Luftdichtung: Unterschied zwischen den Versionen

541 Bytes hinzugefügt ,  13:12, 28. Jul. 2010
keine Bearbeitungszusammenfassung
Zeile 29: Zeile 29:


{|align="right"
{|align="right"
|[[Bild:BPhys GD 1 06 Konvekt Fuge Waerme-01.jpg|left|thumb|200px|Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor 4,8]]
|[[Bild:BPhys GD 1 06 Konvekt Fuge Waerme-01.jpg|left|thumb|200px|Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor 4,8]]
|}
|}


Geprüft wurde die [[Wärmedurchgangskoeffizient|Wärmedämmwirkung]] und der [[Feuchte]]durchgang  
Geprüft wurde die [[Wärmedurchgangskoeffizient|Wärmedämmwirkung]] und der [[Feuchte]]durchgang  
bei einer innen liegenden Dampfbremse zusammen mit einer [[Wärmedämmung]] aus [[Mineralfaser|Mineralwolle]] mit 14 cm Dämmstärke (das war der damalige Wärmedämmstandard in Deutschland).
bei einer innen liegenden Dampfbremse zusammen mit einer [[Wärmedämmung]] aus [[Mineralfaser|Mineralwolle]] mit 14 cm Dämmstärke (das war der damalige Wärmedämmstandard in Deutschland).
Als definierte Undichtheit wurden in der Mitte der 1 m² großen Dampfbremsfläche Fugen angelegt: 1 m lang und mit unterschiedlich Breiten: 1, 3, 5 und 10 mm. Die Fugen befanden sich nur in der Dampfbremse, nicht in der Wärmedämmung.
Als definierte Undichtheit wurden in der Mitte der 1 m² großen Dampfbremsfläche Fugen angelegt: 1 m lang und mit unterschiedlich Breiten: 1, 3, 5 und 10 mm. Die Fugen befanden sich nur in der Dampfbremse, nicht in der Wärmedämmung.


Für die Ermittlung der Wärmeverluste wurde eine Temperaturdifferenz von innen 20°C zu außen -10 °C hergestellt, für die Ermittlung der Feuchteströme eine Temperaturdifferenz von innen 20°C zu außen 0°C (um eine Vereisung der durchdringenden Wassermenge zu vermeiden).  
Für die Ermittlung der Wärmeverluste wurde eine Temperaturdifferenz von innen 20 °C zu außen -10 °C hergestellt, für die Ermittlung der Feuchteströme eine Temperaturdifferenz von innen 20 °C zu außen 0 °C (um eine Vereisung der durchdringenden Wassermenge zu vermeiden).  


Die Druckdifferenzen entsprachen mit 10, 20, 30 und 40 Pa denen, die typischerweise auf die [[Hüllfläche|Gebäudehülle]] einwirken können. Druckdifferenzen auf die [[Hüllfläche|Gebäudehülle]] entstehen sowohl thermisch bedingt, also durch den Temperaturunterschied von innen (warm) nach außen (kalt), als auch windbedingt durch Winddruck und Windsog. Eine Druckdifferenz von 20 Pa entsteht z.B. bei einem Außenklima von -10°C und Windstärke 3 oder von 0°C und Windstärke 4.  
Die Druckdifferenzen entsprachen mit 10, 20, 30 und 40 Pa denen, die typischerweise auf die [[Hüllfläche|Gebäudehülle]] einwirken können. Druckdifferenzen auf die [[Hüllfläche|Gebäudehülle]] entstehen sowohl thermisch bedingt, also durch den Temperaturunterschied von innen (warm) nach außen (kalt), als auch windbedingt durch Winddruck und Windsog. Eine Druckdifferenz von 20 Pa entsteht z.B. bei einem Außenklima von -10 °C und Windstärke 3 oder von 0 °C und Windstärke 4.  


