Regenerative Energien in Klima-/Lüftungstechnik: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
 
(56 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
;Auf einen Blick
;Auf einen Blick
Die Klima- und Lüftungstechnik kann einen wesentlichen Beitrag zur Erreichung der CO<sub>2</sub>-Minderungsziele in Deutschland leisten. Schon jetzt stehen Systeme und Technologien zur Verfügung, die aus welchen Gründen auch immer, nicht oder nur unzureichend bei Neubauten und in der Sanierung zum Einsatz kommen.
Die Klima- und Lüftungstechnik kann einen wesentlichen Beitrag zur Erreichung der [[CO2-Einsparung|CO<sub>2</sub>-Minderungsziele]] in Deutschland leisten. Schon jetzt stehen Systeme und Technologien zur Verfügung, die aus welchen Gründen auch immer, nicht oder nur unzureichend bei Neubauten und in der Sanierung zum Einsatz kommen.


'''Klimaschutzziele der Bundesregierung bis zum Jahr 2020:'''<br />
'''Klimaschutzziele der Bundesregierung bis zum Jahr 2020:'''<br />
30 % - 40 %ige Reduktion der Treibhausgase um 147 bis 270 Mio. Tonnen pro Jahr
30 % - 40 %ige Reduktion der Treibhausgase um 147 bis 270 Mio. Tonnen pro Jahr


'''Potenziale für regenerative Energien in der Klima- und Lüftungstechnik bis 2020:'''
'''Potenziale für [[regenerative Energie]]n in der Klima- und Lüftungstechnik bis 2020:'''
{{{Tab010}}
{{{Tab010}}
| ||colspan="2" align="right"| CO<sub>2</sub>-Reduktion pro Jahr, Basis 147 Mio to
| ||colspan="2" align="right"| [[CO2-Einsparung|CO<sub>2</sub>-Reduktion]] pro Jahr, Basis 147 Mio to
|-
|-
| style="background:#D1EFFF" colspan="3" | '''[[Wärmerückgewinnung]]:'''
| class="hintergrundfarbe2" colspan="3" | '''[[Wärmerückgewinnung]]:'''
|-
|-
| width="380"|in Nichtwohngebäuden || align="right" width="180"|5,85 Mio. to || align="right" width="80"|4,0 %
| width="380"|in Nichtwohngebäuden || align="right" width="180"|5,85 Mio. to || align="right" width="80"|4,0 %
Zeile 15: Zeile 15:
|in Wohngebäuden || align="right" |6,43 Mio. to ||align="right" |4,3 %
|in Wohngebäuden || align="right" |6,43 Mio. to ||align="right" |4,3 %
|-
|-
| style="background:#D1EFFF" colspan="3" |'''Klimatisierung:'''
| class="hintergrundfarbe2" colspan="3" |'''Klimatisierung:'''
|-
|-
| Solare Klimasysteme ||align="right" |0,4 – 0,6 Mio. to ||align="right" |0,3 %
| Solare Klimasysteme ||align="right" |0,4 – 0,6 Mio. to ||align="right" |0,3 %
|-
|-
|Geothermische Klimasysteme ||align="right" |0,74 Mio. to ||align="right" |0,5 %
|[[Geothermie|Geothermische]] Klimasysteme ||align="right" |0,74 Mio. to ||align="right" |0,5 %
|-
|-
|Indirekte Verdunstungskühlung ||align="right" |0,3 Mio. to ||align="right" |0,2 %
|Indirekte Verdunstungskühlung ||align="right" |0,3 Mio. to ||align="right" |0,2 %
|-
|-
|Freie Kühlung über Wassersysteme ||align="right" |0,25 Mio. to ||align="right" |0,2 %
|Freie Kühlung über Wassersysteme ||align="right" |0,25 Mio. to ||align="right" |0,2 %
|-style="background:#D1EFFF"  
|- class="hintergrundfarbe2"
| '''Summe:''' ||align="right" |'''ca. 14 Mio. to''' ||align="right" |'''9,5 %'''
| '''Summe:''' ||align="right" |'''ca. 14 Mio. to''' ||align="right" |'''9,5 %'''
|}
|}


'''Alleine die heute verfügbaren Technologien zur Nutzung der regenerativen Energien in der Klima- und Lüftungstechnik können rund 9% zur Erreichung der Klimaschutzziele der Bundesregierung bis 2020 beitragen.'''
'''Alleine die heute verfügbaren Technologien zur Nutzung der [[Regenerative Energie|regenerativen Energie]]n in der Klima- und Lüftungstechnik können rund 9% zur Erreichung der Klimaschutzziele der Bundesregierung bis 2020 beitragen.'''


Damit leistet die Klima- und Lüftungstechnik einen wesentlichen Betrag zur '''Energieeinsparung''', '''CO<sub>2</sub> – Reduktion''' , '''Ressourcenschonung''' und zum '''Klimaschutz'''
Damit leistet die Klima- und Lüftungstechnik einen wesentlichen Betrag zur '''Energieeinsparung''', '''[[CO2-Einsparung|CO<sub>2</sub> – Reduktion]]''' , '''Ressourcenschonung''' und zum '''Klimaschutz'''




Zeile 37: Zeile 37:
* Um eine 30 %ige Reduktion der Treibhausgase bis 2020 zu erreichen, müssen '''147 Mio. t im Vergleich zum Jahr 2005''' gemindert werden.
* Um eine 30 %ige Reduktion der Treibhausgase bis 2020 zu erreichen, müssen '''147 Mio. t im Vergleich zum Jahr 2005''' gemindert werden.
* Das reicht aber nicht. Eine Reduktion um 40 % bedeutet dagegen eine Senkung von '''270 Mio. t gegenüber dem Niveau von 2005'''.
* Das reicht aber nicht. Eine Reduktion um 40 % bedeutet dagegen eine Senkung von '''270 Mio. t gegenüber dem Niveau von 2005'''.
Mit einem Anstieg des Anteils von erneuerbaren Energien im Wärme- und Kältebereich soll ein erheblicher Beitrag zur europäischen Energieversorgungssicherheit, zur Schaffung neuer Arbeitsplätze und zur Verbesserung der Umwelt geleistet werden. Weiterhin soll eine signifikante Reduzierung der Nachfrage in Europa nach konventionellen Energien, des allgemeinen Energieverbrauchs der EU im Heiz- und Kühlbereich, der Abhängigkeit insbesondere von Öl und Gas und zur Senkung der Energiekosten für die privaten und gewerblichen Verbraucher erreicht werden.
Mit einem Anstieg des Anteils von erneuerbaren Energien im Wärme- und Kältebereich soll ein erheblicher Beitrag zur europäischen Energieversorgungssicherheit, zur Schaffung neuer Arbeitsplätze und zur Verbesserung der Umwelt geleistet werden. Weiterhin soll eine signifikante Reduzierung der Nachfrage in Europa nach konventionellen Energien, des allgemeinen [[Energieverbrauch]]s der EU im Heiz- und Kühlbereich, der Abhängigkeit insbesondere von Öl und Gas und zur Senkung der Energiekosten für die privaten und gewerblichen Verbraucher erreicht werden.


Mit dem vorliegenden Status-Report Nr. 10 „Regenerative Energien in der Klima- und Lüftungstechnik“ zeigt das Fachinstitut Gebäude-Klima e.V. als wesentlicher Verband der deutschen Klima- und Lüftungstechnik in Industrie und Wissenschaft die verschiedenen Systeme und Verfahren zur Nutzung von Regenerativen Energien in der Klima- und
Mit dem vorliegenden Status-Report Nr. 10 „Regenerative Energien in der Klima- und Lüftungstechnik“ zeigt das Fachinstitut Gebäude-Klima e.V. als wesentlicher Verband der deutschen Klima- und Lüftungstechnik in Industrie und Wissenschaft die verschiedenen Systeme und Verfahren zur Nutzung von [[Regenerative Energie|Regenerativen Energie]]n in der Klima- und
Lüftungstechnik auf. Das Fachinstitut Gebäude Klima e.V. setzt sich für den Grundsatz der Energieeffizienz und die verstärkte Verwendung von Regenerativen Energien unter Berücksichtigung der Behaglichkeit, des Raumkomforts, der Hygiene und der Gesundheit der Nutzer ein.
Lüftungstechnik auf. Das Fachinstitut Gebäude Klima e.V. setzt sich für den Grundsatz der Energieeffizienz und die verstärkte Verwendung von [[Regenerative Energie|Regenerativen Energie]]n unter Berücksichtigung der Behaglichkeit, des Raumkomforts, der Hygiene und der Gesundheit der Nutzer ein.


Das Fachinstitut Gebäude-Klima e.V. wünscht sich Rahmenbedingungen für eine technologie- und energieträgerneutrale Förderung und eine Beschleunigung bei der Implementierung der hohen Energieeinsparpotenziale in den Neubau und in den Gebäudebestand.
Das Fachinstitut Gebäude-Klima e.V. wünscht sich Rahmenbedingungen für eine technologie- und energieträgerneutrale Förderung und eine Beschleunigung bei der Implementierung der hohen Energieeinsparpotenziale in den Neubau und in den Gebäudebestand.


Im Folgenden werden verschiedene Technologien zur Nutzung regenerativer Energien erläutert und die möglichen Potenziale beschreiben.  
Im Folgenden werden verschiedene Technologien zur Nutzung regenerativer Energien erläutert und die möglichen Potenziale beschreiben.
 
===Solare Klimatisierung===
===Solare Klimatisierung===
{|align="right"
{|align="right"
Zeile 53: Zeile 54:
Elektrische Systeme für die Lüftung und Klimatisierung, die über netzgekoppelte Photovoltaiksysteme versorgt werden, sind nicht Gegenstand der Betrachtung, weil sich diese Systeme prinzipiell nicht von den konventionellen Systemen unterscheiden. In Deutschland und Europa hat sich die Betrachtungsweise durchgesetzt, dass die photovoltaische Stromerzeugung als Teil des Stromnetzes angesehen wird und nicht als Teil des Gebäudes.
Elektrische Systeme für die Lüftung und Klimatisierung, die über netzgekoppelte Photovoltaiksysteme versorgt werden, sind nicht Gegenstand der Betrachtung, weil sich diese Systeme prinzipiell nicht von den konventionellen Systemen unterscheiden. In Deutschland und Europa hat sich die Betrachtungsweise durchgesetzt, dass die photovoltaische Stromerzeugung als Teil des Stromnetzes angesehen wird und nicht als Teil des Gebäudes.


