossar]]
[[Kategorie:Konstruktion]] [[Kategorie:Wohngesundheit]] [[Kategorie:Qualitätssicherung]] [[Kategorie:Bauphysik]] [[Kategorie:Glossar]]

Navigationsmenü