Zunächst wurden die beiden zu untersuchenden Größen – Wärmedämmwirkung und Feuchtedurchgang – mit der fugenfreien Dampfbremse bei den unterschiedlichen Druckdifferenzen gemessen. Anschließend untersuchte man die [[Konstruktion]] mit den verschiedenen Fugen, jeweils mit allen Druckdifferenzen.  
Zunächst wurden die beiden zu untersuchenden Größen – Wärmedämmwirkung und Feuchtedurchgang – mit der fugenfreien Dampfbremse bei den unterschiedlichen Druckdifferenzen gemessen. Anschließend untersuchte man die [[Konstruktion]] mit den verschiedenen Fugen, jeweils mit allen Druckdifferenzen.  
Zeile 48: Zeile 48:
|[[Bild:03_Waermedurchg_d.jpg|left|thumb|200px|Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen]]
|[[Bild:03_Waermedurchg_d.jpg|left|thumb|200px|Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen]]
|}
|}
Bei der Untersuchung der Wärmedämmwirkung der 14 cm dicken [[Wärmedämmung]] mit der fugenfreien [[Dampfbremse]] bestätigte der gemessene [[Wärmedurchgangskoeffizient|U-Wert]] den rechnerischen von 0,30 W/m²K.
Bei der Untersuchung der Wärmedämmwirkung der 14 cm dicken [[Wärmedämmung]] mit der fugenfreien [[Dampfbremse]] bestätigte der gemessene [[Wärmedurchgangskoeffizient|U-Wert]] den rechnerischen von 0,30 W/m²K.


Anschließend wurde die [[Wärmedämmung]] mit den unterschiedlich breiten Fugen bei den verschiedenen Druckdifferenzen gemessen.  
Anschließend wurde die [[Wärmedämmung]] mit den unterschiedlich breiten Fugen bei den verschiedenen Druckdifferenzen gemessen.  


Schon bei der kleinsten Fugebreite von 1 mm und der Druckdifferenz von 20 Pa ergab sich eine Reduzierung der Dämmwirkung um den Faktor 4,8. Das heißt, der Dämmwert der 14 cm dicken Wärmedämmung ist mit der geringen Undichtheit nicht mehr 0,30 W/m²K, sondern 1,44 W/m²K. Fugenbreiten von 3 mm ergaben Verschlechterungsfaktoren von 11.  
Schon bei der kleinsten Fugebreite von 1 mm und der Druckdifferenz von 20 Pa ergab sich eine Reduzierung der Dämmwirkung um den Faktor 4,8. Das heißt, der Dämmwert der 14 cm dicken Wärmedämmung ist mit der geringen Undichtheit nicht mehr 0,30 W/m²K, sondern 1,44 W/m²K. Fugenbreiten von 3 mm ergaben Verschlechterungsfaktoren von 11.  


Fazit: Undichtheiten in der Luftdichtungsebene, z.B. in der Dampfbremse, führen zu einer Reduzierung der Wärmedämmwirkung. Der Heiz[[energiebedarf]] und damit die [[CO2|CO<sub>2</sub>]] Emissionen erhöhen sich um ein Mehrfaches.
Fazit: Undichtheiten in der Luftdichtungsebene, z.B. in der Dampfbremse, führen zu einer Reduzierung der Wärmedämmwirkung. Der Heiz[[energiebedarf]] und damit die [[CO2|CO<sub>2</sub>]] Emissionen erhöhen sich um ein Mehrfaches.
Zeile 65: Zeile 65:
Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z.B. Hurrikans) weiter beschleunigen. Die Investition in eine gute Wärmedämmung, sei es beim Neubau oder beim [[Sanieren|Sanieren/Modernisieren]] ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.
Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z.B. Hurrikans) weiter beschleunigen. Die Investition in eine gute Wärmedämmung, sei es beim Neubau oder beim [[Sanieren|Sanieren/Modernisieren]] ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.


Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen [[Energiebedarf]] besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1 °C führt immerhin zu einer Verringerung des Heiz[[energiebedarf]]s, d.h. der Heizkosten um 6 %. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die  Wohnraumtemperatur von 22 °C auf 20 °C zu senken. Die Reduzierung von 20 °C auf 10 °C, zur Kompensation der  enormen Heizkosten, ist bestimmt nicht erstrebenswert.
Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen [[Energiebedarf]] besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1&nbsp;°C führt immerhin zu einer Verringerung des Heiz[[energiebedarf]]s, d.h. der Heizkosten um 6&nbsp;%. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die  Wohnraumtemperatur von 22&nbsp;°C auf 20&nbsp;°C zu senken. Die Reduzierung von 20&nbsp;°C auf 10&nbsp;°C, zur Kompensation der  enormen Heizkosten, ist bestimmt nicht erstrebenswert.


===Ökologische Konsequenzen===
===Ökologische Konsequenzen===
Zeile 76: Zeile 76:


===Der Gebäude[[energiebedarf]] beträgt mehr als 40 % des Gesamt[[energieverbrauch]]s===
===Der Gebäude[[energiebedarf]] beträgt mehr als 40 % des Gesamt[[energieverbrauch]]s===
Über 40 % des jährlichen Weltenergiebedarfs wird zum Heizen und Kühlen von Gebäuden verbraucht und stellt so den größten Energieanteil, noch vor den Verbräuchen für Verkehr und Industrie dar. Mit effektiven Wärmedämmungen lässt sich der [[Energieverbrauch]] drastisch reduzieren. Für angenehme Wohnraumtemperaturen auch bei großer Kälte und windigem Außenklima benötigt man bei einem [[Passivhaus]] zum Heizen pro m² Wohnfläche nur 10 kWh (entsprechend  1 l Öl oder 10 m³ Gas). Neubauten in Deutschland mit gesetzlich vorgeschriebener luftdichten [[Hüllfläche|Gebäudehülle]] und Wärmedämmdicke verbrauchen ca. 60 kWh (entsprechend 6 l Öl oder 60 m³ Gas).Bei Gebäuden mit schlechter Luftdichtung und den daraus resultierenden Wärmeverlusten über die Fugen, ist ein [[Energieverbrauch]] von über 500 kWh (50 l Öl oder 500 m³ Gas) pro m² Wohnfläche keine Seltenheit.  
Über 40 % des jährlichen Weltenergiebedarfs wird zum Heizen und Kühlen von Gebäuden verbraucht und stellt so den größten Energieanteil, noch vor den Verbräuchen für Verkehr und Industrie dar. Mit effektiven Wärmedämmungen lässt sich der [[Energieverbrauch]] drastisch reduzieren. Für angenehme Wohnraumtemperaturen auch bei großer Kälte und windigem Außenklima benötigt man bei einem [[Passivhaus]] zum Heizen pro m² Wohnfläche nur 10&nbsp;kWh (entsprechend  1&nbsp;l&nbsp;Öl oder 10&nbsp;&nbsp;Gas). Neubauten in Deutschland mit gesetzlich vorgeschriebener luftdichten [[Hüllfläche|Gebäudehülle]] und Wärmedämmdicke verbrauchen ca. 60&nbsp;kWh (entsprechend 6&nbsp;l Öl oder 60&nbsp;m³ Gas).Bei Gebäuden mit schlechter Luftdichtung und den daraus resultierenden Wärmeverlusten über die Fugen, ist ein [[Energieverbrauch]] von über 500&nbsp;kWh (50&nbsp;l Öl oder 500&nbsp;m³ Gas) pro m² Wohnfläche keine Seltenheit.  