Grundsätzlich wird in Abhängigkeit der verwendeten Technologie ab einem solaren Deckungsanteil von 25 bis 40 % die Schwelle erreicht, die eine [[Primärenergie]]einsparung durch solare Kühlung ermöglicht [1]. Ein solarer Deckungsanteil von 70 % bedeutet demnach, dass 70 % der zum Antrieb des Kühlverfahrens notwendigen thermischen Energie von der Solaranlage geliefert werden. Bei realistischen solaren Deckungsanteilen im Bereich von 70 bis 85 % sind – bezogen auf eine gleichwertige konventionelle Referenzanlage – [[Primärenergie]]einsparungen zwischen 30 und 60 % möglich.
Grundsätzlich wird in Abhängigkeit der verwendeten Technologie ab einem solaren Deckungsanteil von 25 bis 40 % die Schwelle erreicht, die eine [[Primärenergie]]einsparung durch solare Kühlung ermöglicht <ref name="Quelle_1" />. Ein solarer Deckungsanteil von 70 % bedeutet demnach, dass 70 % der zum Antrieb des Kühlverfahrens notwendigen thermischen Energie von der [[Solaranlage]] geliefert werden. Bei realistischen solaren Deckungsanteilen im Bereich von 70 bis 85 % sind – bezogen auf eine gleichwertige konventionelle Referenzanlage – [[Primärenergie]]einsparungen zwischen 30 und 60 % möglich.
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie====
====Thermische Kälteerzeugung – Klimakaltwassererzeugung aus [[Solarenergie]]====
Thermische Kaltwassererzeuger erzeugen Kälte, indem sich das in der Anlage befindliche Stoffpaar durch Wärmezufuhr trennt und unter Wärmeabgabe vereinigt. Die thermischen Randbedingungen werden durch das eingesetzte Stoffpaar und durch das Verfahren bestimmt. Die heute für die klimatechnische Anwendung zur Verfügung stehenden Systeme sind:
Thermische Kaltwassererzeuger erzeugen Kälte, indem sich das in der Anlage befindliche Stoffpaar durch Wärmezufuhr trennt und unter Wärmeabgabe vereinigt. Die thermischen Randbedingungen werden durch das eingesetzte Stoffpaar und durch das Verfahren bestimmt. Die heute für die klimatechnische Anwendung zur Verfügung stehenden Systeme sind:
{|align="right"
{|align="right"
Zeile 65: Zeile 66:
* Adsorptionskälteanlagen mit Silicagel und Wasser
* Adsorptionskälteanlagen mit Silicagel und Wasser
Solarthermische Kaltwassersysteme haben den Vorteil, dass im gesamten System bekannte und kommerziell verfügbare Komponenten eingesetzt werden können:
Solarthermische Kaltwassersysteme haben den Vorteil, dass im gesamten System bekannte und kommerziell verfügbare Komponenten eingesetzt werden können:
* Solarkollektoren
* [[Solarkollektor]]en
* Thermische Kaltwassererzeuger
* Thermische Kaltwassererzeuger
* Alle verfügbaren Nur-Luft- und Luft-Wasser-Klimasysteme
* Alle verfügbaren Nur-Luft- und Luft-Wasser-Klimasysteme
Zeile 73: Zeile 74:
|}
|}
{|align="right"
{|align="right"
| [[Bild:Luft energie co2-einsparung kaltwasser.gif|thumb|upright=2|Mögl. CO<sub>2</sub>-Einsparung solarer Kaltwassererzeugung, Abhängig v. rel. Anteil neu installierter Systeme]]
| [[Bild:Luft energie co2-einsparung kaltwasser.gif|thumb|upright=2|Mögl. [[CO2-Einsparung|CO<sub>2</sub>-Einsparung]] solarer Kaltwassererzeugung, Abhängig v. rel. Anteil neu installierter Systeme]]
|}
|}
Nach einer Schätzung [2] werden in Deutschland pro Jahr Kaltwassererzeuger mit einer Gesamtkälteleistung von etwa 1.100 MW verkauft. Dies beinhaltet die Maschinen für Neubau und [[Sanierung]]. Unterstellt man, dass ca. 40 % davon für die Komfortklimatisierung eingesetzt und diese mit 700 Vollbenutzungsstunden betrieben werden, so ergibt sich für die jährlich neu verkauften Kaltwassererzeuger ein Gesamtstrombedarf von ca. 263,4 GWh (EER = 3,5).
Nach einer Schätzung <ref name="Quelle_2" /> werden in Deutschland pro Jahr Kaltwassererzeuger mit einer Gesamtkälteleistung von etwa 1.100 MW verkauft. Dies beinhaltet die Maschinen für Neubau und [[Sanierung]]. Unterstellt man, dass ca. 40 % davon für die Komfortklimatisierung eingesetzt und diese mit 700 Vollbenutzungsstunden betrieben werden, so ergibt sich für die jährlich neu verkauften Kaltwassererzeuger ein Gesamtstrombedarf von ca. 263,4 GWh (EER = 3,5).


=====[[Absorptionskälteanlagen]]=====
=====[[Absorptionskälteanlagen]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Absorptionskälteanlagen]]''
 
=====[[Adsorptionskälteanlagen]]=====
=====[[Adsorptionskälteanlagen]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Adsorptionskälteanlagen]]''
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


Zeile 89: Zeile 91:
* Sorptionsklimasysteme mit festen Absorbern
* Sorptionsklimasysteme mit festen Absorbern
* Sorptionsklimasysteme mit flüssigen Absorbern
* Sorptionsklimasysteme mit flüssigen Absorbern
Beide Verfahren arbeiten nach dem selben Prinzip. Sie unterscheiden sich im Wesentlichen dadurch, dass bei festen Absorbern der Absorber wechselweise von Zuluft und von Regenerationsluft durchströmt werden muss, während bei flüssigen Systemen die Absorptionsflüssigkeit zwischen Absorption und Regeneration gepumpt werden kann.
Beide Verfahren arbeiten nach dem selben Prinzip. Sie unterscheiden sich im Wesentlichen dadurch, dass bei festen Absorbern der Absorber wechselweise von Zuluft und von Regenerationsluft durchströmt werden muss, während bei flüssigen Systemen die Absorptionsflüssigkeit zwischen [[Absorption]] und Regeneration gepumpt werden kann.


Damit der Prozess kontinuierlich ablaufen kann, muss das Wasser aus den Absorptionsmedien wieder entfernt werden. Diese Austreibung geschieht durch Wärmezufuhr. Vorteilhaft bei beiden Systemen ist, dass keine sehr hohen Temperaturen für das Austreiben des Wassers notwendig sind und deshalb sehr einfach solare Wärme oder Niedertemperaturabwärme aus industriellen Prozessen und Kraft-Wärme-Kopplungsanlagen verwendet werden kann.
Damit der Prozess kontinuierlich ablaufen kann, muss das Wasser aus den [[Absorption]]smedien wieder entfernt werden. Diese Austreibung geschieht durch Wärmezufuhr. Vorteilhaft bei beiden Systemen ist, dass keine sehr hohen Temperaturen für das Austreiben des Wassers notwendig sind und deshalb sehr einfach solare Wärme oder Niedertemperaturabwärme aus industriellen Prozessen und [[Kraft-Wärme-Kopplung]]sanlagen verwendet werden kann.


Beide Verfahren können somit überall dort eingesetzt werden, wo die Luft gekühlt und ggf. entfeuchtet werden soll. Prinzipbedingt ist bei diesen Systemen gleichzeitig eine sehr effiziente Wärme- und ggf. auch Feuchterückgewinnung vorhanden (vergl. [[#Luft/Luft – Wärmerückgewinnung|Abschnitt 5.1 Luft/Luft – Wärmerückgewinnung]]). Dies ermöglicht auch einen energieeffizienten Betrieb im Winter.
Beide Verfahren können somit überall dort eingesetzt werden, wo die Luft gekühlt und ggf. entfeuchtet werden soll. Prinzipbedingt ist bei diesen Systemen gleichzeitig eine sehr effiziente Wärme- und ggf. auch Feuchterückgewinnung vorhanden (vergl. [[#Luft/Luft – Wärmerückgewinnung|Abschnitt 5.1 Luft/Luft – Wärmerückgewinnung]]). Dies ermöglicht auch einen energieeffizienten Betrieb im Winter.
Zeile 98: Zeile 100:
|}
|}
{|align="right"
{|align="right"
| [[Bild:Luft energie co2-einsparung sorptionsklimasysteme.gif|thumb|upright=2|Mögl. zusätzl. CO<sub>2</sub>-Minderung bei Absorptionsklimasystemen p.a.]]
| [[Bild:Luft energie co2-einsparung sorptionsklimasysteme.gif|thumb|upright=2|Mögl. zusätzl. [[CO2-Einsparung|CO<sub>2</sub>-Minderung]] bei Absorptionsklimasystemen p.a.]]
|}
|}
;Mögliche [[Primärenergie]]einsparung durch Sorptionsklimasysteme
;Mögliche [[Primärenergie]]einsparung durch Sorptionsklimasysteme
Nach einer Erhebung von Beck im Jahr 2000 [3] werden in Deutschland pro Jahr ca. 38.000 [[RLT-Anlage|RLT-Zentralgeräte]] mit einer Luftleistung von insgesamt 658 Mio m3/h verkauft. Unterstellt man, dass 60 % des Luftvolumenstromes Zuluft und davon 49 % mit Kühlung ausgestattet sind, dann ergibt sich ein jährlicher [[Primärenergiebedarf]] für Kühlung von rund 331 GWh. In sehr vielen Fällen ist ein alternativer Einsatz von Sorptionsklimasystemen mit Solar- oder Abwärmenutzung möglich.  
Nach einer Erhebung von Beck im Jahr 2000 <ref name="Quelle_3" /> werden in Deutschland pro Jahr ca. 38.000 [[RLT-Anlage|RLT-Zentralgeräte]] mit einer Luftleistung von insgesamt 658 Mio m3/h verkauft. Unterstellt man, dass 60 % des Luftvolumenstromes Zuluft und davon 49 % mit Kühlung ausgestattet sind, dann ergibt sich ein jährlicher [[Primärenergiebedarf]] für Kühlung von rund 331 GWh. In sehr vielen Fällen ist ein alternativer Einsatz von Sorptionsklimasystemen mit Solar- oder Abwärmenutzung möglich.  


=====[[Sorptionsklimasystem - Absorber fest|Sorptionsklimasysteme mit festen Absorbern]]=====
=====[[Sorptionsklimasystem - Absorber fest|Sorptionsklimasysteme mit festen Absorbern]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Sorptionsklimasystem - Absorber fest|Sorptionsklimasysteme mit festen Absorbern]]''
=====[[Sorptionsklimasystem - Absorber flüssig|Sorptionsklimasysteme mit flüssigen Absorbern]]=====
=====[[Sorptionsklimasystem - Absorber flüssig|Sorptionsklimasysteme mit flüssigen Absorbern]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Sorptionsklimasystem - Absorber flüssig|Sorptionsklimasysteme mit flüssigen Absorbern]]''
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


===Geothermische Energie — Nutzung der Erdwärme und Erdkälte===
===Geothermische Energie — Nutzung der [[Erdwärme]] und Erdkälte===
Oberflächennahe geothermische Energie ist besonders für die Nutzung in Klima- und Lüftungssystemen geeignet. Die Temperatur des ungestörten Untergrundes beträgt im Tiefen bis ca. 100 m 8 °C bis 12 °C. Die Nutzung dieses Energiereservoirs kann durch verschiedene Systeme erfolgen:
Oberflächennahe [[Geothermie|geothermische Energie]] ist besonders für die Nutzung in Klima- und Lüftungssystemen geeignet. Die Temperatur des ungestörten Untergrundes beträgt im Tiefen bis ca. 100 m 8 °C bis 12 °C. Die Nutzung dieses Energiereservoirs kann durch verschiedene Systeme erfolgen:
{|align="right"
{|align="right"
| [[Bild:Luft energie erdwaerme saisonal.gif|thumb|upright=2|Saisonale Nutzung eines geothermischen Systems]]
| [[Bild:Luft energie erdwaerme saisonal.gif|thumb|350px|upright=2|Saisonale Nutzung eines geothermischen Systems]]
|}
|}
* '''Grundwassernutzung''': Diese Art der Nutzung ist dort möglich, wo durch Saug- und Förderbrunnen ein geschlossener und entsprechend ergiebiger Wasserkreislauf möglich ist. Die Instandhaltung und der Betrieb können abhängig von den lokalen Vorschriften und Gegebenheiten aufwändig sein.
* '''Grundwassernutzung''': Diese Art der Nutzung ist dort möglich, wo durch Saug- und Förderbrunnen ein geschlossener und entsprechend ergiebiger Wasserkreislauf möglich ist. Die Instandhaltung und der Betrieb können abhängig von den lokalen Vorschriften und Gegebenheiten aufwändig sein.
* '''Erdwärmetauscher''': Horizontal (Erdkollektoren) oder vertikal (Erdsonden) verlegte Kunststoffrohre bilden einen Wärmeübertrager mit dem Untergrund. Die Leistungsfähigkeit dieses Wärmetauschersystems ist abhängig von den thermischen Eigenschaften des Untergrundes und der Grundwasserverhältnisse. Je tiefer die Rohre verlegt sind, desto unabhängiger ist das System von der klimatischen Umgebung.
* '''[[Wärmepumpe|Erdwärmetauscher]]''': Horizontal (Erdkollektoren) oder vertikal (Erdsonden) verlegte Kunststoffrohre bilden einen Wärmeübertrager mit dem Untergrund. Die Leistungsfähigkeit dieses Wärmetauschersystems ist abhängig von den thermischen Eigenschaften des Untergrundes und der Grundwasserverhältnisse. Je tiefer die Rohre verlegt sind, desto unabhängiger ist das System von der klimatischen Umgebung.
* '''Energiefundamente''': Diese Systeme sind besonders wirtschaftlich, da hierbei die manchmal ohnehin notwendigen Gründungspfähle, Fundamentplatten, Pfahlwände usw. zusätzlich nur mit einem Kunstoffrohrsystem ausgestattet werden müssen. Ansonsten ist die Funktion analog den Erdwärmetauschern.
* '''Energiefundamente''': Diese Systeme sind besonders wirtschaftlich, da hierbei die manchmal ohnehin notwendigen Gründungspfähle, Fundamentplatten, Pfahlwände usw. zusätzlich nur mit einem Kunstoffrohrsystem ausgestattet werden müssen. Ansonsten ist die Funktion analog den [[Wärmepumpe|Erdwärmetauschern]].


