Bauphysik Studie: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 60: Zeile 60:


==== Feuchtebelastung durch Diffusion ====
==== Feuchtebelastung durch Diffusion ====
Je weniger Feuchtigkeit in eine Konstruktion eindringen kann, umso geringer ist die Gefahr eines Bauschadens so dachte man früher. Das heißt, die Verwendung von [[Dampfsperre]]n mit hohen Diffusionswiderständen würde Bauschäden verhindern. Dass die Realität anders ist, wurde bereits vor über 15 Jahren bei der Markteinführung der pro clima DB+ mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.  
Je höher der innenseitige sd-Wert ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von
[[Dampfsperre]]n mit hohen Diffusionswiderständen Bauschäden verhindern würde. Dass die Realität anders ist, wurde bereits vor über 20 Jahren bei der Markteinführung der pro clima DB+ mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.


Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den „Regeln der Technik“. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, macht zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Angabe: Dampfsperren „unterbinden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist“. <ref name="Qu_01" />
Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, macht zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Angabe: Dampfsperren »unterbinden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist«. <ref name="Qu_01" />


Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über [[Rücktrocknungspotenzial]]e verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.
Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über [[Rücktrocknungspotenzial]]e verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.


Des Weiteren zeigen Untersuchungen an Außenwänden in Nordamerika aus dem Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine [[Dampfsperre]] infolge [[Konvektion]] selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer [[Kondensat]]menge, welche durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,30&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine [[Dampfsperre]] infolge [[Konvektion]] selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt.
Das entspricht einer [[Kondensat]]menge, welche durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.
{{Textrahmen01|'''Fazit:''' <br /> Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.}}
{{Textrahmen01|'''Fazit:''' <br /> Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.}}
==== Feuchtebelastung durch Konvektion ====
 
==== Feuchtebelastung durch Konvektion ====  
{|align="right" width="180px" style="border-style:solid; border-width:1px; class="rahmenfarbe1"
{|align="right" width="180px" style="border-style:solid; border-width:1px; class="rahmenfarbe1"
| colspan="2" |'''3. Feuchtigkeitsmenge durch Konvektion'''
| colspan="2" |'''3. Feuchtigkeitsmenge durch Konvektion'''
Zeile 76: Zeile 79:
|Feuchtetransport ||  
|Feuchtetransport ||  
|-
|-
|durch Dampfbremse: <br /> durch 1 mm Fuge: || 0,5 g/m² x 24 h <br />  800 g/m x 24 h  
|durch Dampfbremse: <br /> durch 1 mm Fuge: || 0,5 g/(· 24 h) <br />  800 g/(m · 24 h)
|-
|-
|'''Erhöhung Faktor:''' || '''1.600'''  
|'''Erhöhung Faktor:''' || '''1.600'''  
Zeile 134: Zeile 137:
'''„Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.“'''<br />
'''„Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.“'''<br />
Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen.}}
Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen.}}
== „Intelligente“ Dampfbremsen ==
== „Intelligente“ Dampfbremsen ==  
=== Austrocknung der Konstruktion nach innen ===
=== Austrocknung der Konstruktion nach innen ===
{{Vollbox-blau|'''Feuchtesituation in der Konstruktion'''   
{{Vollbox-blau|'''Feuchtesituation in der Konstruktion'''   
Zeile 149: Zeile 152:
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
|-
|-
| '''7. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
| '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
|-
|-
|[[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|260px|]]
|[[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|260px|]]
Zeile 155: Zeile 158:
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]  
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]  
|-
|-
| '''8. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
| '''9. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
|-
|-
|[[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|260px|]]
|[[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|260px|]]
Zeile 171: Zeile 174:


=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes. Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und im Sommer von außen nach innen. Messungen in  Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im  sommerlichen Klima kommt es bei [[Feuchtigkeit]] im Sparrenfeld dagegen  zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T.  sogar zu Sommerkondensat. (siehe Abb. 6)
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes. <br /> Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und
im Sommer von außen nach innen.  
 
Messungen in  Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im  sommerlichen Klima kommt es bei [[Feuchtigkeit]] im Sparrenfeld dagegen  zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T.  sogar zu Sommerkondensat. (siehe Abb. 6)


Dampfbremsen mit einem  feuchtevariablen Diffusionswiderstand sind in  trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.  
Dampfbremsen mit einem  feuchtevariablen Diffusionswiderstand sind in  trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.  
* Seit 1991 hat sich die [[DB+]] bewährt. Ihr Diffusionswiderstand kann Werte zwischen 0,6 und 4 m annehmen.  
 
* Seit 2004 bewährt sich die Hochleistungs-Dampfbremse [[INTELLO]]. INTELLO hat - wie auch die [[INTELLO PLUS]] und die [[INTESANA]] - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 10 m. (siehe Abb. 9)
Seit 1991 hat sich die pro clima [[DB+]] in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann [[sd-Wert|s<sub>d</sub>-Wert]]e zwischen 0,6 und 4 m annehmen.  
 
Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima [[INTELLO]] entwickelt. INTELLO hat - wie auch die [[INTELLO PLUS]] und die [[INTESANA]] - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 10 m. (siehe Abb. 9)


==== Hoher Diffusionswiderstand im Winter ====
==== Hoher Diffusionswiderstand im Winter ====
Der Diffusionswiderstand der Dampfbremse [[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] ist so eingestellt, dass die Bahn im winterlichen Klima einen  [[sd-Wert|s<sub>d</sub>-Wert]] von mehr als 10 m erreichen kann. Das bewirkt, dass im Winter, wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine [[Feuchtigkeit]] in das Bauteil gelangen lässt.
Die Funktion des feuchtevariablen Diffusionswiderstandes ist unabhängig von der Gebäudehöhenlage. Auch bei kalten langen Wintern bleibt die Eigenschaft erhalten.<br />
Bei Konstruktionen mit diffusionsdichten Abdichtungsbahnen auf der Außenseite, können die Bahnen den Feuchtehaushalt regulieren und die Bauteile wirksam vor Feuchtigkeit schützen. <br />
Der hohe [[sd-Wert|s<sub>d</sub>-Wert]] ist auch bei außen diffusionsoffenen Dächern von Vorteil, wenn es um eine Reif- und Eisbildung (Dampfsperre) an einer diffusionsoffenen [[Unterspannbahn]] geht.<br clear="all" />
==== Niedriger Diffusionswiderstand im Sommer ====
{{{TabH1/2 r}} 7. Diffusionsströme der feuchtevariablen <br /> pro clima Dampfbremsen  
{{{TabH1/2 r}} 7. Diffusionsströme der feuchtevariablen <br /> pro clima Dampfbremsen  
|- 
| rowspan="2" width="93px" | Diffusionsstrom
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
|-
|-
| rowspan="2"|Diffusionsstrom ||colspan="2" height="20px"|[[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche
| width="77px"| im Winter
|-
| width="77px"| im Sommer
| im Winter || im Sommer
|-
|-
|Diffusionsrichtung || nach außen Richtung <br /> [[Unterdeckung]] ||nach innen Richtung <br /> [[Dampfbremse]]
| Diffusions-richtung
| nach außen <div style="font-size:86%;"> Richtung <br /> [[Unterdeckung]] </div>
| nach innen <div style="font-size:86%;"> Richtung <br /> [[Dampfbremse]] </div>
|-
|-
| height="40px" | [[DB+]] || align="center"| 28 || align="center"| 175
| [[DB+]]
| align="center"| 28 || align="center"| 175
|-
|-
| [[INTELLO]] <br /> [[INTELLO PLUS]] <br /> [[INTESANA]] || align="center"| 7 || align="center"| 560
| [[INTELLO]] <br /> [[INTELLO PLUS]] <br /> [[INTESANA]]  
| align="center"| 7 || align="center"| 560
|}
|}
Der Diffusionswiderstand der Dampfbremse [[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] ist so eingestellt, dass die Bahn im winterlichen Klima einen  [[sd-Wert|s<sub>d</sub>-Wert]] von mehr als 25 m erreichen kann. Das bewirkt, dass im Winter, wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine [[Feuchtigkeit]] in das Bauteil gelangen lässt.
Die Funktion des feuchtevariablen Diffusionswiderstandes ist unabhängig von der Gebäudehöhenlage. Auch bei kalten langen Wintern bleibt die Eigenschaft erhalten. <br />
Bei Konstruktionen mit diffusionsdichten Abdichtungsbahnen auf der Außenseite, können die Bahnen den Feuchtehaushalt regulieren und die Bauteile wirksam vor Feuchtigkeit schützen. <br />
Der hohe [[sd-Wert|s<sub>d</sub>-Wert]] ist auch bei außen diffusionsoffenen Dächern von Vorteil, wenn es um eine Reif- und Eisbildung (Dampfsperre) an einer diffusionsoffenen [[Unterspannbahn]] geht.
==== Niedriger Diffusionswiderstand im Sommer ====
Der Diffusionswiderstand im sommerlichen Klima kann auf einen [[sd-Wert|s<sub>d</sub>-Wert]] von 0,25 m fallen. Dies bewirkt eine schnelle Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, nach innen. Je nach Höhe des  Dampfdruckgefälles entspricht das einer Austrocknungskapazität von 5 – 12 g/m² H<sub>2</sub>O pro Stunde, entsprechend ca. 80 g/m²  H<sub>2</sub>O pro Tag, bzw. 560 g/m²  H<sub>2</sub>O pro Woche. (Siehe Tab. 7) <br />
Der Diffusionswiderstand im sommerlichen Klima kann auf einen [[sd-Wert|s<sub>d</sub>-Wert]] von 0,25 m fallen. Dies bewirkt eine schnelle Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, nach innen. Je nach Höhe des  Dampfdruckgefälles entspricht das einer Austrocknungskapazität von 5 – 12 g/m² H<sub>2</sub>O pro Stunde, entsprechend ca. 80 g/m²  H<sub>2</sub>O pro Tag, bzw. 560 g/m²  H<sub>2</sub>O pro Woche. (Siehe Tab. 7) <br />
Dieses hohe Austrocknungsvermögen bewirkt, dass ein Bauteilgefach schon im Frühjahr schnell austrocknet. Dampfbremsen, die im feuchten Bereich [[sd-Wert|s<sub>d</sub>-Wert]]e von mehr als 1 m aufweisen, bieten keine nennenswerten zusätzlichen Sicherheiten.
Dieses hohe Austrocknungsvermögen bewirkt, dass ein Bauteilgefach schon im Frühjahr schnell austrocknet. Dampfbremsen, die im feuchten Bereich [[sd-Wert|s<sub>d</sub>-Wert]]e von 1 m erreichen können, bieten keine nennenswerten zusätzlichen Sicherheiten.