Je kälter oder je windiger das Außenklima ist, umso größer sind die Auswirkungen einer mangelhaften Luftdichtheit für die Wärmedämmung und umso größer ist der [[Energieverbrauch]]. In Russland war der Winter 2005/2006 so kalt, dass die benötigten Energiemengen kaum mehr zur Verfügung gestellt werden konnten.
Je kälter oder je windiger das Außenklima ist, umso größer sind die Auswirkungen einer mangelhaften Luftdichtheit für die Wärmedämmung und umso größer ist der [[Energieverbrauch]]. In Russland war der Winter 2005/2006 so kalt, dass die benötigten Energiemengen kaum mehr zur Verfügung gestellt werden konnten.
Zeile 83: Zeile 83:


==Luftdichtung – die Voraussetzung für [[Bauschadensfreiheitspotenzial|Bauschadensfreiheit]]==
==Luftdichtung – die Voraussetzung für [[Bauschadensfreiheitspotenzial|Bauschadensfreiheit]]==
Bei der oben erwähnten Studie vom Fraunhofer Institut für Bauphysik wurde neben der Wärmedämmwirkung auch der Feuchteeintrag in die [[Konstruktion]] gemessen. Die Dampfbremse hatte einen Diffusionswiderstand sd von 30 m (mvtr von 150 MNs/g). Die Messung bestätigte den rechnerischen Feuchteintrag in die [[Konstruktion]] von 0,5 g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m (mvtr von 10 MNs/g) sind die Feuchtemengen für [[Konstruktion]]en problemlos.  
Bei der oben erwähnten Studie vom Fraunhofer Institut für Bauphysik wurde neben der Wärmedämmwirkung auch der Feuchteeintrag in die [[Konstruktion]] gemessen. Die Dampfbremse hatte einen Diffusionswiderstand sd von 30&nbsp;m (mvtr von 150&nbsp;MNs/g). Die Messung bestätigte den rechnerischen Feuchteintrag in die [[Konstruktion]] von 0,5&nbsp;g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m (mvtr von 10&nbsp;MNs/g) sind die Feuchtemengen für [[Konstruktion]]en problemlos.  
{|align="left"
{|align="left"
|[[Bild:BPhys GD 1 05 Konvekt Fuge Feuchte1-01.jpg|left|thumb|200px|800 g Tauwasser <br /> durch 1 mm Fuge]]
|[[Bild:BPhys GD 1 05 Konvekt Fuge Feuchte1-01.jpg|left|thumb|200px|800 g Tauwasser <br /> durch 1 mm Fuge]]
Zeile 92: Zeile 92:
Im zweiten Versuch wurde der Feuchteeintrag über die Fugen ermittelt. Die Ergebnisse waren alarmierend und erklärten so manchen Bauschaden:  
Im zweiten Versuch wurde der Feuchteeintrag über die Fugen ermittelt. Die Ergebnisse waren alarmierend und erklärten so manchen Bauschaden:  


Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz betrug der Feuchtigkeitseintrag durch Konvektion (Luftströmung) 800 g/m Fuge pro Tag. Bei der Fugenbreite von 3 mm waren es 1700 g/m.  
Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz betrug der Feuchtigkeitseintrag durch Konvektion (Luftströmung) 800&nbsp;g/m Fuge pro Tag. Bei der Fugenbreite von 3&nbsp;mm waren es 1700&nbsp;g/m.  
<br clear="all" />
<br clear="all" />


Zeile 98: Zeile 98:


{|align="left"
{|align="left"
|[[Bild:06_maxLF0_d2.jpg|left|thumb|200px|Beim Abkühlen auf 0 °C kondensieren 3,85 g Wasser]]
|[[Bild:06_maxLF0_d2.jpg|left|thumb|200px|Beim Abkühlen auf 0&nbsp;°C kondensieren 3,85&nbsp;g Wasser]]
|}
|}
{|align="left"
{|align="left"
|[[Bild:07_maxLF-10_d.jpg|left|thumb|200px|Beim Abkühlen auf -10 °C sogar 6,55 g Wasser]]
|[[Bild:07_maxLF-10_d.jpg|left|thumb|200px|Beim Abkühlen auf -10&nbsp;°C sogar 6,55&nbsp;g Wasser]]
|}
|}


Der [[Tauwasserausfall]] beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20 °C und 50 % relativer [[Feuchtigkeit]] bei 9,2 °C liegt.
Der [[Tauwasserausfall]] beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20&nbsp;°C und 50&nbsp;% relativer [[Feuchtigkeit]] bei 9,2&nbsp;°C liegt.