Abhängig vom notwendigen Temperaturniveau und der Leistungsfähigkeit des Systems kann die geothermische Energie auf vielfältige Weise im Gebäude genutzt werden. Im Sommer dient der Untergrund als Wärmesenke. Die notwendige Kühlenergie wird dem Gebäude entzogen und dem Untergrund zugeführt. Dies kann direkt (nächster [[#Direkte Nutzung der Erdkälte|Abschnitt 3.1 - Direkte Nutzung der Erdkälte]]) oder über die Nutzung einer Kältemaschine oder Wärmepumpe ([[#Nutzung der Erdkälte über Kältemaschinen|Abschnitt 3.2 - Nutzung der Erdkälte über Kältemaschinen]]) geschehen.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Abhängig vom notwendigen Temperaturniveau und der Leistungsfähigkeit des Systems kann die [[Geothermie|geothermische Energie]] auf vielfältige Weise im Gebäude genutzt werden. Im Sommer dient der Untergrund als Wärmesenke. Die notwendige Kühlenergie wird dem Gebäude entzogen und dem Untergrund zugeführt. Dies kann direkt (nächster [[#Direkte Nutzung der Erdkälte|Abschnitt 3.1 - Direkte Nutzung der Erdkälte]]) oder über die Nutzung einer Kältemaschine oder [[Wärmepumpe]] ([[#Nutzung der Erdkälte über Kältemaschinen|Abschnitt 3.2 - Nutzung der Erdkälte über Kältemaschinen]]) geschehen.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Direkte Nutzung der Erdkälte====
====Direkte Nutzung der Erdkälte====
Zeile 124: Zeile 126:
In Abhängigkeit des Temperaturniveaus des aus dem Erdreich strömenden Trägermediums und der erreichbaren Leistung (Wärmesenke) können ohne eine zusätzliche Kältemaschine verschiedenartige Raumkühlsysteme im Gebäude zum Einsatz kommen:
In Abhängigkeit des Temperaturniveaus des aus dem Erdreich strömenden Trägermediums und der erreichbaren Leistung (Wärmesenke) können ohne eine zusätzliche Kältemaschine verschiedenartige Raumkühlsysteme im Gebäude zum Einsatz kommen:
{|align="right"
{|align="right"
| [[Bild:Luft energie raumkuehlsysteme.gif|thumb|450px|upright=2|Übersicht über Raumkühlsysteme [4]]]
| [[Bild:Luft energie raumkuehlsysteme.gif|thumb|450px|upright=2|Übersicht über Raumkühlsysteme <ref name="Quelle_4" />]]
|}
|}
* Decken-, Wand- und Brüstungskonvektoren bis ca. 14 - 16 °C Austrittstemperatur aus dem Erdreich
* Decken-, Wand- und Brüstungskonvektoren bis ca. 14 - 16 °C Austrittstemperatur aus dem Erdreich
* Kühlsegel, Kühl- und Putzdecken mit Kapillarrohrmatten bis ca. 16 -18 °C.
* Kühlsegel, Kühl- und Putzdecken mit Kapillarrohrmatten bis ca. 16 -18 °C.
* Bauteilaktivierung bis ca. 18 - 20 °C
* Bauteilaktivierung bis ca. 18 - 20 °C
Alle diese Systeme zur Raumkühlung können sowohl im Neubau wie auch bei der [[Sanierung]] eingesetzt werden (Bauteilaktivierung durch spezielle Systeme). Grundsätzlich können diese Systeme aufgrund der hohen Systemtemperaturen die Luft nicht entfeuchten. Es muss sogar besonders darauf geachtet werden, dass an keiner Stelle des Systems [[Kondensat]] auftreten kann. Insbesondere in feuchtwarmer Witterung (z.B. auch in  Flusstälern) muss die Leistung des Systems gegebenenfalls durch eine Anhebung der Systemtemperatur gedrosselt werden, damit die Vorlauftemperatur sicher oberhalb der [[Taupunkttemperatur]] des Raumes liegt.
Alle diese Systeme zur Raumkühlung können sowohl im Neubau wie auch bei der [[Sanierung]] eingesetzt werden (Bauteilaktivierung durch spezielle Systeme). Grundsätzlich können diese Systeme aufgrund der hohen Systemtemperaturen die Luft nicht entfeuchten. Es muss sogar besonders darauf geachtet werden, dass an keiner Stelle des Systems [[Kondensat]] auftreten kann. Insbesondere in feuchtwarmer Witterung (z.B. auch in  Flusstälern) muss die Leistung des Systems gegebenenfalls durch eine Anhebung der Systemtemperatur gedrosselt werden, damit die [[Vorlauftemperatur]] sicher oberhalb der [[Taupunkttemperatur]] des Raumes liegt.


In vielen Fällen sollte ein derartiges System mit einem Klima- und Lüftungssystem kombiniert werden, bei dem die Luft auch entfeuchtet werden kann. Es empfehlen sich hierbei insbesondere sorptive Systeme (siehe [[#Thermische Klimaprozesse – Sorptionsklimasysteme|Abschnitt 2.2 - Thermische Klimaprozesse – Sorptionsklimasysteme]]).<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
In vielen Fällen sollte ein derartiges System mit einem Klima- und Lüftungssystem kombiniert werden, bei dem die Luft auch entfeuchtet werden kann. Es empfehlen sich hierbei insbesondere sorptive Systeme (siehe [[#Thermische Klimaprozesse – Sorptionsklimasysteme|Abschnitt 2.2 - Thermische Klimaprozesse – Sorptionsklimasysteme]]).<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Zeile 142: Zeile 144:
Eine weitere Verbreitung haben derartige Systeme im Bereich der [[Wohnungslüftung]] gefunden. Dort steht üblicherweise der notwendige Platz zur Verfügung, und die Dimensionen erlauben einen kostengünstigen Einsatz von geeigneten Rohrmaterialien und Systemausführungen.
Eine weitere Verbreitung haben derartige Systeme im Bereich der [[Wohnungslüftung]] gefunden. Dort steht üblicherweise der notwendige Platz zur Verfügung, und die Dimensionen erlauben einen kostengünstigen Einsatz von geeigneten Rohrmaterialien und Systemausführungen.


Vielfach werden auch größere [[Lüftungsanlagen - Hygiene|Lüftungsanlagen]] an Erdreich-Luft-Wärmeübertrager angeschlossen. Die dort verwendeten Rohrmaterialien (oftmals Abwasserrohre aus Beton) sind aber kritisch bezüglich einer ausreichenden Lufthygiene anzusehen.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Vielfach werden auch größere [[Lüftungsanlage]] an Erdreich-Luft-Wärmeübertrager angeschlossen. Die dort verwendeten Rohrmaterialien (oftmals Abwasserrohre aus Beton) sind aber kritisch bezüglich einer ausreichenden Lufthygiene anzusehen.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
{|align="right"
{|align="right"
| [[Bild:Luft energie pe-einsparung erdreich-waermeuebertragung.gif|thumb|upright=2|Energieeinsparpotenziale durch Erdreich-Wärmeübertrager]]
| [[Bild:Luft energie pe-einsparung erdreich-waermeuebertragung.gif|thumb|upright=2|Energieeinsparpotenziale durch Erdreich-Wärmeübertrager]]
|}
|}
{|align="right"
{|align="right"
| [[Bild:Luft energie co2-einsparung erdreich-waermeuebertragung.gif|thumb|upright=2|CO<sub>2</sub>-Minderung durch Erdreich-Wärmeübertrager im Wohnungsbau]]
| [[Bild:Luft energie co2-einsparung erdreich-waermeuebertragung.gif|thumb|upright=2|[[CO2-Einsparung|CO<sub>2</sub>-Minderung]] durch Erdreich-Wärmeübertrager im Wohnungsbau]]
|}
|}
;Mögliche [[Primärenergie]]einsparung durch Erdreich-Wärmeübertrager bei Lüftungsanlagen im Wohnungsbau
;Mögliche [[Primärenergie]]einsparung durch Erdreich-Wärmeübertrager bei [[Lüftungsanlage]]n im Wohnungsbau
Das Diagramm zeigt die mögliche [[Primärenergie]]einsparung, wenn Lüftungsanlagen im Wohnungsbau mit Erdreich-Wärmeübertrager ausgerüstet werden. Nimmt man beispielsweise an, dass zu einem zukünftigen Zeitpunkt 10 % des gesamten Gebäudebestandes mit Lüftungsanlagen ausgerüstet sind, dann ergeben sich beim Einbau von Erdreich-
Das Diagramm zeigt die mögliche [[Primärenergie]]einsparung, wenn [[Lüftungsanlage]]n im Wohnungsbau mit Erdreich-Wärmeübertrager ausgerüstet werden. Nimmt man beispielsweise an, dass zu einem zukünftigen Zeitpunkt 10 % des gesamten Gebäudebestandes mit [[Lüftungsanlage]]n ausgerüstet sind, dann ergeben sich beim Einbau von Erdreich-
Wärmeübertragern zusätzliche Energieeinsparungen von 729 GWh pro Jahr [6], [7].
Wärmeübertragern zusätzliche Energieeinsparungen von 729 GWh pro Jahr <ref name="Quelle_6" />, <ref name="Quelle_7" />.
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Nutzung der Erdkälte über Kältemaschinen====
====Nutzung der Erdkälte über Kältemaschinen====
{|align="right"
{|align="right"
| [[Bild:Luft energie erdreich-kaeltemaschine.gif|thumb|upright=2|Einbindung einer Kältemaschine /Wärmepumpe in Ges.-konzept geotherm. Gebäudetemperierung]]
| [[Bild:Luft energie erdreich-kaeltemaschine.gif|thumb|upright=2|Einbindung einer Kältemaschine /[[Wärmepumpe]] in Ges.-konzept geotherm. Gebäudetemperierung]]
|}
|}
Reicht das Temperaturniveau des aus dem Erdreich strömenden Trägermediums nicht aus, um die erforderliche Kühlaufgabe zu übernehmen, dann kann das Erdreich als Wärmesenke für eine Kältemaschine verwendet werden. Dies ist zum Beispiel dann notwendig, wenn die Zuluft des Gebäudes für die Klimatisierungsaufgabe entfeuchtet werden
Reicht das Temperaturniveau des aus dem Erdreich strömenden Trägermediums nicht aus, um die erforderliche Kühlaufgabe zu übernehmen, dann kann das Erdreich als Wärmesenke für eine Kältemaschine verwendet werden. Dies ist zum Beispiel dann notwendig, wenn die Zuluft des Gebäudes für die Klimatisierungsaufgabe entfeuchtet werden
muss. Die notwendige Kaltwassertemperatur für die Entfeuchtung beträgt dann ca. 6 bis 8 °C und dies steht im Erdreich nicht zur Verfügung.
muss. Die notwendige Kaltwassertemperatur für die Entfeuchtung beträgt dann ca. 6 bis 8 °C und dies steht im Erdreich nicht zur Verfügung.