==== Ausgewogenes Diffusionsprofil ====
==== Ausgewogenes Diffusionsprofil ====
In Zeiten besserer [[Luftdichtung]]en und damit verbundenen erhöhten [[Luftfeuchtigkeit]]en in Neubauten in Massivbauweise kommt dem [[Diffusionswiderstand]] bei höherer rel. Luftfeuchtigkeit (rel.LF) eine  wichtige Bedeutung zu.<br clear="all" />
In Zeiten besserer [[Luftdichtung]]en und damit verbundenen erhöhten [[Luftfeuchtigkeit]]en in Neubauten in Massivbauweise kommt dem [[Diffusionswiderstand]] bei höherer rel. Luftfeuchtigkeit (LF) eine  wichtige Bedeutung zu. <br clear="all" />
 
===== Neubauten: Die 60/2 Regel =====
===== Neubauten: Die 60/2 Regel =====
{|align="right" width="260" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" width="260" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
Zeile 206: Zeile 223:
| '''10. Neubau und Bauphase <br /> Regel 60/2 und 70/1,5'''
| '''10. Neubau und Bauphase <br /> Regel 60/2 und 70/1,5'''
|-
|-
|[[Bild:BPhys GD 2Studie 32 Diagr Diffusion Regeln.jpg|center|260px|]]
|[[Bild:BPhys GD 2Studie 32 Diagr Diffusion Regeln.png|center|260px|]]
|- style="font-size:90%;"  
|- style="font-size:90%;"  
|Empfohlene Mindest-[[sd-Wert|s<sub>d</sub>-Werte]] während der Bauphase, bei Neubaufeuchte und für Feuchteräume von Wohnhäusern.
|Empfohlene Mindest-[[sd-Wert|s<sub>d</sub>-Werte]] während der Bauphase, bei Neubaufeuchte und für Feuchteräume von Wohnhäusern.
|}
|}
In Neubauten, frisch sanierten Gebäuden und in Feuchträumen von Wohnhäusern (Bädern, Küchen) kann bau- und wohnbedingt eine erhöhte Raumluftfeuchte von bis zu 70&nbsp;% herrschen. <br />
In Neubauten und in Feuchträumen von Wohnhäusern (Bädern, Küchen) bau- und wohnbedingt eine erhöhte Raumluftfeuchte von ca. 70&nbsp;%. <br />
Der Diffusionswiderstand einer Dampfbremse sollte so eingestellt sein, dass bei dieser Feuchtigkeit ein Diffusionswiderstand von mindestens 2&nbsp;m erreicht wird, um die Konstruktion ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingt vor Schimmelbildung zu schützen. <br />
Der Diffusionswiderstand einer Dampfbremse sollte so eingestellt sein, dass bei dieser Feuchtigkeit ein Diffusionswiderstand von mindestens 2&nbsp;m erreicht wird, um die Konstruktion ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingt vor Schimmelbildung zu schützen. <br />
[[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] haben bei 60 % mittlerer Feuchtigkeit einen [[sd-Wert|s<sub>d</sub>-Wert]] von ca. 4&nbsp;m. (Siehe Abb. 10)
[[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] haben bei 60 % mittlerer Feuchtigkeit (70 % Raumluftfeuchtigkeit und 50 % Feuchtigkeit an der Wärmedämmung) einen [[sd-Wert|s<sub>d</sub>-Wert]] von ca. 4&nbsp;m. (Siehe Abb. 10)