Aus jedem Kubikmeter Luft, der in eine [[Konstruktion]] eindringt und auf 0 °C abkühlt kondensieren 3,85 g Wasser, bei Abkühlung auf -10°C Außentemperatur sind es sogar 6,55 g Wasser.
Aus jedem Kubikmeter Luft, der in eine [[Konstruktion]] eindringt und auf 0&nbsp;°C abkühlt kondensieren 3,85&nbsp;g Wasser, bei Abkühlung auf -10&nbsp;°C Außentemperatur sind es sogar 6,55&nbsp;g Wasser.
<br clear="all" />
<br clear="all" />


Zeile 124: Zeile 124:


{|align="right"
{|align="right"
|[[Bild:08_schimmel_d.jpg|left|thumb|200px|Der schimmelkritische Bereich liegt bei der 50 % feuchter Raumluft bei 12,6 °C und bei 65 % feuchter Raumluft bei 16.5 °C]]
|[[Bild:08_schimmel_d.jpg|left|thumb|200px|Der schimmelkritische Bereich liegt bei der 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C und bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C]]
|}
|}
[[Schimmel]] tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d.h. [[Tauwasserausfall|Tauwasser]] ausfällt, sondern bereits dann, wenn die relative [[Luftfeuchtigkeit]] an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.  
[[Schimmel]] tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d.h. [[Tauwasserausfall|Tauwasser]] ausfällt, sondern bereits dann, wenn die relative [[Luftfeuchtigkeit]] an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.  
Zeile 132: Zeile 132:
Je kälter und je windiger es draußen ist, umso mehr  kühlen die inneren Bauteilschichten aus.
Je kälter und je windiger es draußen ist, umso mehr  kühlen die inneren Bauteilschichten aus.


Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20°C Lufttemperatur hat Luft mit 50 % relativer [[Luftfeuchtigkeit]] einen Taupunkt von 9,2 °C und Luft mit 65 % relativer [[Luftfeuchtigkeit]] einen Taupunkt von 13,2 °C. Der schimmelkritische Bereich liegt bei der 50 % feuchter Raumluft bei 12,6 °C und bei 65 % feuchter Raumluft bei 16.5 °C.
Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20&nbsp;°C Lufttemperatur hat Luft mit 50&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 9,2&nbsp;°C und Luft mit 65&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 13,2&nbsp;°C. Der schimmelkritische Bereich liegt bei der 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C und bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C.
<br clear="all" />
<br clear="all" />


Zeile 160: Zeile 160:
|}
|}
{|align="left"
{|align="left"
|[[Bild:BPhys GD 1 16 Diagramm LF sinkt-01.jpg|left|thumb|200px|Erwärmt sich Luft von -10 °C und 80 % rel. LF auf +20 °C, hat sie nur noch eine rel. LF von 9,9 %]]
|[[Bild:BPhys GD 1 16 Diagramm LF sinkt-01.jpg|left|thumb|200px|Erwärmt sich Luft von -10&nbsp;°C und 80&nbsp;%&nbsp;rel.&nbsp;LF auf +20&nbsp;°C, hat sie nur noch eine rel.&nbsp;LF von 9,9&nbsp;%]]
|}
|}


Zeile 166: Zeile 166:




'''Russland:''' In Zahlen: Luft von -10 °C kann maximal 2,1 g Wasser pro m³ Luft aufnehmen, Luft von +20 °C hingegen 17,3 g/m³. Bei 80 % relativer [[Luftfeuchtigkeit]] ist der Wassergehalt bei -10 °C noch 1,7 g/m³. Erwärmt man Luft von -10 °C und 80 % relativer [[Luftfeuchtigkeit]] auf +20 °C, hat sie nur noch eine relative [[Luftfeuchtigkeit]] von 9,9 % (1,7 g/m³ sind 9,9 % von 17,3 g/m³).
'''Russland:''' In Zahlen: Luft von -10&nbsp;°C kann maximal 2,1&nbsp;g Wasser pro m³ Luft aufnehmen, Luft von +20&nbsp;°C hingegen 17,3&nbsp;g/m³. Bei 80&nbsp;% relativer [[Luftfeuchtigkeit]] ist der Wassergehalt bei -10&nbsp;°C noch 1,7&nbsp;g/m³. Erwärmt man Luft von -10&nbsp;°C und 80&nbsp;% relativer [[Luftfeuchtigkeit]] auf +20&nbsp;°C, hat sie nur noch eine relative [[Luftfeuchtigkeit]] von 9,9&nbsp;% (1,7&nbsp;g/m³ sind 9,9&nbsp;% von 17,3&nbsp;g/m³).
<br clear="all" />
<br clear="all" />


'''Irland:''' In Zahlen: Luft von 0 °C kann maximal 3,3 g Wasser pro m³ Luft aufnehmen, Luft von +20 °C hingegen 17,3 g/m³. Bei 80 % relativer [[Luftfeuchtigkeit]] ist der Wassergehalt bei 0 °C noch 2,64 g/m³. Erwärmt man Luft von 0 °C und 80 % relativer [[Luftfeuchtigkeit]] auf +20 °C hat sie nur noch eine relative [[Luftfeuchtigkeit]] von 15,3 % (2,64 g/m³ sind 15,3 % von 17,3 g/m³).
'''Irland:''' In Zahlen: Luft von 0&nbsp;°C kann maximal 3,3&nbsp;g Wasser pro m³ Luft aufnehmen, Luft von +20&nbsp;°C hingegen 17,3&nbsp;g/m³. Bei 80&nbsp;% relativer [[Luftfeuchtigkeit]] ist der Wassergehalt bei 0&nbsp;°C noch 2,64&nbsp;g/m³. Erwärmt man Luft von 0&nbsp;°C und 80&nbsp;% relativer [[Luftfeuchtigkeit]] auf +20&nbsp;°C hat sie nur noch eine relative [[Luftfeuchtigkeit]] von 15,3&nbsp;% (2,64&nbsp;g/m³ sind 15,3&nbsp;% von 17,3&nbsp;g/m³).


{|align="right"
{|align="right"
|[[Bild:17_behaglichkeit_d.jpg|left|thumb|200px|Behaglichkeitszone. Quelle: Sedlbauer, Breuer, Kaufmann, Institut für Bauphysik, Holzkirchen]]
|[[Bild:17_behaglichkeit_d.jpg|left|thumb|200px|Behaglichkeitszone. Quelle: Sedlbauer, Breuer, Kaufmann, Institut für Bauphysik, Holzkirchen]]
|}
|}
Je mehr kalte Luft durch Fugen in der [[Hüllfläche|Gebäudehülle]] in das Gebäude eindringt, umso trockener wird die Raumluft. In der Praxis sinkt die relative [[Luftfeuchtigkeit]] so auch unter 30 %. In diesen Fällen nützt es nicht viel, die Raumluft zu befeuchten. Sie wird immer wieder durch trockene Außenluft ersetzt. Erst wenn die Außentemperaturen wieder steigen, ist das Problem mit der trockenen Raumluft auf einmal verschwunden.
Je mehr kalte Luft durch Fugen in der [[Hüllfläche|Gebäudehülle]] in das Gebäude eindringt, umso trockener wird die Raumluft. In der Praxis sinkt die relative [[Luftfeuchtigkeit]] so auch unter 30&nbsp;%. In diesen Fällen nützt es nicht viel, die Raumluft zu befeuchten. Sie wird immer wieder durch trockene Außenluft ersetzt. Erst wenn die Außentemperaturen wieder steigen, ist das Problem mit der trockenen Raumluft auf einmal verschwunden.