Der elektrische Energiebedarf für den Betrieb der Kältemaschine sinkt mit steigender Temperatur im Kondensatorkreis. Bei wassergekühlten Kältemaschinen ist eine Rückkühlung über die Außenluft üblich (nasse oder trockene Kühltürme). Die Systemtemperaturen im Rückkühlkreis liegen damit in der Praxis zwischen 25 °C und 40 °C. Nutzt man die Wärmesenke Erdreich, dann kann man mit geeigneten Kältemaschinen die Systemtemperaturen
Der elektrische [[Energiebedarf]] für den Betrieb der Kältemaschine sinkt mit steigender Temperatur im Kondensatorkreis. Bei wassergekühlten Kältemaschinen ist eine Rückkühlung über die Außenluft üblich (nasse oder trockene Kühltürme). Die Systemtemperaturen im Rückkühlkreis liegen damit in der Praxis zwischen 25 °C und 40 °C. Nutzt man die Wärmesenke Erdreich, dann kann man mit geeigneten Kältemaschinen die Systemtemperaturen
im Rückkühlkreis absenken. Damit steigt die Leistung der Kältemaschine, und der elektrische Energiebedarf sinkt. Oft kann auf einen zusätzlichen Kühlturm ganz verzichtet werden.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
im Rückkühlkreis absenken. Damit steigt die Leistung der Kältemaschine, und der elektrische [[Energiebedarf]] sinkt. Oft kann auf einen zusätzlichen Kühlturm ganz verzichtet werden.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
{|align="right"
{|align="right"
| [[Bild:Luft energie pe-einsparung erdreich-kaeltemaschine.gif|thumb|upright=2|Mögl. zusätzl. [[Primärenergie|PE-]]Minderung durch Nutzung des Erdreichs als Wärmesenke p.a. (EER<sub>Standard</sub> = 3,5 und EER<sub>geothermisch</sub> = 5,2)]]
| [[Bild:Luft energie pe-einsparung erdreich-kaeltemaschine.gif|thumb|upright=2|Mögl. zusätzl. [[Primärenergie|PE-]]Minderung durch Nutzung des Erdreichs als Wärmesenke p.a. (EER<sub>Standard</sub> = 3,5 und EER<sub>geothermisch</sub> = 5,2)]]
|}
|}
{|align="right"
{|align="right"
| [[Bild:Luft energie co2-einsparung erdreich-kaeltemaschine.gif|thumb|upright=2|Mögl. zusätzl. CO<sub>2</sub>-Minderung durch Nutzung des Erdreichs als Wärmesenke p.a. (EER<sub>Standard</sub> = 3,5 und EER<sub>geothermisch</sub> = 5,2)]]
| [[Bild:Luft energie co2-einsparung erdreich-kaeltemaschine.gif|thumb|upright=2|Mögl. zusätzl. [[CO2-Einsparung|CO<sub>2</sub>-Minderung]] durch Nutzung des Erdreichs als Wärmesenke p.a. (EER<sub>Standard</sub> = 3,5 und EER<sub>geothermisch</sub> = 5,2)]]
|}
|}
;Mögliche [[Primärenergie]]einsparung durch die Nutzung des Erdreiches als Wärmesenke bei der Klimakaltwassererzeugung.
;Mögliche [[Primärenergie]]einsparung durch die Nutzung des Erdreiches als Wärmesenke bei der Klimakaltwassererzeugung.
Analog der Schätzung der pro Jahr in Deutschland verkauften Kaltwassererzeuger [2] und den Abschätzungen nach [[#Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie|Abschnitt 2.1 -Thermische Kälteerzeugung ...]] beträgt der Gesamtstrombedarf der jährlich neu verkauften Kaltwassererzeuger für die Gebäudeklimatisierung ca. 263 GWh [[Primärenergie]] (PE) (Neubau und Sanierung).
Analog der Schätzung der pro Jahr in Deutschland verkauften Kaltwassererzeuger <ref name="Quelle_2" /> und den Abschätzungen nach [[#Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie|Abschnitt 2.1 -Thermische Kälteerzeugung ...]] beträgt der Gesamtstrombedarf der jährlich neu verkauften Kaltwassererzeuger für die Gebäudeklimatisierung ca. 263 GWh [[Primärenergie]] (PE) (Neubau und Sanierung).


Das Diagramm zeigt die Auswirkungen auf den Energiebedarf unter der Annahme, dass 10 bis 30 % der neu ausgelieferten Kaltwassersysteme (Neubau und Sanierung) mit einer geothermischen Rückkühlung ausgestattet werden.
Das Diagramm zeigt die Auswirkungen auf den [[Energiebedarf]] unter der Annahme, dass 10 bis 30 % der neu ausgelieferten Kaltwassersysteme (Neubau und Sanierung) mit einer [[Geothermie|geothermischen]] Rückkühlung ausgestattet werden.


Wenn 30 % der neu installierten Systeme mit geothermischer Rückkühlung ausgestattet werden, beträgt die Energieeinsparung ca. 34 GWh<sub>Primär</sub> Strom oder 13 %.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Wenn 30 % der neu installierten Systeme mit [[Geothermie|geothermischer]] Rückkühlung ausgestattet werden, beträgt die Energieeinsparung ca. 34 GWh<sub>Primär</sub> Strom oder 13 %.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


===Freie Kühlung===
===Freie Kühlung===
Zeile 186: Zeile 188:
|}
|}
* '''Offene Kühltürme''': Das zu kühlende Wasser wird mittels Sprühdüsen über Kunststoff-Rieseleinbauten verteilt. Das Kühlwasser ist offen in direktem Kontakt mit der Luft. Es erfolgt eine sensible und latente Wärmeübertragung an die Außenluft.
* '''Offene Kühltürme''': Das zu kühlende Wasser wird mittels Sprühdüsen über Kunststoff-Rieseleinbauten verteilt. Das Kühlwasser ist offen in direktem Kontakt mit der Luft. Es erfolgt eine sensible und latente Wärmeübertragung an die Außenluft.
* '''Geschlossene Kühltürme''': Die zu kühlende Flüssigkeit (Wasser oder Glykol-Wasser-Mischung) zirkuliert in einem geschlossenen Kreislauf in einem Wärmeübertrager. Dieser wird von außen mit einem separaten Kreislauf mit Wasser besprüht. Es erfolgt eine sensible und latente Wärmeübertragung an die Außenluft.
* '''Geschlossene Kühltürme''': Die zu kühlende Flüssigkeit (Wasser oder [[Glykole|Glykol]]-Wasser-Mischung) zirkuliert in einem geschlossenen Kreislauf in einem Wärmeübertrager. Dieser wird von außen mit einem separaten Kreislauf mit Wasser besprüht. Es erfolgt eine sensible und latente Wärmeübertragung an die Außenluft.
* '''Trockene Rückkühlung''': Wasser zirkuliert nur in einem geschlossen Kreislauf, und der Wärmetauscher wird nicht besprüht. Es erfolgt nur eine sensible Wärmeübertragung an die Außenluft.
* '''Trockene Rückkühlung''': Wasser zirkuliert nur in einem geschlossen Kreislauf, und der Wärmetauscher wird nicht besprüht. Es erfolgt nur eine sensible Wärmeübertragung an die Außenluft.
* '''Hybride Kühltürme''': Ein hybrider Kühlturm ist eine Kombination von geschlossenem und trockenem Rückkühler. Je nach Außenkonditionen erfolgt die Wärmeübertragung sensibel, latent oder in Kombination.
* '''Hybride Kühltürme''': Ein hybrider Kühlturm ist eine Kombination von geschlossenem und trockenem Rückkühler. Je nach Außenkonditionen erfolgt die Wärmeübertragung sensibel, latent oder in Kombination.
Zeile 199: Zeile 201:
|}
|}
{|align="right"
{|align="right"
| [[Bild:Luft energie co2-einsparung kuehlturm.gif|thumb|upright=2|CO<sub>2</sub>-Einsparpotenziale durch Nutzung freier Kühlung für die Gebäudeklimatisierung (Kältemaschine EER = 3,5)]]
| [[Bild:Luft energie co2-einsparung kuehlturm.gif|thumb|upright=2|[[CO2-Einsparung|CO<sub>2</sub>-Einsparpotenziale]] durch Nutzung freier Kühlung für die Gebäudeklimatisierung (Kältemaschine EER = 3,5)]]
|}
|}
Die Abbildung zeigt die Auswirkungen auf den Energiebedarf bei der Kälteerzeugung unter der Annahme, dass 10 bis 30 % der neu installierten Kältesysteme (Neubau und Sanierung) mit einer freien Kühlung ausgestattet werden. Wenn 30 % so ausgeführt werden, dann beträgt die [[Primärenergie]]einsparung ca. 79 GWh oder 30 %.
Die Abbildung zeigt die Auswirkungen auf den [[Energiebedarf]] bei der Kälteerzeugung unter der Annahme, dass 10 bis 30 % der neu installierten Kältesysteme (Neubau und Sanierung) mit einer freien Kühlung ausgestattet werden. Wenn 30 % so ausgeführt werden, dann beträgt die [[Primärenergie]]einsparung ca. 79 GWh oder 30 %.
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


Zeile 207: Zeile 209:
In Gebäuden mit hohem thermischem Speichervermögen und moderaten inneren Lasten kann die Nachtlüftung den Raumkomfort signifikant verbessern. Kriterien für die Nutzung der Nachtlüftung im Sommer zur Kühlung sind:
In Gebäuden mit hohem thermischem Speichervermögen und moderaten inneren Lasten kann die Nachtlüftung den Raumkomfort signifikant verbessern. Kriterien für die Nutzung der Nachtlüftung im Sommer zur Kühlung sind:
* Ein moderates Klima: Das heißt, dass die Nachttemperaturen außen über einen ausreichenden Zeitraum deutlich unter den Temperaturen im Gebäude liegen müssen.
* Ein moderates Klima: Das heißt, dass die Nachttemperaturen außen über einen ausreichenden Zeitraum deutlich unter den Temperaturen im Gebäude liegen müssen.
* Die Außenluftqualität (Gerüche, [[Schadstoff]]e, Feinstaub) muss ausreichend sein.
* Die Außenluftqualität (Gerüche, [[Schadstoff]]e, [[Feinstaub]]) muss ausreichend sein.
* Einbruchsschutz und Sicherheitsauflagen.
* Einbruchsschutz und Sicherheitsauflagen.
* [[Brandschutz]] und -auflagen.
* [[Brandschutz]] und -auflagen.
Zeile 213: Zeile 215:
* Lärmschutz und Akustik.
* Lärmschutz und Akustik.
{|align="right"
{|align="right"
| [[Bild:Luft energie nachtlueftung temperatur.gif|thumb|upright=2|Beispiele für Temperatur-verhalten bei freier Nachtlüftung [13]]]
| [[Bild:Luft energie nachtlueftung temperatur.gif|thumb|upright=2|Beispiele für Temperatur-verhalten bei freier Nachtlüftung <ref name="Quelle_13" />]]
|}
|}
Dies bedeutet, dass eine Nachtlüftung ausschließlich über die Fenster in vielen Fällen nicht dauerhaft wirksam sein kann. Je nach den Randbedingungen können unterschiedliche Mechanismen der ventilatorgestützten freien Kühlung zum Einsatz kommen:
Dies bedeutet, dass eine Nachtlüftung ausschließlich über die Fenster in vielen Fällen nicht dauerhaft wirksam sein kann. Je nach den Randbedingungen können unterschiedliche Mechanismen der ventilatorgestützten freien Kühlung zum Einsatz kommen:
Zeile 226: Zeile 228:


=====[[Verdunstungskühlung indirekt mit Abluft|Indirekte Verdunstungskühlung mit Abluft]]=====
=====[[Verdunstungskühlung indirekt mit Abluft|Indirekte Verdunstungskühlung mit Abluft]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Verdunstungskühlung indirekt mit Abluft|Indirekte Verdunstungskühlung mit Abluft]]''


=====[[Verdunstungskühlung indirekt mit Außenluft|Indirekte Verdunstungskühlung mit Außenluft]]=====
=====[[Verdunstungskühlung indirekt mit Außenluft|Indirekte Verdunstungskühlung mit Außenluft]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Verdunstungskühlung indirekt mit Außenluft|Indirekte Verdunstungskühlung mit Außenluft]]''


=====Einsparpotenziale durch die indirekte Verdunstungskühlung=====
=====Einsparpotenziale durch die indirekte Verdunstungskühlung=====
Zeile 236: Zeile 238:
|}
|}
{|align="right"
{|align="right"
| [[Bild:Luft energie co2-einsparung verdunstungskuehlung indirekt.gif|thumb|upright=2|Mögl. CO<sub>2</sub>-Einsparung durch Nutzung indirekter Verdunstungskühlung p.a.]]
| [[Bild:Luft energie co2-einsparung verdunstungskuehlung indirekt.gif|thumb|upright=2|Mögl. [[CO2-Einsparung|CO<sub>2</sub>-Einsparung]] durch Nutzung indirekter Verdunstungskühlung p.a.]]
|}
|}
Die Diagramme zeigen die möglichen zusätzlichen jährlichen Einsparungen an Kälteenergie, wenn ein entsprechender Anteil dieser Geräte mit einer indirekten Verdunstungskühlung ausgestattet wird. Voraussetzung für diese Technologie ist auch der Einsatz eines effizienten Wärmerückgewinnungssystems (siehe hierzu auch [[#Wärmerückgewinnung im Nichtwohnbereich|Abschnitt 5.1.1 -Wärmerückgewinnung im Nichtwohnbereich]]). Die Randbedingungen sind analog der Sorptionsklimasysteme in [[#Thermische Klimaprozesse – Sorptionsklimasysteme|Abschnitt 2.2 - Thermische Klimaprozesse]] gewählt.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Die Diagramme zeigen die möglichen zusätzlichen jährlichen Einsparungen an Kälteenergie, wenn ein entsprechender Anteil dieser Geräte mit einer indirekten Verdunstungskühlung ausgestattet wird. Voraussetzung für diese Technologie ist auch der Einsatz eines effizienten [[Wärmerückgewinnung]]ssystems (siehe hierzu auch [[#Wärmerückgewinnung im Nichtwohnbereich|Abschnitt 5.1.1 -Wärmerückgewinnung im Nichtwohnbereich]]). Die Randbedingungen sind analog der Sorptionsklimasysteme in [[#Thermische Klimaprozesse – Sorptionsklimasysteme|Abschnitt 2.2 - Thermische Klimaprozesse]] gewählt.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


{|align="right"
{|align="right"
Zeile 249: Zeile 251:
| [[Bild:Luft energie waermerueckgewinnung regenerativ.gif|thumb|upright=2|Regenerativer Anteil der Wärmerückgewinnung]]
| [[Bild:Luft energie waermerueckgewinnung regenerativ.gif|thumb|upright=2|Regenerativer Anteil der Wärmerückgewinnung]]
|}
|}
;Wärmerückgewinnung ist eine Regenerative Energiequelle!
;[[Wärmerückgewinnung]] ist eine [[Regenerative Energie]]quelle!
Oft stellt sich in diesem Zusammenhang die Frage, ob die [[Wärmerückgewinnung]] aus der [[Lüftung]] eine Regenerative Energiequelle darstellt. Diese Frage ist zunächst nicht so einfach zu beantworten und ist stets eine Frage der gewählten Bilanzgrenze. Man kann jedoch Folgendes feststellen:
Oft stellt sich in diesem Zusammenhang die Frage, ob die [[Wärmerückgewinnung]] aus der [[Lüftung]] eine [[Regenerative Energie]]quelle darstellt. Diese Frage ist zunächst nicht so einfach zu beantworten und ist stets eine Frage der gewählten Bilanzgrenze. Man kann jedoch Folgendes feststellen:
# Die Wärmequelle Außenluft wird üblicherweise als Regenerative Energiequelle angesehen (Bsp Außenluft-Wärmepumpe zur Beheizung). Damit ist die Außenluft eine Umweltenergie und die Abluft einer Lüftungsanlage wird zur Außenluft, wenn sie das Gebäude verlässt. Die Nutzung der Abluft als Wärmequelle ist aufgrund des höheren Temperaturniveaus in jedem Fall effizienter als die Nutzung der Außenluft.
# Die Wärmequelle Außenluft wird üblicherweise als [[Regenerative Energie]]quelle angesehen (Bsp Außenluft-[[Wärmepumpe]] zur Beheizung). Damit ist die Außenluft eine Umweltenergie und die Abluft einer [[Lüftungsanlage]] wird zur Außenluft, wenn sie das Gebäude verlässt. Die Nutzung der Abluft als Wärmequelle ist aufgrund des höheren Temperaturniveaus in jedem Fall effizienter als die Nutzung der Außenluft.
# Ein großer Teil der inneren Wärmequellen in Gebäuden stammt aus regenerativen Quellen:
# Ein großer Teil der inneren Wärmequellen in Gebäuden stammt aus regenerativen Quellen:
## Passive solare Gewinne über die Verglasung (100 % regenerativ)
## [[Passive Solarnutzung|Passive solare Gewinne]] über die Verglasung (100 % regenerativ)
## Personen (100 % regenerativ)
## Personen (100 % regenerativ)
## Der regenerative Anteil des Strombedarfes (derzeit ca. 10 % mit steigenderTendenz)
## Der regenerative Anteil des Strombedarfes (derzeit ca. 10 % mit steigenderTendenz)
## Der regenerative Anteil der Raumheizung, z. B. Biomasse, Geothermische Energie, Umweltenergie (derzeit ca. 10 % mit stark steigender Tendenz)
## Der regenerative Anteil der Raumheizung, z. B. [[Biomasse]], [[Geothermie|Geothermische Energie]], Umweltenergie (derzeit ca. 10 % mit stark steigender Tendenz)
Damit stammen die Lüftungswärmeverluste zu ca. 40 % aus regenerativen Quellen. Mit einer [[Wärmerückgewinnung]] kann diese [[Wärme]] zu einem großen Teil wiederverwertet werden. Ergänzend kommt hinzu, dass die [[Wärmerückgewinnung]] auch die Energie, die das WRG-System bereits wiedergewonnen und in das Gebäude zurückgeführt hat, erneut verfügbar machen kann. Zurück gewonnene Energie wird also mehrfach zurückgewonnen.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Damit stammen die Lüftungswärmeverluste zu ca. 40 % aus regenerativen Quellen. Mit einer [[Wärmerückgewinnung]] kann diese [[Wärme]] zu einem großen Teil wiederverwertet werden. Ergänzend kommt hinzu, dass die [[Wärmerückgewinnung]] auch die Energie, die das WRG-System bereits wiedergewonnen und in das Gebäude zurückgeführt hat, erneut verfügbar machen kann. Zurück gewonnene Energie wird also mehrfach zurückgewonnen.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


Zeile 265: Zeile 267:
Wärmerückgewinner übertragen die Wärme (oder Kälte) der Abluft auf die Außenluft. Mit Sorptionsrotoren wird zusätzlich auch Feuchte übertragen. Dadurch kann nicht nur weitere Energie eingespart werden; auch die Investition für die Kälteerzeugung wird erheblich reduziert.
Wärmerückgewinner übertragen die Wärme (oder Kälte) der Abluft auf die Außenluft. Mit Sorptionsrotoren wird zusätzlich auch Feuchte übertragen. Dadurch kann nicht nur weitere Energie eingespart werden; auch die Investition für die Kälteerzeugung wird erheblich reduziert.
;Systeme
;Systeme
Man unterscheidet rekuperative (Wärmeleitung) und regenerative (Wärmespeicherung) Verfahren. Folgende Systeme werden eingesetzt (Stückprozente):
Man unterscheidet rekuperative ([[Wärmeleitung]]) und regenerative ([[Wärmespeicherfähigkeit|Wärmespeicherung]]) Verfahren. Folgende Systeme werden eingesetzt (Stückprozente):
* Plattenwärmeaustauscher (ca. 40 %)
* Plattenwärmeaustauscher (ca. 40 %)
* Rotationswärmeaustauscher (ca. 30 %)
* Rotationswärmeaustauscher (ca. 30 %)
Zeile 277: Zeile 279:
| [[Bild:Luft energie luft-luft warmerueckgewinnung1.gif|thumb|upright=2|Luft/Luft – Wärmerückgewinnung]]
| [[Bild:Luft energie luft-luft warmerueckgewinnung1.gif|thumb|upright=2|Luft/Luft – Wärmerückgewinnung]]
|}
|}
Wärmerückgewinnung aus der Abluft ist die effizienteste Möglichkeit zur Energieeinsparung in Lüftungsanlagen. Daraus resultieren aber noch weitere Vorteile:
[[Wärmerückgewinnung]] aus der Abluft ist die effizienteste Möglichkeit zur Energieeinsparung in [[Lüftungsanlage]]n. Daraus resultieren aber noch weitere Vorteile:
* geringere Betriebskosten → Wirtschaftlichkeit
* geringere Betriebskosten → Wirtschaftlichkeit
* reduzierte Schadstoffemissionen → Umweltschutz
* reduzierte Schadstoffemissionen → Umweltschutz
* verminderter [[Primärenergie]]verbrauch → Volkswirtschaft
* verminderter [[Primärenergie]]verbrauch → Volkswirtschaft
Wärmerückgewinnungssysteme sind in vielen Fällen auch multifunktional einsetzbar. So können hocheffiziente Systeme auch im Zusammenspiel mit anderen Verfahren wie Verdunstungskühlung, Solar- und Erdwärmenutzung usw. kombiniert betrieben werden (siehe Abschnitte [[#Thermische Klimaprozesse – Sorptionsklimasysteme|2.2]], [[#Freie Kühlung|4]], [[#Kühlung über indirekte Verdunstungskühlung|4.3]], [[#Wärmeverschiebung im Gebäude|5.3]], [[#Abwärmenutzung aus industriellen und gewerblichen Kühlprozessen|5.4]]).
[[Wärmerückgewinnung]]ssysteme sind in vielen Fällen auch multifunktional einsetzbar. So können hocheffiziente Systeme auch im Zusammenspiel mit anderen Verfahren wie Verdunstungskühlung, Solar- und [[Erdwärme]]nutzung usw. kombiniert betrieben werden (siehe Abschnitte [[#Thermische Klimaprozesse – Sorptionsklimasysteme|2.2]], [[#Freie Kühlung|4]], [[#Kühlung über indirekte Verdunstungskühlung|4.3]], [[#Wärmeverschiebung im Gebäude|5.3]], [[#Abwärmenutzung aus industriellen und gewerblichen Kühlprozessen|5.4]]).


