52.298
Bearbeitungen
K |
|||
| (2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
| Zeile 11: | Zeile 11: | ||
Die Nutzung der Umgebungswärme mit Hilfe von '''Wärmepumpen''' unterscheidet sich in einem Punkt wesentlich von anderen [[erneuerbaren Energien]]. Die Wärmepumpe braucht nämlich zum Antrieb einen erheblichen Anteil an Fremdenergie. Je nach äußeren Bedingungen kann diese ein Viertel bis die Hälfte der Energie ausmachen, die als Wärme genutzt wird. Man ordnet daher diese Technologie auch dem Bereich der rationellen Energienutzung zu, sieht Wärmepumpen also eher in einer Reihe mit sparsamen Heizkesseln. Aber auch zu diesen Techniken besteht ein wesentlicher Unterschied: | Die Nutzung der Umgebungswärme mit Hilfe von '''Wärmepumpen''' unterscheidet sich in einem Punkt wesentlich von anderen [[Erneuerbare Energie|erneuerbaren Energien]]. Die Wärmepumpe braucht nämlich zum Antrieb einen erheblichen Anteil an Fremdenergie. Je nach äußeren Bedingungen kann diese ein Viertel bis die Hälfte der Energie ausmachen, die als Wärme genutzt wird. Man ordnet daher diese Technologie auch dem Bereich der rationellen Energienutzung zu, sieht Wärmepumpen also eher in einer Reihe mit sparsamen Heizkesseln. Aber auch zu diesen Techniken besteht ein wesentlicher Unterschied: | ||
Denn Wärmepumpen nutzen nicht nur die ihnen zum Antrieb zugeführte Energie, sondern zusätzlich auch Energie aus der Umgebung. Entscheidend ist, ob der erneuerbare Anteil überwiegt. Wärmepumpen sind also ein Zwitter zwischen sparsamem, konventionellen Energieeinsatz und [[erneuerbaren Energien]]! | Denn Wärmepumpen nutzen nicht nur die ihnen zum Antrieb zugeführte Energie, sondern zusätzlich auch Energie aus der Umgebung. Entscheidend ist, ob der erneuerbare Anteil überwiegt. Wärmepumpen sind also ein Zwitter zwischen sparsamem, konventionellen Energieeinsatz und [[Erneuerbare Energie|erneuerbaren Energien]]! | ||
===Energie ist nicht gleich Energie=== | ===Energie ist nicht gleich Energie=== | ||
| Zeile 27: | Zeile 27: | ||
Wärmepumpen können in unterschiedlicher Form die Umgebungswärme anzapfen. Am häufigsten wird die Energie der Umgebungsluft genutzt. Vorteilhaft hierbei ist, dass Luft überall und jederzeit verfügbar ist. Nachteilig ist, dass die Umgebungsluft immer dann am kältesten ist, wenn der Wärmebedarf am höchsten ist, nämlich im Winter. Und das mindert den Ertrag der Wärmepumpe. Denn je größer die Temperaturunterschiede zwischen Wärmequelle, hier also Luft, und der Nutzwärme, um so mehr Energie ist bei gleichem Ergebnis zum Antrieb der Pumpe notwendig. | Wärmepumpen können in unterschiedlicher Form die Umgebungswärme anzapfen. Am häufigsten wird die Energie der Umgebungsluft genutzt. Vorteilhaft hierbei ist, dass Luft überall und jederzeit verfügbar ist. Nachteilig ist, dass die Umgebungsluft immer dann am kältesten ist, wenn der Wärmebedarf am höchsten ist, nämlich im Winter. Und das mindert den Ertrag der Wärmepumpe. Denn je größer die Temperaturunterschiede zwischen Wärmequelle, hier also Luft, und der Nutzwärme, um so mehr Energie ist bei gleichem Ergebnis zum Antrieb der Pumpe notwendig. | ||
Energetisch günstiger ist daher z. B. das Erdreich als Wärmequelle. In 1 bis 2 m Bodentiefe sinken die Temperaturen auch im Winter gewöhnlicherweise nicht unter | Energetisch günstiger ist daher z. B. das Erdreich als Wärmequelle. In 1 bis 2 m Bodentiefe sinken die Temperaturen auch im Winter gewöhnlicherweise nicht unter 5 °C. Mit im Erdreich verlegten Rohren, die von einer Sole durchflossen werden, kann die Energie aufgenommen und der Wärmepumpe zugeführt werden. Der Temperaturhub der Wärmepumpe kann so über das Jahr relativ konstant gehalten werden, der Energieeinsatz bleibt niedrig. Allerdings sind die '''Erdkollektoren''' – so werden die im Erdreich verlegten Rohre genannt – im Vergleich zur Nutzung der Luft teurer. Bei horizontal verlegten Erdkollektoren beträgt der Flächenbedarf das Ein- bis Anderhalbfache der zu beheizenden Wohnungsfläche. | ||