Zu trockene Raumluft reduziert nicht nur die Behaglichkeit, sondern muss auch unter gesundheitlichen Aspekten betrachtet werden. In trockenem Raumklima vermehren sich Viren und Bakterien deutlich schneller als in einem feuchten Raumklima. Dies führt bekanntermaßen zu häufigeren Erkältungskrankheiten. Zu trockene Raumluft behindert außerdem die Sauerstoffaufnahme und die Zellatmung und führt zu körperlichem Stress, zu Müdigkeit und geringerer Leistungsfähigkeit. Um an einem Arbeitsplatz die maximale Effektivität zu erreichen, sollte das Klima in der Behaglichkeitszone liegen:
Zu trockene Raumluft reduziert nicht nur die Behaglichkeit, sondern muss auch unter gesundheitlichen Aspekten betrachtet werden. In trockenem Raumklima vermehren sich Viren und Bakterien deutlich schneller als in einem feuchten Raumklima. Dies führt bekanntermaßen zu häufigeren Erkältungskrankheiten. Zu trockene Raumluft behindert außerdem die Sauerstoffaufnahme und die Zellatmung und führt zu körperlichem Stress, zu Müdigkeit und geringerer Leistungsfähigkeit. Um an einem Arbeitsplatz die maximale Effektivität zu erreichen, sollte das Klima in der Behaglichkeitszone liegen:
Zeile 196: Zeile 196:


==Gesetze und Normen in Deutschland==
==Gesetze und Normen in Deutschland==
Die Erkenntnisse über die Auswirkungen der [[Luftdichtheit]]  wurden in Deutschland 1995 (6 Jahre nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3. [[Wärmeschutzverordnung]] über die [[Luftdichtheit]] gesetzlich bindend und führten  zur Vornorm der [[DIN 4108]]-7. Im Jahre 2000 folgten die [[Energieeinsparverordnung]] und die [[DIN 4108]]-7.
Die Erkenntnisse über die Auswirkungen der [[Luftdichtheit]]  wurden in Deutschland 1995 (6 Jahre nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3.&nbsp;[[Wärmeschutzverordnung]] über die [[Luftdichtheit]] gesetzlich bindend und führten  zur Vornorm der [[DIN 4108]]-7. Im Jahre 2000 folgten die [[Energieeinsparverordnung]] und die [[DIN 4108]]-7.


Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000 € sind keine Seltenheit.
Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000&nbsp;€ sind keine Seltenheit.


==Realisierung einer funktionierenden Luftdichtheit==
==Realisierung einer funktionierenden Luftdichtheit==
Zeile 231: Zeile 231:
|}
|}


Eine sehr hohe Endklebekraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach [[FLIB|FLiB]] eingeteilt in 2 Substratklassen: [[PE]]-Folie und Holz. [[PE]]-Folien sollten eine Oberflächenspannung von mehr als 40 mN/m haben. Aber auch [[PE]]-Folien mit nur 30 mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d.h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.  
Eine sehr hohe Endklebekraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach [[FLIB|FLiB]] eingeteilt in 2 Substratklassen: [[PE]]-Folie und Holz. [[PE]]-Folien sollten eine Oberflächenspannung von mehr als 40&nbsp;mN/m haben. Aber auch [[PE]]-Folien mit nur 30&nbsp;mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d.h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.  
<br clear="all" />
<br clear="all" />


Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90 ° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.  
Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.  


Eine hohe Wärmefestigkeit gewährleistet, dass das Klebeband auch sicher funktioniert, wenn es höheren Temperaturen ausgesetzt wird. Dies kann in der Bauphase oder an [[Dachflächenfenster]]n der Fall sein.  
Eine hohe Wärmefestigkeit gewährleistet, dass das Klebeband auch sicher funktioniert, wenn es höheren Temperaturen ausgesetzt wird. Dies kann in der Bauphase oder an [[Dachflächenfenster]]n der Fall sein.