=====[[Wärmerückgewinnung - Nichtwohnbereich|Wärmerückgewinnung im Nichtwohnbereich]]=====  
=====[[Wärmerückgewinnung - Nichtwohnbereich|Wärmerückgewinnung im Nichtwohnbereich]]=====  
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Wärmerückgewinnung - Nichtwohnbereich|Wärmerückgewinnung im Nichtwohnbereich]]''
=====[[Wärmerückgewinnung - Wohnbereich|Lüftungsanlagen mit Wärmerückgewinnung im Wohnbereich]]=====
=====[[Wärmerückgewinnung - Wohnbereich|Lüftungsanlagen mit Wärmerückgewinnung im Wohnbereich]]=====
- ''Dieser Artikel ist ausgelagert''
- ''Dieser Abschnitt ist ausgelagert, siehe: [[Wärmerückgewinnung - Wohnbereich|Lüftungsanlagen mit Wärmerückgewinnung im Wohnbereich]]''
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Abluft-Wasser Wärmepumpen und Abluft-Luft Wärmepumpen====
====Abluft-Wasser [[Wärmepumpe]]n und Abluft-Luft [[Wärmepumpe]]n====
{|align="right"
{|align="right"
| [[Bild:Luft energie kompaktgeraet.gif|thumb|upright=2|Schema Kompaktgerät zur Abluftwärmenutzung im [[Passivhaus]] mit [[Wärmerückgewinnung]], Wärmepumpe, Trinkwarmwasserspeicher und Solareinbindung]]
| [[Bild:Luft energie kompaktgeraet.gif|thumb|upright=2|Schema Kompaktgerät zur Abluftwärmenutzung im [[Passivhaus]] mit [[Wärmerückgewinnung]], [[Wärmepumpe]], Trinkwarmwasserspeicher und Solareinbindung]]
|}
|}
Wärmepumpen sind grundsätzlich dazu geeignet, die folgenden regenerativen Energiequellen oder Umweltenergiequellen zu nutzen:
[[Wärmepumpe]]n sind grundsätzlich dazu geeignet, die folgenden [[Regenerative Energie|regenerativen Energie]]quellen oder Umweltenergiequellen zu nutzen:
* Erdreich
* Erdreich
* Außenluft
* Außenluft
* Abluft.
* Abluft.
Im Zusammenhang mit der Klima- und Lüftungstechnik im Gebäude wird im Folgenden die Abluft als Wärmequelle
Im Zusammenhang mit der Klima- und Lüftungstechnik im Gebäude wird im Folgenden die Abluft als Wärmequelle
für Wohn- und Nichtwohngebäude dargestellt. Grundsätzlich gelten für Abluftwärmepumpen die gleichen Aussagen wie für die Wärmerückgewinnung, da die gleiche Energiequelle genutzt wird (siehe [[#Wärmerückgewinnung und Abwärmenutzung|Abschnitt 5 (Wärmerückgewinnung und Abwärmenutzung)]] und [[#Lüftungsanlagen mit Wärmerückgewinnung im Wohnbereich|Abschnitt 5.1.2]]). Ein großer Teil der Energie stammt aus regenerativen Quellen. Lediglich die Art der Nutzung über einen Wärmepumpenprozess erlaubt eine größere Flexibilität, da höhere Systemtemperaturen erreicht werden können. Damit kann die Abwärme aus Gebäuden auch zur Erzeugung von Warmwasser für die Heizung und für die Trinkwarmwasserbereitung genutzt werden. In einem [[Passivhaus]] reicht normalerweise die Wärmequelle Abluft nahezu zur vollständigen Deckung des Wärmebedarfs für Heizung, [[Lüftung]] und Warmwasser.
für Wohn- und Nichtwohngebäude dargestellt. Grundsätzlich gelten für Abluft[[wärmepumpe]]n die gleichen Aussagen wie für die [[Wärmerückgewinnung]], da die gleiche Energiequelle genutzt wird (siehe [[#Wärmerückgewinnung und Abwärmenutzung|Abschnitt 5 (Wärmerückgewinnung und Abwärmenutzung)]] und [[#Lüftungsanlagen mit Wärmerückgewinnung im Wohnbereich|Abschnitt 5.1.2]]). Ein großer Teil der Energie stammt aus regenerativen Quellen. Lediglich die Art der Nutzung über einen [[Wärmepumpe]]nprozess erlaubt eine größere Flexibilität, da höhere Systemtemperaturen erreicht werden können. Damit kann die Abwärme aus Gebäuden auch zur Erzeugung von Warmwasser für die Heizung und für die Trinkwarmwasserbereitung genutzt werden. In einem [[Passivhaus]] reicht normalerweise die Wärmequelle Abluft nahezu zur vollständigen Deckung des Wärmebedarfs für Heizung, [[Lüftung]] und Warmwasser.
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Wärmeverschiebung im Gebäude====
====Wärmeverschiebung im Gebäude====
{|align="right"
{|align="right"
| [[Bild:Luft energie waermeverschiebung.gif|thumb|upright=2|Wärmeverschiebung mittels Flächensystemen [14] oder VRV-Klimasystemen [15]]]
| [[Bild:Luft energie waermeverschiebung.gif|thumb|upright=2|Wärmeverschiebung mittels Flächensystemen <ref name="Quelle_14" /> oder VRV-Klimasystemen <ref name="Quelle_15" />]]
|}
|}
Nichtwohngebäude werden typischerweise sehr vielfältig und unterschiedlich genutzt. Oftmals sind einzelne Bereiche thermisch sehr hoch belastet (viele Personen und/oder hohe technische Ausstattung) und andere Bereiche sind thermisch nur sehr gering belastet. Dies führt dazu, dass besonders in der Übergangszeit im Frühjahr und im Herbst ein Teilbereich des Gebäudes gekühlt und ein anderer Teilbereich des Gebäudes geheizt werden muss. Die Wärmeverschiebung innerhalb des Gebäudes kann mit verschiedenen Technologien erreicht werden:
Nichtwohngebäude werden typischerweise sehr vielfältig und unterschiedlich genutzt. Oftmals sind einzelne Bereiche thermisch sehr hoch belastet (viele Personen und/oder hohe technische Ausstattung) und andere Bereiche sind thermisch nur sehr gering belastet. Dies führt dazu, dass besonders in der Übergangszeit im Frühjahr und im Herbst ein Teilbereich des Gebäudes gekühlt und ein anderer Teilbereich des Gebäudes geheizt werden muss. Die Wärmeverschiebung innerhalb des Gebäudes kann mit verschiedenen Technologien erreicht werden:
* Flächenhafte Systeme, die großflächig die geringen Temperaturunterschiede innerhalb des Gebäudes auf einen Wasserkreislauf übertragen können. Zum Beispiel kommen hier Kapillarrohrsysteme zum Einsatz (Forschungsvorhaben LowEx [14])
* Flächenhafte Systeme, die großflächig die geringen Temperaturunterschiede innerhalb des Gebäudes auf einen Wasserkreislauf übertragen können. Zum Beispiel kommen hier Kapillarrohrsysteme zum Einsatz (Forschungsvorhaben LowEx <ref name="Quelle_14" />)
* Drehzahlgeregelte Multi-Split-Klimasysteme für den gleichzeitigen Heiz- und Kühlbetrieb, sogenannte VRV- oder VRF-Systeme nutzen das Wärmepumpenprinzip auch innerhalb des Gebäudes und können somit auch geringste Temperaturunterschiede für den Heiz- und Kühlbetrieb verwerten.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
* Drehzahlgeregelte Multi-Split-Klimasysteme für den gleichzeitigen Heiz- und Kühlbetrieb, sogenannte VRV- oder VRF-Systeme nutzen das [[Wärmepumpe]]nprinzip auch innerhalb des Gebäudes und können somit auch geringste Temperaturunterschiede für den Heiz- und Kühlbetrieb verwerten.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Abwärmenutzung aus industriellen und gewerblichen Kühlprozessen====
====Abwärmenutzung aus industriellen und gewerblichen Kühlprozessen====
Zeile 314: Zeile 316:
* Abwärmenutzung von Kühleinrichtungen und Verbundkälteanlagen im Einzelhandel (Reduzierung als Kühllast im Sommer und Nutzung als Wärmequelle im Winter)
* Abwärmenutzung von Kühleinrichtungen und Verbundkälteanlagen im Einzelhandel (Reduzierung als Kühllast im Sommer und Nutzung als Wärmequelle im Winter)


===Nutzung von Biomasse und synthetischen Kraftstoffe aus Biomasse===
===Nutzung von [[Biomasse]] und synthetischen Kraftstoffe aus [[Biomasse]]===
Für die Erzeugung von Klimakälte und klimatisierter Luft mit den in [[#Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie|Abschnitt 2.1 (Thermische Kälteerzeugung)]] und [[#Thermische Klimaprozesse – Sorptionsklimasysteme|Abschnitt 2.2 - (Thermische Klimaprozesse)]] beschriebenen Verfahren eignen sich grundsätzlich alle Arten von Biomasse, soweit sie als Brennstoff zur Warmwasserbereitung oder Dampferzeugung verwendet werden können. Damit können prinzipiell auch alle synthetischen Kraftstoffe aus Biomasse (BTL, Biogas, usw.) verwendet und entsprechend substituiert werden.
Für die Erzeugung von Klimakälte und klimatisierter Luft mit den in [[#Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie|Abschnitt 2.1 (Thermische Kälteerzeugung)]] und [[#Thermische Klimaprozesse – Sorptionsklimasysteme|Abschnitt 2.2 - (Thermische Klimaprozesse)]] beschriebenen Verfahren eignen sich grundsätzlich alle Arten von [[Biomasse]], soweit sie als Brennstoff zur Warmwasserbereitung oder Dampferzeugung verwendet werden können. Damit können prinzipiell auch alle synthetischen Kraftstoffe aus [[Biomasse]] ([[BtL]], [[Biogas]], usw.) verwendet und entsprechend substituiert werden.


====Gasmotorische Klimageräte====
====Gasmotorische Klimageräte====
Schon heute stehen gasmotorisch betriebene Klimageräte (Erdgas) zur Verfügung. Statt eines Elektromotors treibt ein Gasmotor den Verdichter des Klimaprozesses an. Durch zukünftige Anpassungen am Gasmotor ist auch eine Verwendung von Biogas oder anderen synthetischen Kraftstoffen möglich. Damit werden neben der Nutzung von Regenerativen Energiequellen auch die Stromnetze insbesondere in den Sommermonaten entlastet.
Schon heute stehen gasmotorisch betriebene Klimageräte (Erdgas) zur Verfügung. Statt eines Elektromotors treibt ein Gasmotor den Verdichter des Klimaprozesses an. Durch zukünftige Anpassungen am Gasmotor ist auch eine Verwendung von [[Biogas]] oder anderen synthetischen Kraftstoffen möglich. Damit werden neben der Nutzung von [[Regenerative Energie|Regenerativen Energie]]quellen auch die Stromnetze insbesondere in den Sommermonaten entlastet.


====Gas-Absorptionswärmepumpen für Heizen und Kühlen====
====Gas-Absorptionswärmepumpen für Heizen und Kühlen====
Zeile 324: Zeile 326:
| [[Bild:Luft energie gas-absorptionswaermepumpe.gif|thumb|upright=2|Prinzip einer Gas-Absorptionswärmepumpe]]
| [[Bild:Luft energie gas-absorptionswaermepumpe.gif|thumb|upright=2|Prinzip einer Gas-Absorptionswärmepumpe]]
|}
|}
Direkt mit Gas befeuerte Absorptionswärmepumpen für Heizen und Kühlen stehen heute ebenfalls zur Verfügung. Sie arbeiten ähnlich wie die Kaltwassererzeuger in [[#Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie|Abschnitt 2.1 (Thermische Kälteerzeugung)]]. Für ihren Betrieb sind jedoch keine separaten Wärmeerzeuger notwendig. Sie erzeugen die Wärme mit einem Gasbrenner selbst. Durch geringe Anpassungen sind auch diese Geräte in der Lage, Biogas direkt für die gleichzeitige Kälte- und Wärmeerzeugung zu verwenden.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
Direkt mit Gas befeuerte Absorptionswärmepumpen für Heizen und Kühlen stehen heute ebenfalls zur Verfügung. Sie arbeiten ähnlich wie die Kaltwassererzeuger in [[#Thermische Kälteerzeugung – Klimakaltwassererzeugung aus Solarenergie|Abschnitt 2.1 (Thermische Kälteerzeugung)]]. Für ihren Betrieb sind jedoch keine separaten Wärmeerzeuger notwendig. Sie erzeugen die Wärme mit einem Gasbrenner selbst. Durch geringe Anpassungen sind auch diese Geräte in der Lage, [[Biogas]] direkt für die gleichzeitige Kälte- und Wärmeerzeugung zu verwenden.<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