===== Bauphase: Die 70/1,5 Regel =====
===== Bauphase: Die 70/1,5 Regel =====
In der Bauphase, wenn verputzt oder [[Estrich]] verlegt wurde, herrscht im Gebäude eine sehr hohe Raumluftfeuchte von zum Teil über 90&nbsp;%. Der [[sd-Wert|s<sub>d</sub>-Wert]] einer [[Dampfbremse]] sollte dann mehr als 1,5&nbsp;m betragen, um die Konstruktion vor einem zu hohen Feuchteeintrag aus dem Baustellenklima zu schützen. <br />
; s. a. [[Hydrosafe]]
[[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] haben bei 70&nbsp;% mittlerer Feuchte einen [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m. Übermäßige Raumluftfeuchte in der Bauphase über einen langen Zeitraum schädigt alle Bauteile im Gebäude, führt zu deren Feuchteanreicherung und sollte zügig durch Fensterlüftung entweichen können. Ggf. können Bautrockner erforderlich sein. (Siehe Abb. 10)
In der Bauphase, wenn verputzt oder [[Estrich]] verlegt wurde, herrscht im Gebäude eine sehr hohe Raumluftfeuchte von zum Teil über 90&nbsp;%. <br />
Der [[sd-Wert|s<sub>d</sub>-Wert]] einer [[Dampfbremse]] sollte dann mehr als 1,5&nbsp;m betragen, um die Konstruktion vor einem zu hohen Feuchteeintrag aus dem Baustellenklima zu schützen. <br />
[[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] haben bei 70&nbsp;% mittlerer Feuchte (90 % Raumluftfeuchtigkeit und 50 % in der Dämmebene) einen [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m. Übermäßige Raumluftfeuchte in der Bauphase über einen langen Zeitraum schädigt alle Bauteile im Gebäude, führt zu deren Feuchteanreicherung und sollte zügig durch Fensterlüftung entweichen können. Ggf. können Bautrockner erforderlich sein. (Siehe Abb. 10)


==== Höchste Sicherheit ====
==== Höchste Sicherheit ====
Das „intelligente“ Verhalten der feuchtevariablen Dampfbremsen macht Wärmedämmkonstruktionen sehr sicher, auch bei unvorhergesehenem Feuchtigkeitseintrag in die Konstruktion, z. B. durch widrige Klimabedingungen, Undichtheiten, [[Flankendiffusion]] oder erhöhte Einbaufeuchtigkeit von Bauholz oder Dämmstoff. Die feuchtevariablen pro clima Dampfbremsen wirken wie eine Feuchtigkeitstransportpumpe, die aktiv Feuchtigkeit aus dem Bauteil zieht, welche sich evtl. unvorhergesehen in ihm befindet.<br clear="all" />
Das »intelligente« Verhalten der feuchtevariablen Dampfbremsen von pro clima macht Wärmedämmkonstruktionen je nach Bauart und Lage sehr sicher, auch bei unvorhergesehenem Feuchtigkeitseintrag in die Konstruktion, z. B. durch widrige Klimabedingungen, Undichtheiten, [[Flankendiffusion]] oder erhöhte Einbaufeuchtigkeit von Bauholz oder Dämmstoff. Die feuchtevariablen pro clima Dampfbremsen wirken wie eine Feuchtigkeitstransportpumpe, die aktiv Feuchtigkeit aus dem Bauteil zieht, welche sich evtl. unvorhergesehen in ihm befindet. <br clear="all" />


