Semiprobabilistisches Sicherheitskonzept: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
K
 
(35 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 7: Zeile 7:


===Einführung===
===Einführung===
Der Holzbau hat sich durch die verschiedenen Baukulturen der Völker, den unterschiedlichen regionalen Holzarten und nicht zuletzt von den getrennt durchgeführten Holzforschungen und den damit verbundenen Erfahrungen, regional in sehr unterschiedlichen Bauweisen weiterentwickelt <ref name="Q_22" />. Durch die Europäisierung und dem damit einhergehenden Wunsch Handelshemmnisse abzubauen, wurde ab den 70er-Jahren mit der Harmonisierung nationaler Regelungen begonnen <ref name="Q_22" />. Mit der Normenserie [[EN 1995]]-1-1:2004/A1:2008 und [[EN 1995]]-1-2:2006 stehen dem Holzbau heute Dokumente zur Verfügung, die durch gesichertes Fachwissen eine auf europäischer Ebene einheitliche Bemessung von Holzbauten ermöglichen <ref name="Q_22" />. Damit den regionalen Bedürfnissen und Anforderungen der Länder nachgekommen werden kann, erfolgte eine Erweiterung der Grundlagendokumente der Eurocodes durch nationale Anhänge. Für die Anwendung des Eurocode 5 [[EN 1995]]-1-1:2004/A1:2008 sind gewisse Vorkenntnisse nötig, damit ein sicherer Umgang mit den semi-probabilistischen Bemessungskonzepten erfolgen kann.
Der Holzbau hat sich durch die verschiedenen Baukulturen der Völker, den unterschiedlichen regionalen Holzarten und nicht zuletzt von den getrennt durchgeführten Holzforschungen und den damit verbundenen Erfahrungen, regional in sehr unterschiedlichen Bauweisen weiterentwickelt <ref name="Q_22" />. Durch die Europäisierung und dem damit einhergehenden Wunsch Handelshemmnisse abzubauen, wurde ab den 70er-Jahren mit der Harmonisierung nationaler Regelungen begonnen <ref name="Q_22" />. Mit der Normenserie [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> und [[EN 1995]]-1-2:2006 stehen dem Holzbau heute Dokumente zur Verfügung, die durch gesichertes Fachwissen eine auf europäischer Ebene einheitliche Bemessung von Holzbauten ermöglichen <ref name="Q_22" />. Damit den regionalen Bedürfnissen und Anforderungen der Länder nachgekommen werden kann, erfolgte eine Erweiterung der Grundlagendokumente der Eurocodes durch nationale Anhänge. Für die Anwendung des Eurocode 5 [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> sind gewisse Vorkenntnisse nötig, damit ein sicherer Umgang mit den semi-probabilistischen Bemessungskonzepten erfolgen kann.


In Deutschland findet durch die [[DIN 1052]]:2008 dasselbe Sicherheitskonzept Anwendung, weshalb es unter anderem noch zu keiner vollständigen Umstellung auf den Eurocode 5 gekommen ist. Da mit der [[DIN 1052]]:2008 ein sehr gutes Normenwerk zur Verfügung steht, werden auch in anderen Ländern sehr häufig noch Bemessungsregeln daraus verwendet. Mit der Zeit wird es allerdings auch hierzu einer Angleichung kommen müssen.
In Deutschland findet durch die [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> dasselbe Sicherheitskonzept Anwendung, weshalb es unter anderem noch zu keiner vollständigen Umstellung auf den Eurocode 5 gekommen ist. Da mit der [[DIN 1052]]:2008 ein sehr gutes Normenwerk zur Verfügung steht, werden auch in anderen Ländern sehr häufig noch Bemessungsregeln daraus verwendet. Mit der Zeit wird es allerdings auch hierzu einer Angleichung kommen müssen.