===Zusammenfassende Einsparpotenziale Szenario 30 %===
===Zusammenfassende Einsparpotenziale Szenario 30 %===
Im Folgenden ist ein Szenario bis zum Jahr 2020 dargestellt, bei dem durch verbesserte wirtschaftliche, öffentlichkeitswirksame und verordnungsrechtliche Rahmenbedingungen der Einsatz von Regenerativen Energien in der Klima- und Lüftungstechnik so gefördert wird, dass etwa 30 % des Marktes jedes Jahr durch diese Maßnahmen entwickelt werden.
Im Folgenden ist ein Szenario bis zum Jahr 2020 dargestellt, bei dem durch verbesserte wirtschaftliche, öffentlichkeitswirksame und verordnungsrechtliche Rahmenbedingungen der Einsatz von [[Regenerative Energie|Regenerativen Energie]]n in der Klima- und Lüftungstechnik so gefördert wird, dass etwa 30 % des Marktes jedes Jahr durch diese Maßnahmen entwickelt werden.
Im Einzelnen sind dies:
Im Einzelnen sind dies:
* 30 % der jährlich neu verkauften Kaltwassersysteme werden mit solarer Wärme oder Abwärme betrieben.
* 30 % der jährlich neu verkauften Kaltwassersysteme werden mit solarer Wärme oder Abwärme betrieben.
* 30 % der jährlich neu verkauften zentralen Klimageräte mit Kühlungs- und Lüftungsfunktion werden mit sorptionsgestützten Kühlsystemen ausgestattet, die solare Wärme oder Abwärme für die Kälteerzeugung nutzen oder auch Abluftbefeuchtung für die Kühlung einsetzen.
* 30 % der jährlich neu verkauften zentralen Klimageräte mit Kühlungs- und Lüftungsfunktion werden mit sorptionsgestützten Kühlsystemen ausgestattet, die solare Wärme oder Abwärme für die Kälteerzeugung nutzen oder auch Abluftbefeuchtung für die Kühlung einsetzen.
* 30 % der jährlich neu verkauften Klimakaltwassersysteme nutzen die geothermische „Kühlenergie“ oder nutzen das Erdreich als Wärmesenke und sind mit Einrichtungen zur freien Kühlung ausgestattet.
* 30 % der jährlich neu verkauften Klimakaltwassersysteme nutzen die [[Geothermie|geothermische]] „Kühlenergie“ oder nutzen das Erdreich als Wärmesenke und sind mit Einrichtungen zur freien Kühlung ausgestattet.
* Bis zum Jahr 2020 sind 30 % der Wohngebäude mit Lüftungsanlagen mit Wärmerückgewinnung ausgestattet, die auch das Erdreich im Winter nutzen.
* Bis zum Jahr 2020 sind 30 % der Wohngebäude mit [[Lüftungsanlage]]n mit [[Wärmerückgewinnung]] ausgestattet, die auch das Erdreich im Winter nutzen.
* Der mittlere thermische Nutzungsgrad der Wärmerückgewinnung der jährlich neu verkauften Lüftungszentralgeräte steigt von derzeit ca. 25 % auf ca. 75 %.
* Der mittlere thermische Nutzungsgrad der [[Wärmerückgewinnung]] der jährlich neu verkauften Lüftungszentralgeräte steigt von derzeit ca. 25 % auf ca. 75 %.


====CO<sub>2</sub>-Einsparung====
====CO<sub>2</sub>-Einsparung====
Zeile 343: Zeile 345:
Im Einzelnen setzen sich die möglichen Einsparpotenziale wie folgt zusammen:
Im Einzelnen setzen sich die möglichen Einsparpotenziale wie folgt zusammen:
{|align="left"
{|align="left"
| valign="top"| [[Bild:Luft energie co2-einsparung einzeln.gif|thumb|280px|upright=2|Mögl. CO<sub>2</sub>-Einsparung durch Regenerative Energien der Klima- und Lüftungstechnik - einzeln]]
| valign="top"| [[Bild:Luft energie co2-einsparung einzeln.gif|thumb|280px|upright=2|Mögl. [[CO2-Einsparung|CO<sub>2</sub>-Einsparung]] durch [[Regenerative Energie]]n der Klima- und Lüftungstechnik - einzeln]]
| valign="top"| [[Bild:Luft energie co2-einsparung einzeln kaelte.gif|thumb|280px|upright=2|Mögl. CO<sub>2</sub>-Einsparung durch Regenerative Energien der Klima- und Lüftungstechnik - Nur Kälteerzeugung]]
| valign="top"| [[Bild:Luft energie co2-einsparung einzeln kaelte.gif|thumb|280px|upright=2|Mögl. [[CO2-Einsparung|CO<sub>2</sub>-Einsparung]] durch [[Regenerative Energie]]n der Klima- und Lüftungstechnik - Nur Kälteerzeugung]]
|}<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
|}<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>


====Zusammenfassung der wesentlichen Kennzahlen====
====Zusammenfassung der wesentlichen Kennzahlen====
Dargestellt wird jeweils das Einsparpotenzial an [[Primärenergie]] in Deutschland auf Basis Energieverbrauch heute durch Einsatz von erneuerbaren Energien im Bereich [[Lüftung]], Klimatisierung und Kältebereitstellung unter dem im vorangegangenen Abschnitt beschriebenen Szenario 30 %.
Dargestellt wird jeweils das Einsparpotenzial an [[Primärenergie]] in Deutschland auf Basis [[Energieverbrauch]] heute durch Einsatz von erneuerbaren Energien im Bereich [[Lüftung]], Klimatisierung und Kältebereitstellung unter dem im vorangegangenen Abschnitt beschriebenen Szenario 30 %.


{{{Tab010}}
{{{Tab010}}
| width="580"| ||width="50" align="center"| Abschnitt ||width="50" align="center"| kto CO<sub>2</sub> ||width="50" align="right"| GWh ||width="50" align="right"| %
| width="580"| ||width="50" align="center"| Abschnitt ||width="50" align="center"| kto CO<sub>2</sub> ||width="50" align="right"| GWh ||width="50" align="right"| %
|-
|-
| style="background:#D1EFFF" colspan="5" | '''[[Lüftung]] (Wärmeenergie):'''
| class="hintergrundfarbe2" colspan="5" | '''[[Lüftung]] (Wärmeenergie):'''
|-
|-
| Heizenergieverbrauch (Endenergie) || ||align="right"| 239.000<sup>1</sup> ||align="right"| 797.000 ||align="right"| 100 %
| Heiz[[energieverbrauch]] ([[Endenergie]]) || ||align="right"| 239.000<sup>1</sup> ||align="right"| 797.000 ||align="right"| 100 %
|-
|-
| davon: Wohngebäude (Endenergie) || || align="right"|181.000 ||align="right"| 604.000 ||align="right"| 76 %
| davon: Wohngebäude ([[Endenergie]]) || || align="right"|181.000 ||align="right"| 604.000 ||align="right"| 76 %
|-
|-
| Nicht-Wohngebäude GHD (Endenergie) || ||align="right"| 57.900 ||align="right"| 193.000 ||align="right"| 24 %
| Nicht-Wohngebäude GHD ([[Endenergie]]) || ||align="right"| 57.900 ||align="right"| 193.000 ||align="right"| 24 %
|-
|-
| colspan="5" | Einsparpotenzial durch WRG ([[Primärenergie]])
| colspan="5" | Einsparpotenzial durch WRG ([[Primärenergie]])
Zeile 369: Zeile 371:
| Nicht-Wohngebäude<sup>4</sup> || align="center"|[[#Wärmerückgewinnung im Nichtwohnbereich|5.1.1]] ||align="right"| 5.854 ||align="right"| 23.562 ||align="right"| 12,2 %
| Nicht-Wohngebäude<sup>4</sup> || align="center"|[[#Wärmerückgewinnung im Nichtwohnbereich|5.1.1]] ||align="right"| 5.854 ||align="right"| 23.562 ||align="right"| 12,2 %
|-
|-
| style="background:#D1EFFF" colspan="5" | '''Sommerliche Klimatisierung in Lüftungszentralen:'''
| class="hintergrundfarbe2" colspan="5" | '''Sommerliche Klimatisierung in Lüftungszentralen:'''
|-
|-
| [[Primärenergie]]verbrauch sommerlicher Betrieb von Lüftungszentralgeräten (Kühlung, Entfeuchtung)<sup>5</sup> || ||align="right"| 1.762 ||align="right"| 8.275 ||align="right"| 100 %
| [[Primärenergie]]verbrauch sommerlicher Betrieb von Lüftungszentralgeräten (Kühlung, Entfeuchtung)<sup>5</sup> || ||align="right"| 1.762 ||align="right"| 8.275 ||align="right"| 100 %
Zeile 377: Zeile 379:
| Einsparpotential durch solare, sorptionsgestützte Verfahren<sup>7</sup> ||align="center"|[[#Thermische Klimaprozesse – Sorptionsklimasysteme|2.2]] ||align="right"| 296 ||align="right"| 1.391 ||align="right"| 17 %
| Einsparpotential durch solare, sorptionsgestützte Verfahren<sup>7</sup> ||align="center"|[[#Thermische Klimaprozesse – Sorptionsklimasysteme|2.2]] ||align="right"| 296 ||align="right"| 1.391 ||align="right"| 17 %
|-
|-
| style="background:#D1EFFF" colspan="5" | '''Kaltwasser für Klimatisierung:'''
| class="hintergrundfarbe2" colspan="5" | '''Kaltwasser für Klimatisierung:'''
|-
|-
| [[Primärenergie]]verbrauch (Strom) für Kältebereitstellung (Klima + Kälte) || || || align="right"|198.000 || align="right"|100 %
| [[Primärenergie]]verbrauch (Strom) für Kältebereitstellung (Klima + Kälte) || || || align="right"|198.000 || align="right"|100 %
Zeile 396: Zeile 398:
|}
|}
<sup>1</sup> Annahme Raumwärme Gas<br />
<sup>1</sup> Annahme Raumwärme Gas<br />
<sup>2</sup> Annahme, dass bis zum Jahr 2020 ca. 30 % der Wohngebäude mit Wärmerückgewinnung ausgerüstet sind<br />
<sup>2</sup> Annahme, dass bis zum Jahr 2020 ca. 30 % der Wohngebäude mit [[Wärmerückgewinnung]] ausgerüstet sind<br />
<sup>3</sup> Zusätzliche Einsparungen an Lüftungswärme durch Erdreich-Wärmeübertrager<br />
<sup>3</sup> Zusätzliche Einsparungen an Lüftungswärme durch Erdreich-Wärmeübertrager<br />
<sup>4</sup> Die in jedem Jahr neu verkauften Lüftungszentralgeräte werden durchschnittlich mit 75% Wärmerückgewinnung ausgestattet<br />
<sup>4</sup> Die in jedem Jahr neu verkauften Lüftungszentralgeräte werden durchschnittlich mit 75% [[Wärmerückgewinnung]] ausgestattet<br />
<sup>5</sup> Jedes Jahr neu verkaufte Klimazentralgeräte 331GWh, Nutzungsdauer 25 Jahre<br />
<sup>5</sup> Jedes Jahr neu verkaufte Klimazentralgeräte 331GWh, Nutzungsdauer 25 Jahre<br />
<sup>6</sup> 60 % der in jedem Jahr verkauften Lüftungszentralgeräte mit Kühlung werden mit indirekter Verdunstungskühlung ausgerüstet<br />
<sup>6</sup> 60 % der in jedem Jahr verkauften Lüftungszentralgeräte mit Kühlung werden mit indirekter Verdunstungskühlung ausgerüstet<br />
Zeile 407: Zeile 409:
===Eckdaten für die Abschätzung des Einsparpotenzials===
===Eckdaten für die Abschätzung des Einsparpotenzials===
Für die Abschätzung der möglichen Einsparpotenziale durch die in den vorangegangenen Abschnitten beschriebenen Verfahren und Systeme wurden die folgenden Basisdaten verwendet:<br />
Für die Abschätzung der möglichen Einsparpotenziale durch die in den vorangegangenen Abschnitten beschriebenen Verfahren und Systeme wurden die folgenden Basisdaten verwendet:<br />
'''Basisdaten für die Abschätzungen (Markt, Bestand, Verkaufszahlen, Energieverbrauch)'''
'''Basisdaten für die Abschätzungen (Markt, Bestand, Verkaufszahlen, [[Energieverbrauch]])'''
{{{Tab010}}
{{{Tab010}}
| colspan="2" | '''Wohnfläche Wohngebäude''' ||align="center"| Bestand
| colspan="2" | '''Wohnfläche Wohngebäude''' ||align="center"| Bestand
|-
|-
|width="230"| 1 bis 2 Wohneinheiten ||width="200" align="right"| 1,8747 Mrd. m<sup>2</sup>||width="100" align="center"| [6] 2003
|width="260"| 1 bis 2 Wohneinheiten ||width="260" align="right"| 1,8747 Mrd. m<sup>2</sup>||width="100" align="center"| <ref name="Quelle_6" /> 2003
|-
|-
|3 und mehr Wohneinheiten||align="right"| 1,3001 Mrd. m<sup>2</sup>||align="center"|
|3 und mehr Wohneinheiten||align="right"| 1,3001 Mrd. m<sup>2</sup>||align="center"|
Zeile 419: Zeile 421:
|'''Lüftungszentralgeräte'''||align="right"| 38.000 St. ||align="center"| Verkauf pro Jahr
|'''Lüftungszentralgeräte'''||align="right"| 38.000 St. ||align="center"| Verkauf pro Jahr
|-
|-
|Luftleistung gesamt||align="right"| 658.000.000 m<sup>3</sup>/h||align="center"| [3] 1997
|Luftleistung gesamt||align="right"| 658.000.000 m<sup>3</sup>/h||align="center"| <ref name="Quelle_3" /> 1997
|-
|-
|colspan="2" |'''Kältemaschinen'''||align="center"| Verkauf pro Jahr
|colspan="2" |'''Kältemaschinen'''||align="center"| Verkauf pro Jahr
|-
|-
|Wassergekühlte Kältemaschinen||align="right"| 413.460 kW||align="center"| [2]
|Wassergekühlte Kältemaschinen||align="right"| 413.460 kW||align="center"| <ref name="Quelle_2" />
|-
|-
|Luftgekühlte Kältemaschinen||align="right"| 480.322 kW||align="center"|  
|Luftgekühlte Kältemaschinen||align="right"| 480.322 kW||align="center"|  
Zeile 433: Zeile 435:
|Summe||align="right"| 1.097.682 kW||align="center"|  
|Summe||align="right"| 1.097.682 kW||align="center"|  
|-
|-
|style="background:#D1EFFF" colspan="3" |'''Energieverbrauchszahlen:'''
| class="hintergrundfarbe2" colspan="3" |'''[[Energieverbrauch]]szahlen:'''
|-
|-
|valign="top"|'''[[Primärenergie]]verbrauch BRD''' ||align="right"| 14.334 PJ <br /> 3.981.000 GWh||valign="top" align="center"|[8] 2003
|valign="top"|'''[[Primärenergie]]verbrauch BRD''' ||align="right"| 14.334 PJ <br /> 3.981.000 GWh||valign="top" align="center"|<ref name="Quelle_8" /> 2003
|-
|-
|'''Energiebedingte CO<sub>2</sub>-Emissionen''' ||align="right"| 833 Mio to CO<sub>2</sub>||align="center"| [9] 1999
|'''Energiebedingte CO<sub>2</sub>-Emissionen''' ||align="right"| 833 Mio to [[CO2|CO<sub>2</sub>]]||align="center"| <ref name="Quelle_9" /> 1999
|-
|-
|valign="top"|'''Kälteerzeugung'''||align="right"| 66.000 GWh Strom<br />11.000 GWh andere<br />22 % davon Klimatisierung||valign="top" align="center"| [10] 2006
|valign="top"|'''Kälteerzeugung'''||align="right"| 66.000 GWh Strom<br />11.000 GWh andere<br />22 % davon Klimatisierung||valign="top" align="center"| <ref name="Quelle_10" /> 2006
|-
|-
| ||align="right"|3.500 GWh Strom <br />Kälte für Klimatisierung von Büros||valign="top" align="center"| [12] 2006
| ||align="right"|3.500 GWh Strom <br />Kälte für Klimatisierung von Büros||valign="top" align="center"| <ref name="Quelle_12" /> 2006
|-
|-
| valign="top" |'''Regenerative Energien'''||align="right"| 11 % an Stromproduktion<br />25 % in 2020 (Schätzung)||valign="top" align="center"| [11] 2007
| valign="top" |'''[[Regenerative Energie]]n'''||align="right"| 11 % an Stromproduktion<br />25 % in 2020 (Schätzung)||valign="top" align="center"| <ref name="Quelle_11" /> 2007
|-
|-
| '''Heizenergiebedarf Wohngebäude'''||align="right"|Endenergie 603.889 GWh||align="center"|[16] 2005
| '''Heizenergiebedarf Wohngebäude'''||align="right"|[[Endenergie]] 603.889 GWh||align="center"|<ref name="Quelle_16" /> 2005
|-
|-
| '''Raumwärme GHD'''||align="right"| Endenergie 193.000 GWh||align="center"| [16] 2005
| '''Raumwärme GHD'''||align="right"| [[Endenergie]] 193.000 GWh||align="center"| <ref name="Quelle_16" /> 2005
|-
|-
| '''Kühlen und Lüften GHD'''||align="right"| Endenergie 21.444 GWh||align="center"| [16] 2005
| '''Kühlen und Lüften GHD'''||align="right"| [[Endenergie]] 21.444 GWh||align="center"| <ref name="Quelle_16" /> 2005
|-
|-
|style="background:#D1EFFF" colspan="3" |'''CO<sub>2</sub>-Faktoren'''
| class="hintergrundfarbe2" colspan="3" |'''[[CO2|CO<sub>2</sub>]]-Faktoren'''
|-
|-
|Strom ||align="right"| 0,64 kg/kWh||align="center"|  
|Strom ||align="right"| 0,64 kg/kWh||align="center"|  
Zeile 458: Zeile 460:
|}
|}