== Ermittlung des Sicherheitspotenzials einer Dachkonstruktion ==
== Ermittlung des Sicherheitspotenzials einer Dachkonstruktion ==
Zeile 372: Zeile 391:
Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
|-  
|-  
| [[Bild:BPhys GD 2Studie 16 BSFP N 40.jpg|center|thumb|300px|16. Bauschadensfreiheitspotenzial <br /> '''[[Steildach]]''', Nordseite, 40° Dachneigung]]
| [[Bild:BPhys GD 2Studie 16 BSFP N 40.jpg|center|thumb|350px|16. Bauschadensfreiheitspotenzial <br /> '''[[Steildach]]''', Nordseite, 40° Dachneigung]]
|-
|-
| [[Bild:BPhys GD 2Studie 17 BSFP Kiesdach.jpg|center|thumb|300px|17. Bauschadensfreiheitspotenzial <br /> '''[[Flachdach]]''' mit 5 cm Kies]]
| [[Bild:BPhys GD 2Studie 17 BSFP Kiesdach.jpg|center|thumb|350px|17. Bauschadensfreiheitspotenzial <br /> '''[[Flachdach]]''' mit 5 cm Kies]]
|-
|-
| [[Bild:BPhys GD 2Studie 18 BSFP Gruendach.jpg|center|thumb|300px|18. Bauschadensfreiheitspotenzial <br /> '''[[Gründach]]''' mit 10 cm Aufbau]]
| [[Bild:BPhys GD 2Studie 18 BSFP Gruendach.jpg|center|thumb|350px|18. Bauschadensfreiheitspotenzial <br /> '''[[Gründach]]''' mit 10 cm Aufbau]]
|-
|-
| [[Bild:BPhys GD 2Studie 19 BSFP INTELLO und sd5.jpg|center|thumb|300px|19. BSFP mit INTELLO und s<sub>d</sub>-Wert 5 m: <br /> verschiedene Dämmdicken]]
| [[Bild:BPhys GD 2Studie 19 BSFP INTELLO und sd5.jpg|center|thumb|350px|19. BSFP mit INTELLO und s<sub>d</sub>-Wert 5 m: <br /> verschiedene Dämmdicken]]
|}
|}
Die Trocknungsgeschwindigkeit der erhöht angenommenen Anfangsfeuchtigkeit beschreibt das Bauschadensfreiheitspotenzial der Konstruktion gegenüber unvorhergesehener Feuchtigkeit ([[Konvektion]], [[Flankendiffusion]] etc.). Die Berechnungsergebnisse zeigen, dass die [[PE]]-Folie ([[sd-Wert|s<sub>d</sub>-Wert]] 100 m) keine Austrocknung der Feuchtigkeit in der 200 mm starken Dämmschicht ermöglicht. Feuchtigkeit, die sich in der [[Konstruktion]] befindet, kann nicht mehr entweichen. Bei einer [[Dampfbremse]] mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m bestehen nur geringe Trocknungsreserven. Die Konstruktion mit der pro clima [[DB+]] führt zu einer wesentlich schnelleren Austrocknung und weist erhebliche Sicherheitsreserven auf von 1800 g/m² x Jahr.
Die Trocknungsgeschwindigkeit der erhöht angenommenen Anfangsfeuchtigkeit beschreibt das Bauschadensfreiheitspotenzial der Konstruktion gegenüber unvorhergesehener Feuchtigkeit ([[Konvektion]], [[Flankendiffusion]] etc.). Die Berechnungsergebnisse zeigen, dass die [[PE]]-Folie ([[sd-Wert|s<sub>d</sub>-Wert]] 100 m) keine Austrocknung der Feuchtigkeit in der 200 mm starken Dämmschicht ermöglicht. Feuchtigkeit, die sich in der [[Konstruktion]] befindet, kann nicht mehr entweichen. Bei einer [[Dampfbremse]] mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m bestehen nur geringe Trocknungsreserven. Die Konstruktion mit der pro clima [[DB+]] führt zu einer wesentlich schnelleren Austrocknung und weist erhebliche Sicherheitsreserven auf von 1800 g/m² x Jahr.
Zeile 473: Zeile 492:
Dämmdicken bis 400 mm ausreichend hoch. Bei Grün- und Kiesdächern kann es in Abhängigkeit der gewünschten Dämmdicke erforderlich sein, die Gesamtdämmung in einen Teil zwischen den Traghölzern und einen Teil oberhalb der Tragkonstruktion anzuordnen. Für diese Konstruktionen kann die technische Hotline von pro clima objektbezogene Bauteilfreigaben erstellen.
Dämmdicken bis 400 mm ausreichend hoch. Bei Grün- und Kiesdächern kann es in Abhängigkeit der gewünschten Dämmdicke erforderlich sein, die Gesamtdämmung in einen Teil zwischen den Traghölzern und einen Teil oberhalb der Tragkonstruktion anzuordnen. Für diese Konstruktionen kann die technische Hotline von pro clima objektbezogene Bauteilfreigaben erstellen.


Nach Möglichkeit sollten Flachdachkonstruktionen ohne zusätzliche Bauteilschichten außen geplant werden. Besonders hohe Sicherheiten haben unverschattete Bauteile mit schwarzen Bahnen (a ≥ 80 %). Diese sind unter Berücksichtigung weiterer Parameter (u. a. geringe Materialfeuchten, durch Prüfung sichergestellte [[Luftdichtheit]]) entsprechend Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses<ref name="Qu_01" /> nachweisfrei.
Nach Möglichkeit sollten Flachdachkonstruktionen ohne zusätzliche Bauteilschichten außen geplant werden. Besonders hohe Sicherheiten haben unverschattete Bauteile mit schwarzen Bahnen (a ≥ 80 %). <br clear="all" />
<br clear="all" />


=== Ermittlung der Gebrauchstauglichkeit ===
=== Ermittlung der Gebrauchstauglichkeit ===
Zeile 486: Zeile 504:
|}
|}
Neben dem Bauschadensfreiheitspotenzial ist es weiterhin entscheidend, welche Feuchtigkeitsgehalte sich im Bauteil im Gebrauchszustand einstellen.
Neben dem Bauschadensfreiheitspotenzial ist es weiterhin entscheidend, welche Feuchtigkeitsgehalte sich im Bauteil im Gebrauchszustand einstellen.
==== Nachweisfreie Konstruktionen für Flachdächer ====
Zur einfachen Bemessung wurden in dem unter [[#Feuchtebelastung durch Diffusion|Feuchtebelastung durch Diffusion]] angegebenen Konsenspapier zu Flachdachkonstruktionen unter den folgenden Randbedingungen
die „7 goldenen Regeln für ein nachweisfreies Flachdach” <ref name="Qu_01" /> für Wohnräume nach [[DIN EN 15026]] identifiziert:
# Das Flachdach hat ein Gefälle ≥ 3 % vor bzw. ≥ 2 % nach Verformung und es
# ist dunkel (Strahlungsabsorption a ≥ 80 %), unverschattet und es hat
# keine Deckschichten (Bekiesung, Gründach, Terrassenbeläge), aber
# eine feuchtevariable Dampfbremse und
# keine unkontrollierbaren Hohlräume auf der kalten Seite der Dämmschicht und
# eine geprüfte Luftdichtheit und es
# wurden vor dem Schließen des Aufbaus die Holzfeuchten von Tragwerk und Schalung (u ≤ 15 ± 3 M-%) bzw. Holzwerkstoffbeplankung (u ≤ 12 ± 3 M-%) dokumentiert.