Dazu kann der ein Haus umgebende Garten dienen, der nach Verlegung des [[Kollektor]]s wieder normal genutzt werden kann. Ist diese Fläche für die Beheizung nicht ausreichend, was angesichts der heutigen Grundstücksgrößen bei Neubauten häufig der Fall ist, können die [[Kollektor]]en auch vertikal als '''Erdsonden''' verlegt werden. Zu diesem Zweck werden bis zu 150 m tiefe Löcher in das Erdreich gebohrt, in die dann die Rohre mit der Sole verbracht werden. Der entscheidende Nachteil: Die Erdsonden | Dazu kann der ein Haus umgebende Garten dienen, der nach Verlegung des [[Kollektor]]s wieder normal genutzt werden kann. Ist diese Fläche für die Beheizung nicht ausreichend, was angesichts der heutigen Grundstücksgrößen bei Neubauten häufig der Fall ist, können die [[Kollektor]]en auch vertikal als '''Erdsonden''' verlegt werden. Zu diesem Zweck werden bis zu 150 m tiefe Löcher in das Erdreich gebohrt, in die dann die Rohre mit der Sole verbracht werden. Der entscheidende Nachteil: Die Erdsonden | ||
sind noch teurer als die horizontal verlegten Erdkollektoren, außerdem ist eine wasserrechtliche Genehmigung von den Behörden einzuholen. Die so genutzte Energie des Erdreichs stammt – auch bei den Erdsonden – weitgehend aus der Umgebung. Mittlerweile werden '''Erdwärmesondenanlagen''' zur Versorgung | sind noch teurer als die horizontal verlegten Erdkollektoren, außerdem ist eine wasserrechtliche Genehmigung von den Behörden einzuholen. Die so genutzte Energie des Erdreichs stammt – auch bei den Erdsonden – weitgehend aus der Umgebung. Mittlerweile werden '''Erdwärmesondenanlagen''' zur Versorgung | ||
ganzer Häuserblocks gebaut. In Werne (Nordrhein-Westfalen) sollen 123 Häuser aus der Energie der Erde versorgt werden. | ganzer Häuserblocks gebaut. In Werne (Nordrhein-Westfalen) sollen 123 Häuser aus der Energie der Erde versorgt werden. | ||
Eine andere mögliche Wärmequelle stellt '''Grundwasser''' dar. Die Temperatur von Grundwasser schwankt über das Jahr nur wenig, meist liegt sie im Bereich zwischen 8 und | Eine andere mögliche Wärmequelle stellt '''Grundwasser''' dar. Die Temperatur von Grundwasser schwankt über das Jahr nur wenig, meist liegt sie im Bereich zwischen 8 und 15 °C. Allerdings besteht häufig nicht die Möglichkeit, Grundwasser als Wärmequelle zu nutzen, außerdem behandeln die zuständigen Behörden die Erteilung der erforderlichen wasserrechtlichen Genehmigungen restriktiv, da der Schutz des Grundwassers ein hohes Gut darstellt. | ||
Auch das '''Wasser''' vom Meer, von Seen und Flüssen ist, soweit zugänglich, als Wärmequelle für Wärmepumpen gut geeignet, in entsprechender Wassertiefe liegt die Temperatur gewöhnlich zwischen 2 und | Auch das '''Wasser''' vom Meer, von Seen und Flüssen ist, soweit zugänglich, als Wärmequelle für Wärmepumpen gut geeignet, in entsprechender Wassertiefe liegt die Temperatur gewöhnlich zwischen 2 und 1 °C. Auch hier ist eine behördliche Erlaubnis einzuholen, die in den meisten Fällen auch erteilt wird, da eine Abkühlung der wärmebelasteten Oberflächenwasser vom ökologischen Standpunkt aus durchaus wünschenswert ist. | ||