Der [[SHERPA Holzverbinder|SHERPA<sup>®</sup>-Verbinder]] mit der allgemeinen bauaufsichtlichen Zulassung Z-9.1-558 vom [[Deutsches Institut für Bautechnik|Deutschen Institut für Bautechnik]] (DIBt) unterliegt den Regeln der [[DIN 1052]]:2008. In den folgenden Punkten werden die Methoden der Berechnung von Holzbauwerken nach den semi-probabilistischen Sicherheitskonzeptender beiden Regelwerke [[DIN 1052]]:2008 und der [[EN 1995]]-1-1:2004/A1:2008 vorgestellt. Durch den Sitz der Vinzenz Harrer GmbH in Frohnleiten bei Graz, werden in bestimmten Punkten auch Angaben aus dem nationalen Anhang für Österreich [[ÖNORM B 1995]]-1-1:2009 gemacht. Im Anschluss daran werden die Nachweise für die Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit der [[EN 1995]]-1-1:2004/A1:2008 und der [[DIN 1052]]:2008 vorgestellt und auch miteinander verglichen.
Der [[SHERPA Holzverbinder|SHERPA<sup>®</sup>-Verbinder]] mit der allgemeinen bauaufsichtlichen Zulassung Z-9.1-558 vom [[Deutsches Institut für Bautechnik|Deutschen Institut für Bautechnik]] (DIBt) unterliegt den Regeln der [[DIN 1052]]:2008. In den folgenden Punkten werden die Methoden der Berechnung von Holzbauwerken nach den semi-probabilistischen Sicherheitskonzepten der beiden Regelwerke [[DIN 1052]]:2008 und der [[EN 1995]]-1-1:2004/A1:2008 vorgestellt. Durch den Sitz der Vinzenz Harrer GmbH in Frohnleiten bei Graz, werden in bestimmten Punkten auch Angaben aus dem nationalen Anhang für Österreich [[ÖNORM B 1995]]-1-1:2009 <ref group="N" name="OENORM B 1995 3" /> gemacht. Im Anschluss daran werden die Nachweise für die Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit der [[EN 1995]]-1-1:2004/A1:2008 und der [[DIN 1052]]:2008 vorgestellt und auch miteinander verglichen.


Die gezeigten Rechenmodelle beinhalten nur einen kleinen Teil der beiden genannten Regelwerke und dürfen somit keinesfalls als Ersatz der jeweils gültigen Normendokumente verstanden werden.
Die gezeigten Rechenmodelle beinhalten nur einen kleinen Teil der beiden genannten Regelwerke und dürfen somit keinesfalls als Ersatz der jeweils gültigen Normendokumente verstanden werden.


Viele Parameter in den Berechnungskonzepten zur Dimensionierung von Bauteilen unterliegen natürlichen statistischen Streuungen. Damit die in diesem Zusammenhang entstehenden Unsicherheiten der Modellannahmen quantifiziert und das Versagensrisiko so gering wie möglich gehalten und auch bewertet werden kann, werden in den Normenwerken die Berechnungskonzepte nachdem semi-probabilistischen Sicherheitskonzept aufgebaut. Die europäischen Normenwerke zur Bemessung von Tragwerken ist der Abb. 1.1 zu entnehmen.
Viele Parameter in den Berechnungskonzepten zur Dimensionierung von Bauteilen unterliegen natürlichen statistischen Streuungen. Damit die in diesem Zusammenhang entstehenden Unsicherheiten der Modellannahmen quantifiziert und das Versagensrisiko so gering wie möglich gehalten und auch bewertet werden kann, werden in den Normenwerken die Berechnungskonzepte nach dem semi-probabilistischen Sicherheitskonzept aufgebaut. Die europäischen Normenwerke zur Bemessung von Tragwerken sind der Abb. 1.1 zu entnehmen.