==== Nachweisverfahren ====
==== Nachweisverfahren ====
Handelt es sich um eine Konstruktion, welche nicht die Voraussetzungen der Nachweisfreiheit erfüllt, kann die Gebrauchstauglichkeit unter Berücksichtigung eines Luftinfiltrationsmodells des [[Fraunhofer Gesellschaft|Fraunhofer-Instituts für Bauphysik]] ermittelt werden. Dieses bietet die Möglichkeit, kontinuierliche [[unvorhergesehen|unvorhergesehene Feuchtigkeitseinträge]] durch [[Konvektion]] zu simulieren. Der Maßstab ist der hüllflächenbezogene [[Luftwechselrate|Luftwechsel]] q<sub>50</sub>, der sich nicht wie der [[Luftwechselrate|n<sub>50</sub>-Wert]] auf das Volumen, sondern auf die Außenhülle eines Gebäudes bezieht.
Für eine feuchtetechnische Bemessung ist es sinnvoll, Feuchteeinträge durch Konvektion zu berücksichtigen. Dazu bietet WUFI pro die Möglichkeit mithilfe des Luftinfiltrationsmodells des [[Fraunhofer Gesellschaft|Fraunhofer-Instituts für Bauphysik]]. Dieses simuliert den Feuchteeintrag infolge [[Konvektion]] in die Wärmedämmebene. Der Maßstab ist der hüllflächenbezogene [[Luftwechselrate|Luftwechsel]] q<sub>50</sub>, der sich nicht wie der [[Luftwechselrate|n<sub>50</sub>-Wert]] auf das Volumen, sondern auf die Außenhülle eines Gebäudes bezieht. <br />
 
Das Luftinfiltrationsmodell unterscheidet standardmäßig drei Luftdichtigkeitsklassen (A, B, C), welche einem q<sub>50</sub>-Wert von 1 m³/m²h (Klasse A), 3 m³/m²h (Klasse B) und 5 m³/m²h (Klasse C) entsprechen. <br />
Das Luftinfiltrationsmodell unterscheidet standardmäßig drei Luftdichtigkeitsklassen A, B, C, welche einem q<sub>50</sub>-Wert von 1 m³/m² x h (Klasse A), 3 m³/m² x h (Klasse B) und 5 m³/m² x h (Klasse C) entsprechen. Klasse A kann bei vorelementierten Bauteilen bzw. bei geprüfter Luftdichtheit mit Leckageortung, Klasse B bei geprüfter Luftdichtheit und Klasse C bei Konstruktionen mit ungeprüfter Luftdichtheit verwendet werden, um die unvorhergesehene Feuchtelast durch Leckagen zu simulieren. Für eine maximal sichere Konstruktion sollte an jedem Bauteil eine [[Luftdichtheitsprüfung]] mit Leckageortung durchgeführt werden. Dann kann die Luftdichtigkeitsklasse A für den Nachweis verwendet werden.
Klasse A kann bei vorelementierten Bauteilen bzw. bei geprüfter Luftdichtheit mit Leckageortung, Klasse B bei geprüfter Luftdichtheit und Klasse C bei Konstruktionen mit ungeprüfter Luftdichtheit verwendet werden, um die unvorhergesehene Feuchtelast durch Leckagen zu simulieren. Für eine maximal sichere
Konstruktion sollte an jedem Bauteil eine [[Luftdichtheitsprüfung]] mit Leckageortung durchgeführt werden. Dann kann die Luftdichtigkeitsklasse A für den Nachweis verwendet werden. Die folgenden Untersuchungen und die abgeleiteten Gebrauchstauglichkeiten beziehen sich auf Wärmedämmungen aus Mineral- oder Steinwolle WLG 035.


==== Gebrauchstauglichkeit von Steildachkonstruktionen ====
==== Gebrauchstauglichkeit von Steildachkonstruktionen ====
Zeile 519: Zeile 527:
   