Schließlich kann auch '''künstlichen Wärmequellen''' wie etwa Abwasser und Abluft die Energie entzogen werden. Da die Energie hier meist schon auf einem hohen Temperaturniveau liegt, ist der Einsatz von Wärmepumpen sehr günstig. Aufgrund des gegenwärtig niedrigen Energiepreisniveaus und der von der Industrie geforderten kurzen Amortisationsdauer von Investitionen unterbleibt die Nutzung der Abwärme in der Industrie aber häufig. | Schließlich kann auch '''künstlichen Wärmequellen''' wie etwa Abwasser und Abluft die Energie entzogen werden. Da die Energie hier meist schon auf einem hohen Temperaturniveau liegt, ist der Einsatz von Wärmepumpen sehr günstig. Aufgrund des gegenwärtig niedrigen Energiepreisniveaus und der von der Industrie geforderten kurzen Amortisationsdauer von Investitionen unterbleibt die Nutzung der Abwärme in der Industrie aber häufig. | ||
| Zeile 48: | Zeile 48: | ||
===Wärmepumpen - Teil einer nachhaltigen Energieversorgung ?=== | ===Wärmepumpen - Teil einer nachhaltigen Energieversorgung ?=== | ||
Zum Betrieb der Wärmepumpe muss ein beachtlicher Teil von Fremdenergie eingesetzt werden. Deshalb ist es für ihre energetische Bewertung wichtig, das Verhältnis von eingesetzter Energie zu Nutzenergieertrag zu ermitteln und dabei die gesamte Kette von der Energiequelle über die Energieaufbereitung bis zur Nutzung in der Wärmepumpe zu betrachten. Wird Strom als Fremdenergie eingesetzt, so ist es wegen der Verluste der Stromerzeugung (derzeit rund zwei Drittel der eingesetzten | Zum Betrieb der Wärmepumpe muss ein beachtlicher Teil von Fremdenergie eingesetzt werden. Deshalb ist es für ihre energetische Bewertung wichtig, das Verhältnis von eingesetzter Energie zu Nutzenergieertrag zu ermitteln und dabei die gesamte Kette von der Energiequelle über die Energieaufbereitung bis zur Nutzung in der Wärmepumpe zu betrachten. Wird Strom als Fremdenergie eingesetzt, so ist es wegen der Verluste der Stromerzeugung (derzeit rund zwei Drittel der eingesetzten | ||
[[Primärenergie]]) erforderlich, mit der eingesetzten Antriebsenergie mindestens den dreifachen Wärmeertrag zu liefern, wenn der Einsatz [[Fossile | [[Primärenergie]]) erforderlich, mit der eingesetzten Antriebsenergie mindestens den dreifachen Wärmeertrag zu liefern, wenn der Einsatz [[Fossile Energie|fossiler]] oder nuklearer Energie kleiner sein soll als die genutzte Wärmemenge. Dieses als '''Arbeitszahl''' bezeichnete Verhältnis bestimmt also, ob in der Gesamtbilanz überhaupt erneuerbare Energie genutzt wird. Da die Verluste in der Gasversorgung geringer als in der Stromversorgung sind, insbesondere die Verluste in den Kraftwerken entfallen, beträgt die notwendige Jahresarbeitszahl nur 1,1 bei gasmotorbetriebenen Wärmepumpen, um von [[Erneuerbare Energie|erneuerbaren Energien]] sprechen zu können. | ||
Hinsichtlich der Schadstoff-Emissionen – beispielsweise [[Stickoxid]]e oder [[Kohlenmonoxid]], nicht aber [[Kohlendioxid]] (CO<sub>2</sub>), dessen Emission nur von den eingesetzten Energieträgern und den Wirkungsgraden der Umwandlung abhängt – können elektrisch betriebene Wärmepumpen gegenüber konventionellen Heizkesseln, insbesondere Ölkesseln, auch schon bei niedrigeren Jahresarbeitszahlen Vorteile bieten, da der bundesdeutsche Kraftwerkspark dank effizienter Schadstoffrückhaltemaßnahmen | Hinsichtlich der Schadstoff-Emissionen – beispielsweise [[Stickoxid]]e oder [[Kohlenmonoxid]], nicht aber [[Kohlendioxid]] (CO<sub>2</sub>), dessen Emission nur von den eingesetzten Energieträgern und den Wirkungsgraden der Umwandlung abhängt – können elektrisch betriebene Wärmepumpen gegenüber konventionellen Heizkesseln, insbesondere Ölkesseln, auch schon bei niedrigeren Jahresarbeitszahlen Vorteile bieten, da der bundesdeutsche Kraftwerkspark dank effizienter Schadstoffrückhaltemaßnahmen | ||