{|align="left" valign="top"  
{|align="left" valign="top"  
|[[Bild:BPhys_Statik_Semi_1-1_EU_Normen.gif|left|600px|Europäische Normenwerke im Überblick]]
|[[Bild:BPhys_Statik_Semi_1-1_EU_Normen.png|left|600px|Europäische Normenwerke im Überblick]]
|}
|}
<br clear="all" />
<br clear="all" />
Zeile 47: Zeile 47:


All diese Dokumente (ÖNORM EN 199x und ÖNORM B 199x) sind als geschlossene Einheit anzuwenden, und das Vermischen mit anderen Normenserien (ÖNORM B 4xxx, ÖNORM ENV 199x) ist nicht zulässig.
All diese Dokumente (ÖNORM EN 199x und ÖNORM B 199x) sind als geschlossene Einheit anzuwenden, und das Vermischen mit anderen Normenserien (ÖNORM B 4xxx, ÖNORM ENV 199x) ist nicht zulässig.
'''<big>1.2</big>'''


===Grundsätzliches zur Bemessung nach Grenzzuständen===
===Grundsätzliches zur Bemessung nach Grenzzuständen===
====Allgemeines====
====Allgemeines====
Die auf dem semi-probabilistischem Sicherheitskonzept basierende Normenfamilie der Eurocodes und einzelner nationaler Normen, wie zum Beispiel [[DIN 1052]]:2008, definieren über Grenzzustände die konstruktive Zuverlässigkeit der Tragsicherheit, Gebrauchstauglichkeit und Dauerhaftigkeit von Tragwerken. Werden die Grenzzustände überschritten, können die an ein Tragwerk gestellten Anforderungen nicht mehr gesichert erfüllt werden.
Die auf dem semi-probabilistischem Sicherheitskonzept basierende Normenfamilie der Eurocodes und einzelner nationaler Normen, wie zum Beispiel [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" />, definieren über Grenzzustände die konstruktive Zuverlässigkeit der Tragsicherheit, Gebrauchstauglichkeit und Dauerhaftigkeit von Tragwerken. Werden die Grenzzustände überschritten, können die an ein Tragwerk gestellten Anforderungen nicht mehr gesichert erfüllt werden.


====Grenzzustände der Tragfähigkeit (engl.: Ultimate Limit State (ULS)) <ref name="Q_22" />====
====Grenzzustände der Tragfähigkeit (engl.: Ultimate Limit State (ULS)) <ref name="Q_22" />====
Zeile 58: Zeile 61:
* Stabilitätsverluste (besonders bei schlanken Bauteilen)
* Stabilitätsverluste (besonders bei schlanken Bauteilen)
* Eintritt von Versagensmechanismen am Gesamtsystem oder einzelner Tragwerksteile
* Eintritt von Versagensmechanismen am Gesamtsystem oder einzelner Tragwerksteile


====Grenzzustände der Gebrauchstauglichkeit (engl.: Serviceability Limit State (SLS)) <ref name="Q_22" />====
====Grenzzustände der Gebrauchstauglichkeit (engl.: Serviceability Limit State (SLS)) <ref name="Q_22" />====
Die Verformungen bzw. Durchbiegungen eines Tragwerkes infolge von Beanspruchungen sollen in definierten Grenzen gehalten werden, um mögliche Schäden (wie z. B. Rissbildungen) an Bauteilen, wie Decken, Fußboden, Trennwänden, Installationen, etc. zu vermeiden. Auch gilt es, die Anforderungen hinsichtlich der Benutzbarkeit (Durchbiegungen, Schwingungen) und des Erscheinungsbildes bzw. des Wohlbefindens der Nutzer zu erfüllen.
Die Verformungen bzw. Durchbiegungen eines Tragwerkes infolge von Beanspruchungen sollen in definierten Grenzen gehalten werden, um mögliche Schäden (wie z. B. Rissbildungen) an Bauteilen, wie Decken, Fußboden, Trennwänden, Installationen, etc. zu vermeiden. Auch gilt es, die Anforderungen hinsichtlich der Benutzbarkeit (Durchbiegungen, Schwingungen) und des Erscheinungsbildes bzw. des Wohlbefindens der Nutzer zu erfüllen.