   
==== Schlussfolgerungen Gebrauchstauglichkeit ====
==== Schlussfolgerungen Gebrauchstauglichkeit ====
Auch außen diffusionsdichte Flachdachkonstruktionen gemäß Absatz "Nachweisfreie Konstruktionen für Flachdächer" können ohne rechnerischen Nachweis mit den feuchtevariablen Dampfbremsen [[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] ausgeführt werden. <br />
Die Gebrauchstauglichkeit von außen diffusionsdichten Steildächern (40° Dachneigung), bekiesten oder begrünten Flachdachkonstruktionen wurde für den Standort Holzkirchen bis zu den in den Berechnungen angegebenen Dämmschichtdicken mit Mineralwolle WLG&nbsp;035 und Fichtenschalungen bestätigt. <br />
Die Gebrauchstauglichkeit von außen diffusionsdichten Steildächern, bekiesten oder begrünten Flachdachkonstruktionen wurde für den Standort Holzkirchen bis zu den in der Berechnungen angegebenen Dämmschichtdicken mit Fichtenschalungen bestätigt. Abweichende Konstruktionen können bei der technischen Hotline
Abweichende Konstruktionen können bei der technischen Hotline von pro&nbsp;clima angefragt werden. Dampfbremsen mit konstanten [[sd-Wert|s<sub>d</sub>-Wert]]en (hier 5 m) führen im Vergleich beim Steildach zu deutlich erhöhten Materialfeuchten. Bei den betrachteten Kies- und Gründächern mit Fichtenschalungen wird die 20 %-Grenze z.&nbsp;T. deutlich überschritten, so dass ein Bauschaden unter den angenommenen Randbedingungen wahrscheinlich ist.  
von pro clima angefragt werden. <br />
Dampfbremsen mit konstanten [[sd-Wert|s<sub>d</sub>-Wert]]en (hier 5 m) führen im Vergleich beim Steildach zu deutlich erhöhten Materialfeuchten. Bei den betrachteten Kies- und Gründächern mit Fichtenschalungen wird die 20 %-Grenze z. T. deutlich überschritten, so dass ein Bauschaden unter den angenommenen Randbedingungen wahrscheinlich ist.
 
Alle Gebrauchtauglichkeitsberechnungen setzen voraus, dass die Konstruktionen unverschattet sind.


Alle Gebrauchtauglichkeitsberechnungen setzen voraus, dass die Konstruktionen unverschattet sind. <br />
In allen Bauteilen ist es entscheidend, dass die [[Luftdichtheit]] mittels [[Luftdichtheitsprüfung|Unterdrucktest und Leckageortung]] überprüft wird, um Feuchteeintrag durch [[Konvektion]] zu vermeiden.
In allen Bauteilen ist es entscheidend, dass die [[Luftdichtheit]] mittels [[Luftdichtheitsprüfung|Unterdrucktest und Leckageortung]] überprüft wird, um Feuchteeintrag durch [[Konvektion]] zu vermeiden.


Zeile 532: Zeile 537:
| '''29. Konstruktionsaufbau'''
| '''29. Konstruktionsaufbau'''
|-
|-
|[[Bild:BPhys_GD_2Studie_26_komstruktionsaufbau.jpg|center|200px|]]
|[[Bild:BPhys_GD_2Studie_26_komstruktionsaufbau.jpg|center|360px|]]
|- style="font-size:90%;"  
|- style="font-size:90%;"  
| Einbindende Wand
| Einbindende Wand
Zeile 603: Zeile 608:


=== Innenseitige Bekleidung ===
=== Innenseitige Bekleidung ===
Voraussetzung für die hohen Sicherheitsreserven ist die ungehinderte Austrocknung in den Innenraum. Innenseitig der feuchtevariablen Dampfbremse angeordnete Bekleidungen mit diffusionshemmender Wirkung, wie [[Holzwerkstoff]]e (z. B. [[OSB]]- oder [[Mehrschichtplatte]]n),reduzieren die [[Rücktrocknung]]smenge an [[Baufeuchte|Feuchtigkeit]] nach innen und verringern dadurch das Bauschadensfreiheitspotenzial. Vorteilhaft sind Materialien mit offener Struktur,z. B. Profilbrettschalungen, [[Holzwolleleichtbauplatte]]n mit Putz und Gipsbauplatten.
Voraussetzung für die hohen Sicherheitsreserven ist die ungehinderte Austrocknung in den Innenraum. Innenseitig der feuchtevariablen Dampfbremse angeordnete Bekleidungen mit diffusionshemmender Wirkung, wie [[Holzwerkstoff]]e (z. B. [[OSB]]- oder [[Mehrschichtplatte]]n),reduzieren die [[Rücktrocknung]]smenge an [[Baufeuchte|Feuchtigkeit]] nach innen und verringern dadurch das Bauschadensfreiheitspotenzial. Vorteilhaft sind Materialien mit offener Struktur,z. B. Profilbrettschalungen, [[Holzwolle-Leichtbauplatte]]n mit Putz und Gipsbauplatten.