===Literaturverzeichnis===
 
[1] Wolkenhauer, Henning, Franzke, Albers, Hindenburg: Energieeinsparung durch Einbeziehung solarunterstützter Klimatisierung in zukünftige Planungsprozesse, FIA Bericht Nummer 68, 2002<br />
===Einzelnachweise===
[2] Schätzung der Marktzahlen nach EUROVENT Jahr 2000<br />
<references>
[3] E. Beck: Energieverbrauch, -einsparpotenzial und -grenzwerte von Lüftungsanlagen FIA-Bericht Nr. 86, 2000<br />
<ref name="Quelle_1">Wolkenhauer, Henning, Franzke, Albers, Hindenburg: ''Energieeinsparung durch Einbeziehung solarunterstützter Klimatisierung in zukünftige Planungsprozesse'', FIA Bericht Nummer 68, 2002</ref>
[4] www.raumkuehlsysteme.de - Raumkühlung durch flächenorientierte Systeme<br />
<ref name="Quelle_2">Schätzung der Marktzahlen nach EUROVENT Jahr 2000</ref>
[5] H.M. Hellmann: Geothermisches Heizen und Kühlen von Bürogebäuden<br />
<ref name="Quelle_3">E. Beck: ''Energieverbrauch, -einsparpotenzial und -grenzwerte von Lüftungsanlagen'' FIA-Bericht Nr. 86, 2000</ref>  
[6] Forsa, Erhebung des Energieverbrauchs der privaten Haushalte für das Jahr 2003<br />
<ref name="Quelle_4">www.raumkuehlsysteme.de - ''Raumkühlung durch flächenorientierte Systeme''</ref>
[7] DIN V 18599 - Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und [[Primärenergie]]bedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung, 2005<br />
<!--<ref name="Quelle_5">H.M. Hellmann: ''Geothermisches Heizen und Kühlen von Bürogebäuden''</ref>-->
[8] Innovation und neue Energietechnologien - Das 5. Energieforschungsprogramm der Bundesregierung, Juli 2005<br />
<ref name="Quelle_6">Forsa, ''Erhebung des [[Energieverbrauch]]s der privaten Haushalte für das Jahr 2003''</ref>
[9] Für eine zukunftsfähige Energieversorgung - Nachhaltige Energiepolitik - Energiebericht, BMWi Oktober 2001<br />
<ref name="Quelle_7">[[DIN V 18599]] - Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und [[Primärenergie]]bedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung, 2005</ref>
[10] Verbrauchsfaktor Kälteerzeugung HLH, Bd.57 Nr. 12/2006<br />
<ref name="Quelle_8">''Innovation und neue Energietechnologien'' - Das 5. Energieforschungsprogramm der Bundesregierung, Juli 2005</ref>
[11] Pressemitteilung BMU Nr. 013/07, 15.01.2007<br />
<ref name="Quelle_9">''Für eine zukunftsfähige Energieversorgung - Nachhaltige Energiepolitik'' - Energiebericht, [[BMWi]] Oktober 2001</ref>
[12] Verdunstungskühlung auch für Gebäude; Hubert Sturies, Jens Panenberg CCI 5/2006<br />
<ref name="Quelle_10">''Verbrauchsfaktor Kälteerzeugung'' HLH, Bd.57 Nr. 12/2006</ref>
[13] Passive Kühlung mit Nachtlüftung, BINE Themeninfo I/03<br />
<ref name="Quelle_11">Pressemitteilung BMU Nr. 013/07, 15.01.2007</ref>
[14] Forschungsvorhaben LowEx, Niedrigexergiesysteme für die Heiz- und Raumlufttechnik; Prof. Müller, HRI TU Berlin, Hamburg 2006<br />
<ref name="Quelle_12">''Verdunstungskühlung auch für Gebäude''; Hubert Sturies, Jens Panenberg CCI 5/2006</ref>
[15] Zukünftige Anforderungen an die Klimatechnik; Prof. Pfeiffenberger, FGK, Oktober 2004<br />
<ref name="Quelle_13">''Passive Kühlung mit Nachtlüftung'', [[BINE]] Themeninfo I/03</ref>
[16] Energieszenarien für den Energiegipfel 2007, EWI und prognos
<ref name="Quelle_14">''Forschungsvorhaben LowEx, Niedrigexergiesysteme für die Heiz- und Raumlufttechnik''; Prof. Müller, HRI TU Berlin, Hamburg 2006</ref>
<ref name="Quelle_15">''Zukünftige Anforderungen an die Klimatechnik''; Prof. Pfeiffenberger, FGK, Oktober 2004</ref>
<ref name="Quelle_16">''Energieszenarien für den Energiegipfel 2007'', EWI und prognos</ref>
</references>


===Quelle===
===Quelle===
Zeile 483: Zeile 488:
Autor: Dipl.-Ing. Claus Händel
Autor: Dipl.-Ing. Claus Händel


==Siehe auch==
* [[Komfortlüftung]]
* [[Kontrollierte Lüftung]]
* [[Lüftungsanlage]]n
* [[Lüftungsanlagen - Hygiene]]
* [[Raumluft]]
* [[Wohnungslüftung]]
{{NAV Regenerative Energien in Klima-/Lüftungstechnik}}


[[Kategorie:Konstruktion]][[Kategorie:Wohngesundheit]][[Kategorie:Bauphysik]][[Kategorie:Glossar]]
[[Kategorie:Energie]][[Kategorie:Baukonzepte]][[Kategorie:Haustechnik]][[Kategorie:Energiestandard]][[Kategorie:Planet Erde]][[Kategorie:Konstruktion]][[Kategorie:Wohngesundheit]][[Kategorie:Bauphysik]][[Kategorie:Glossar]]

Navigationsmenü