====Nachweise durch die Methode der Teilsicherheitsbeiwerte====
====Nachweise durch die Methode der Teilsicherheitsbeiwerte====
Zeile 79: Zeile 84:


{|align="left" valign="top"  
{|align="left" valign="top"  
|[[Bild:BPhys_Statik_Semi_1-2_Skizze.gif|left|600px|semi-probabilistisches Sicherheitskonzept]]
|[[Bild:BPhys_Statik_Semi_1-2_Skizze.png|left|400px|semi-probabilistisches Sicherheitskonzept]]
|}
|}
{|
{|
Zeile 110: Zeile 115:




'''<big>1.3</big>'''


===Einwirkungen und Einwirkungskombinationen===
===Einwirkungen und Einwirkungskombinationen===
Zeile 121: Zeile 127:


{|align="left" valign="top"  
{|align="left" valign="top"  
|[[Bild:BPhys_Statik_Semi_1-3_EN 1991.gif|left|600px|EN-Normen zur Berücksichtigung der Einwirkungen]]
|[[Bild:BPhys_Statik_Semi_1-3_EN 1991.png|left|600px|EN-Normen zur Berücksichtigung der Einwirkungen]]
|}
|}
<br clear="all" />
<br clear="all" />
'''Abb. 1.3:''' EN-Normen zur Berücksichtigung der Einwirkungen <ref name="Q_24" />
'''Abb. 1.3:''' EN-Normen zur Berücksichtigung der Einwirkungen <ref name="Q_24" />


=====Auswirkungen von Einwirkungen auf ein Tragwerk=====
=====Auswirkungen von Einwirkungen auf ein Tragwerk=====
Durch die Einwirkungen auf ein Tragwerk kommt es zu Beanspruchungen von Bauteilen (z. B. Schnittkräfte, Spannungen, Dehnungen) oder Reaktionen des Gesamttragwerks (z. B. Durchbiegungen, Verdrehungen).
Durch die Einwirkungen auf ein Tragwerk kommt es zu Beanspruchungen von Bauteilen (z. B. Schnittkräfte, Spannungen, Dehnungen) oder Reaktionen des Gesamttragwerks (z. B. Durchbiegungen, Verdrehungen).


=====Einteilung der Einwirkungen=====
=====Einteilung der Einwirkungen=====
Zeile 140: Zeile 148:
;Charakteristischer Wert einer Einwirkung (G<sub>k</sub> oder Q<sub>k</sub>) (1.5.3.14 <ref group="N" name="OENORM EN 1990" />)
;Charakteristischer Wert einer Einwirkung (G<sub>k</sub> oder Q<sub>k</sub>) (1.5.3.14 <ref group="N" name="OENORM EN 1990" />)
Wichtigster repräsentativer Wert einer Einwirkung.
Wichtigster repräsentativer Wert einer Einwirkung.