Konstruktionen mit diffusionsdichten Bauteilschichten auf der Außenseite sollten ausschließlich mit diffusionsoffenen Innenbekleidungen kombiniert werden. Dann erhalten die Bauteile eine maximale Sicherheit vor einem Bauschaden.  
Konstruktionen mit diffusionsdichten Bauteilschichten auf der Außenseite sollten ausschließlich mit diffusionsoffenen Innenbekleidungen kombiniert werden. Dann erhalten die Bauteile eine maximale Sicherheit vor einem Bauschaden.  
Zeile 617: Zeile 622:
| '''35. Schutz der Wärmedämmkonstruktion <br /> im Neubau und in der Bauphase'''
| '''35. Schutz der Wärmedämmkonstruktion <br /> im Neubau und in der Bauphase'''
|-
|-
|[[Bild:BPhys GD 2Studie 32 Diagr Diffusion Regeln.jpg|left|260px|]]
|[[Bild:BPhys GD 2Studie 32 Diagr Diffusion Regeln.png|left|260px|]]
|- style="font-size:90%;"  
|- style="font-size:90%;"  
|Der [[sd-Wert|s<sub>d</sub>-Wert]] der Bahnen stellt sich auf die unterschiedlichen Umgebungsfeuchten ein. Das Einhalten der 60/2 und 70/1,5-Regel sichert ein hohes Bauschadensfreiheitspotenzial der Wärmedämmkonstruktion.
|Der [[sd-Wert|s<sub>d</sub>-Wert]] der Bahnen stellt sich auf die unterschiedlichen Umgebungsfeuchten ein. Das Einhalten der 60/2 und 70/1,5-Regel sichert ein hohes Bauschadensfreiheitspotenzial der Wärmedämmkonstruktion.
Zeile 632: Zeile 637:


=== Außen diffusionsoffen oder diffusionsdicht ? ===
=== Außen diffusionsoffen oder diffusionsdicht ? ===
Optimal ist die Wahl diffusionsoffener Werkstoffe bei der [[Unterdeckung]] (z. B. Holzfaser-[[Unterdeckplatte]]n oder [[SOLITEX]] [[Unterdeckbahn|Unterdeck-]] oder [[Unterspannbahn]]en mit porenfreier Membran), welche eine hohe Austrocknung nach außen ermöglichen. <br />
Optimal ist die Wahl diffusionsoffener Werkstoffe bei der [[Unterdeckung]] (z. B. Holzfaser[[unterdeckplatte]]n oder [[SOLITEX]] [[Unterdeckbahn|Unterdeck-]] oder [[Unterspannbahn]]en mit porenfreier Membran), welche eine hohe Austrocknung nach außen ermöglichen. <br />
Konstruktionen mit diffusionsdichten Außenbauteilen ([[Unterdach]]), z. B. Bitumenbahnen, [[Flachdach|Flachdächer]] und [[Gründach|Gründächer]], sowie Dächer mit Blecheindeckungen, verringern die bauphysikalischen Sicherheiten des Bauteils. [[Vollholzschalung]]en bieten höhere Sicherheiten als [[Holzwerkstoffplatte]]n (z. B. [[OSB]]), da Holz einen feuchtevariablen Diffusionswiderstand hat und kapillar leitend ist. [[INTELLO]] bietet durch die große Feuchtevariabilität ein sehr hohes Sicherheitspotenzial, auch bei [[Holzwerkstoff]]en. Bei der pro clima [[DB+]] soll bei diffusionsdichtem [[Unterdach]] auf [[Holzwerkstoffplatte]]n verzichtet werden.
Konstruktionen mit diffusionsdichten Außenbauteilen ([[Unterdach]]), z. B. Bitumenbahnen, [[Flachdach|Flachdächer]] und [[Gründach|Gründächer]], sowie Dächer mit Blecheindeckungen, verringern die bauphysikalischen Sicherheiten des Bauteils. [[Vollholzschalung]]en bieten höhere Sicherheiten als [[Holzwerkstoffplatte]]n (z. B. [[OSB]]), da Holz einen feuchtevariablen Diffusionswiderstand hat und kapillar leitend ist. [[INTELLO]] bietet durch die große Feuchtevariabilität ein sehr hohes Sicherheitspotenzial, auch bei [[Holzwerkstoff]]en. Bei der pro clima [[DB+]] soll bei diffusionsdichtem [[Unterdach]] auf [[Holzwerkstoffplatte]]n verzichtet werden.


Zeile 725: Zeile 730:
== Einzelnachweise ==
== Einzelnachweise ==
<references>
<references>
<ref name="Qu_01"> Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig, [http://holzbauphysik-kongress.eu/mediapool/69/694318/data/Konsens_Flachdaecher_2011_03_END.pdf holzbauphysik-kongress.eu: Konsens_Flachdaecher_2011_03_END.pdf] </ref>  
<ref name="Qu_01"> Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig </ref>  
<ref name="Qu_02">TenWolde, A. et al.: ”''Air pressures in wood frame  walls, proceedings thermal VII.''” Ashrae Publication Atlanta,  1999</ref>
<ref name="Qu_02">TenWolde, A. et al.: ”''Air pressures in wood frame  walls, proceedings thermal VII.''” Ashrae Publication Atlanta,  1999</ref>
<ref name="Qu_03">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref>
<ref name="Qu_03">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref>
Zeile 739: Zeile 744:
|[[Bild:Pc_00_WISSEN_2012_03.2_Studie.png|right|70px|verweis=http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf]]
|[[Bild:Pc_00_WISSEN_2012_03.2_Studie.png|right|70px|verweis=http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf]]
|}
|}
:Umfang: 22 Seiten   
:Umfang: 24 Seiten   
:Format: DIN A4
:Format: DIN A4
:Datei: PDF ca. 2 MB  
:Datei: PDF ca. 2 MB  

Navigationsmenü