====Kombination von Einwirkungen (ohne Ermüdung)====
====Kombination von Einwirkungen (ohne Ermüdung)====
Zeile 154: Zeile 163:
;Für die Kombinationsregeln gilt der allgemeine Grundsatz:
;Für die Kombinationsregeln gilt der allgemeine Grundsatz:
Jede Einwirkungskombination sollte eine dominierende veränderliche Einwirkung (Leiteinwirkung mit einem Maximum) oder eine außergewöhnliche Einwirkung (Erdbeben, Fahrzeuganprall, ...) aufweisen. Die Auswirkungen der übrigen Einflüsse (Begleiteinwirkungen) sind, sofern aus physikalischen oder betrieblichen Gründen sinnvoll, zu berücksichtigen. Dabei soll jede veränderliche Einwirkung auch als Leiteinwirkung auftreten. Daraus lässt sich ableiten, dass die Anzahl der unterschiedlichen Lastfallkombinationen zumindest jener der unterschiedlichen voneinander unabhängigen veränderlichen Einwirkungen entspricht. Aus allen Kombinationen ist jene mit den ungünstigsten Auswirkungen auf das Tragverhalten der Struktur maßgebend. Die Integration der Einwirkungen erfolgt mit Hilfe von Teilsicherheitsbeiwerten &gamma;<sub>G</sub> und &gamma;<sub>Q</sub> und Kombinationsbeiwerten &psi; .
Jede Einwirkungskombination sollte eine dominierende veränderliche Einwirkung (Leiteinwirkung mit einem Maximum) oder eine außergewöhnliche Einwirkung (Erdbeben, Fahrzeuganprall, ...) aufweisen. Die Auswirkungen der übrigen Einflüsse (Begleiteinwirkungen) sind, sofern aus physikalischen oder betrieblichen Gründen sinnvoll, zu berücksichtigen. Dabei soll jede veränderliche Einwirkung auch als Leiteinwirkung auftreten. Daraus lässt sich ableiten, dass die Anzahl der unterschiedlichen Lastfallkombinationen zumindest jener der unterschiedlichen voneinander unabhängigen veränderlichen Einwirkungen entspricht. Aus allen Kombinationen ist jene mit den ungünstigsten Auswirkungen auf das Tragverhalten der Struktur maßgebend. Die Integration der Einwirkungen erfolgt mit Hilfe von Teilsicherheitsbeiwerten &gamma;<sub>G</sub> und &gamma;<sub>Q</sub> und Kombinationsbeiwerten &psi; .


=====Kombinationsregeln für Nachweise in den Grenzzuständen der Tragfähigkeit=====
=====Kombinationsregeln für Nachweise in den Grenzzuständen der Tragfähigkeit=====
Kombination von Einwirkungen bei ständigen (Normalsituationen) und vorübergehenden (Bausituationen) Bemessungssituationen (= Grundkombination) <ref group="N" name="OENORM EN 1990" />
Kombination von Einwirkungen bei ständigen (Normalsituationen) und vorübergehenden (Bausituationen) Bemessungssituationen (= Grundkombination) <ref group="N" name="OENORM EN 1990" />


{{FmAm| <math> \mathsf {E_{d} = \sum_{j \ge 1} \gamma_{G,j} \cdot G_{k,j}\ \oplus\ \gamma_{Q,j} \cdot Q_{k,1}\ \oplus\ \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i} } </math> |(1.1)}}
{{FmAm| <math> \mathsf {E_{d} = \sum_{j \ge 1} \gamma_{G,j} \cdot G_{k,j}\ \oplus\ \gamma_{Q,1} \cdot Q_{k,1}\ \oplus\ \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i} } </math> |(1.1)|80%|0em 1em 0em 0em}}


{|
{|
Zeile 177: Zeile 187:
|&gamma;<sub>Q,1</sub>|| || Teilsicherheitsbeiwert für die dominierende veränderliche Einwirkung
|&gamma;<sub>Q,1</sub>|| || Teilsicherheitsbeiwert für die dominierende veränderliche Einwirkung
|-
|-
|G<sub>k,i</sub>|| || Charakteristischer Wert der begleitenden veränderlichen Einwirkung i
|Q<sub>k,i</sub>|| || Charakteristischer Wert der begleitenden veränderlichen Einwirkung i
|-
|-
|&gamma;<sub>Q,i</sub>|| || Teilsicherheitsbeiwert für die begleitende veränderliche Einwirkung i
|&gamma;<sub>Q,i</sub>|| || Teilsicherheitsbeiwert für die begleitende veränderliche Einwirkung i
Zeile 184: Zeile 194:
|}
|}


Da das Aufstellen der Lastkombinationen mit einem relativ großen Rechenaufwand verbunden ist, werden in der [[DIN 1052]]:2008  vereinfachte Regeln gemäß Gleichung (1.2) für die Anwendungen im Hochbau1 angegeben.


{{FmAm| <math> \mathsf {E_{d} = max \begin{Bmatrix} \sum_{j\ge1} & \gamma_{G,j} \cdot G_{k,j} &\oplus\ 1{,}50 \cdot Q_{k,1} \qquad \quad \\ \sum_{j\ge1} & \gamma_{G,j} \cdot G_{k,j} &\oplus\  1{,}35 \cdot \sum_{i\ge1}\ Q_{k,i}\ \end{Bmatrix} } </math> |(1.2)}}
Da das Aufstellen der Lastkombinationen mit einem relativ großen Rechenaufwand verbunden ist, werden in der [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> vereinfachte Regeln gemäß Gleichung (1.2) für die Anwendungen im Hochbau1 angegeben.
 
{{FmAm| <math> \mathsf {E_{d} = max \begin{Bmatrix} \sum_{j\ge1} & \gamma_{G,j} \cdot G_{k,j} &\oplus\ 1{,}50 \cdot Q_{k,1} \qquad \quad \\ \sum_{j\ge1} & \gamma_{G,j} \cdot G_{k,j} &\oplus\  1{,}35 \cdot \sum_{i\ge1}\ Q_{k,i}\ \end{Bmatrix} } </math> |(1.2)|80%|0em 1em 0em 0em}}


Anmerkung:<br />
Anmerkung:<br />
Zeile 194: Zeile 205:
Kombination von Einwirkungen bei außergewöhnlichen Bemessungssituationen (Brandfall, Explosionen, ...)<ref group="N" name="OENORM EN 1990" />
Kombination von Einwirkungen bei außergewöhnlichen Bemessungssituationen (Brandfall, Explosionen, ...)<ref group="N" name="OENORM EN 1990" />


{{FmAm| <math> \mathsf {E_{d} = \sum_{j \ge 1} G_{k,j}\ \oplus\ A_{d}\ \oplus\  \left( \psi_{1,1}\ \mbox{oder}\ \psi_{2,1} \right)  \cdot Q_{k,1}\ \oplus\ \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} } </math> |(1.3)}}
{{FmAm| <math> \mathsf {E_{d} = \sum_{j \ge 1} G_{k,j}\ \oplus\ A_{d}\ \oplus\  \left( \psi_{1,1}\ \mbox{oder}\ \psi_{2,1} \right)  \cdot Q_{k,1}\ \oplus\ \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} } </math> |(1.3)|80%|0em 1em 0em 0em}}


{|
{|
Zeile 213: Zeile 224:
Kombinationen von Einwirkungen für Bemessungssituation bei Erdbeben <ref group="N" name="OENORM EN 1990" />
Kombinationen von Einwirkungen für Bemessungssituation bei Erdbeben <ref group="N" name="OENORM EN 1990" />


{{FmAm| <math> \mathsf {E_{dAE} = \sum_{j \ge 1} G_{k,j}\ \oplus\ \gamma_{I} \cdot A_{Ek}\ \oplus\ \sum_{i \ge 1} \psi_{2,i}\ \cdot Q_{k,i} } </math> |(1.4)}}
{{FmAm| <math> \mathsf {E_{dAE} = \sum_{j \ge 1} G_{k,j}\ \oplus\ \gamma_{I} \cdot A_{Ek}\ \oplus\ \sum_{i \ge 1} \psi_{2,i}\ \cdot Q_{k,i} } </math> |(1.4)|80%|0em 1em 0em 0em}}


{|
{|
Zeile 229: Zeile 240:


Allgemein ist die Bedingung nach <ref group="N" name="OENORM EN 1990" />
Allgemein ist die Bedingung nach <ref group="N" name="OENORM EN 1990" />
{{FmAm| <math> \mathsf {E_{d} \le C_{d} } </math> |(1.5)}}
{{FmAm| <math> \mathsf {E_{d} \le C_{d} } </math> |(1.5)|80%|0em 1em 0em 0em}}
zu erfüllen.
zu erfüllen.


Zeile 239: Zeile 250:
|C<sub>d</sub> || || Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
|C<sub>d</sub> || || Bemessungswert der Grenze für das maßgebende Gebrauchstauglichkeitskriterium
|}
|}


;Charakteristische Kombination <ref group="N" name="OENORM EN 1990" />
;Charakteristische Kombination <ref group="N" name="OENORM EN 1990" />
Verwendung für nicht umkehrbare Auswirkungen auf ein Tragwerk
Verwendung für nicht umkehrbare Auswirkungen auf ein Tragwerk


{{FmAm| <math> \mathsf {E_{d} = \sum_{j\ge1} G_{k,j}\ \oplus\ Q_{k,1}\ \oplus\ \sum_{i>1} \psi_{0,i}\ \cdot Q_{k,i} } </math> |(1.6)}}
{{FmAm| <math> \mathsf {E_{d} = \sum_{j\ge1} G_{k,j}\ \oplus\ Q_{k,1}\ \oplus\ \sum_{i>1} \psi_{0,i}\ \cdot Q_{k,i} } </math> |(1.6)|80%|0em 1em 0em 0em}}




Zeile 249: Zeile 261:
Verwendung für umkehrbare Auswirkungen auf ein Tragwerk
Verwendung für umkehrbare Auswirkungen auf ein Tragwerk


{{FmAm| <math> \mathsf {E_{d} = \sum_{j\ge1} G_{k,j}\ \oplus\ \psi_{1,1} \cdot Q_{k,1}\ \oplus\ \sum_{i>1} \psi_{2,i}\ \cdot Q_{k,i} } </math> |(1.7)}}
{{FmAm| <math> \mathsf {E_{d} = \sum_{j\ge1} G_{k,j}\ \oplus\ \psi_{1,1} \cdot Q_{k,1}\ \oplus\ \sum_{i>1} \psi_{2,i}\ \cdot Q_{k,i} } </math> |(1.7)|80%|0em 1em 0em 0em}}




Zeile 255: Zeile 267:
Verwendung für Langzeitauswirkungen (z. B. Erscheinungsbild) auf ein Tragwerk
Verwendung für Langzeitauswirkungen (z. B. Erscheinungsbild) auf ein Tragwerk


{{FmAm| <math> \mathsf {E_{d} = \sum_{j\ge1} G_{k,j}\ \oplus\ \sum_{i\ge1} \psi_{2,i}\ \cdot Q_{k,i} } </math> |(1.8)}}
{{FmAm| <math> \mathsf {E_{d} = \sum_{j\ge1} G_{k,j}\ \oplus\ \sum_{i\ge1} \psi_{2,i}\ \cdot Q_{k,i} } </math> |(1.8)|80%|0em 1em 0em 0em}}




Zeile 272: Zeile 284:
|- align="center"  
|- align="center"  
| align="left" |Grundkombination
| align="left" |Grundkombination
| γ<sub>G,j;sup</sub> &middot; G <sub>k,j;sup</sub>  
| γ<sub>G,j,sup</sub> &middot; G <sub>k,j,sup</sub>  
| γ<sub>G,j;inf</sub> &middot; G  <sub>k,j;inf</sub>
| γ<sub>G,j,inf</sub> &middot; G  <sub>k,j,inf</sub>
| γ<sub>Q,1</sub> &middot; Q <sub>k,1</sub>  
| γ<sub>Q,1</sub> &middot; Q <sub>k,1</sub>  
| colspan="2" | γ<sub>Q,i</sub> &middot; ψ<sub>0,i</sub> &middot; Q <sub>k,i</sub>
| colspan="2" | γ<sub>Q,i</sub> &middot; ψ<sub>0,i</sub> &middot; Q <sub>k,i</sub>
|-
|-
| γ<sub>G,j;sup</sub> &nbsp;= &nbsp;1,35<br />
| γ<sub>G,j;sup</sub> &nbsp;= &nbsp;1,35<br />
γ<sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;1,00<br />
γ<sub>G,j,inf</sub> &nbsp;&nbsp;= &nbsp;1,00<br />
γ<sub>G,j;sup</sub> &nbsp;= &nbsp;1,10 <br />
γ<sub>G,j,sup</sub> &nbsp;= &nbsp;1,10 <br />
γ<sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;0,90 <br />  
γ<sub>G,j,inf</sub> &nbsp;&nbsp;= &nbsp;0,90 <br />  
γ<sub>G,j;sup</sub> &nbsp;= &nbsp;1,10 <br /> <br />
γ<sub>G,j,sup</sub> &nbsp;= &nbsp;1,10 <br /> <br />
γ<sub>G,j;inf</sub> &nbsp;&nbsp;= &nbsp;1,15 <br /> <br />
γ<sub>G,j,inf</sub> &nbsp;&nbsp;= &nbsp;1,15 <br /> <br />
γ<sub>Q,1</sub> &nbsp;= &nbsp;1,50 <br />
γ<sub>Q,1</sub> &nbsp;= &nbsp;1,50 <br />
γ<sub>Q,i</sub> &nbsp;= &nbsp;1,50 <br />
γ<sub>Q,i</sub> &nbsp;= &nbsp;1,50 <br />
γ<sub>G,j;sup</sub> / γ<sub>G,j;inf</sub> <br />
γ<sub>G,j,sup</sub> / γ<sub>G,j,inf</sub> <br />
G<sub>k,j;sup</sub> / G<sub>k,j;inf</sub> <br />
G<sub>k,j,sup</sub> / G<sub>k,j,inf</sub> <br />
ψ<sub>Q,i</sub> <br />
ψ<sub>Q,i</sub> <br />
A<sub>d</sub> <br />
A<sub>d</sub> <br />
Zeile 307: Zeile 319:
|- align="center"  
|- align="center"  
| align="left"| Außergewöhnlich
| align="left"| Außergewöhnlich
| G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub> || A<sub>d</sub>  
| G <sub>k,j,sup</sub> || G <sub>k,j,inf</sub> || A<sub>d</sub>  
| (ψ<sub>1,1</sub> oder ψ<sub>2,1</sub>) <br />&middot; Q <sub>k,i</sub>
| (ψ<sub>1,1</sub> oder ψ<sub>2,1</sub>) <br />&middot; Q <sub>k,i</sub>
| ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
| ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
|- align="center"  
|- align="center"  
| align="left"| Erdbeben  
| align="left"| Erdbeben  
| G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub>   
| G <sub>k,j,sup</sub> || G <sub>k,j,inf</sub>   
| γ<sub>f</sub> &middot; A <sub>Ek</sub> oder A <sub>Ed</sub> ||  
| γ<sub>f</sub> &middot; A <sub>Ek</sub> oder A <sub>Ed</sub> ||  
| ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
| ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
Zeile 322: Zeile 334:
| Ungünstig || Günstig || Dominierende || colspan="2" | Weitere
| Ungünstig || Günstig || Dominierende || colspan="2" | Weitere
|- align="center"
|- align="center"
| align="left" | Charakteristisch || G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub>  
| align="left" | Charakteristisch || G <sub>k,j,sup</sub> || G <sub>k,j,inf</sub>  
| Q <sub>k,1</sub> || colspan="2" | ψ<sub>0,i</sub> &middot; Q <sub>k,i</sub>
| Q <sub>k,1</sub> || colspan="2" | ψ<sub>0,i</sub> &middot; Q <sub>k,i</sub>
|- align="center"
|- align="center"
| align="left" | Häufig || G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub>  
| align="left" | Häufig || G <sub>k,j,sup</sub> || G <sub>k,j,inf</sub>  
| ψ<sub>1,1</sub> &middot; Q <sub>k,1</sub>  
| ψ<sub>1,1</sub> &middot; Q <sub>k,1</sub>  
| colspan="2" | ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
| colspan="2" | ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
|- align="center"
|- align="center"
| align="left" | Quasi-ständig || G <sub>k,j;sup</sub> || G <sub>k,j;inf</sub>  
| align="left" | Quasi-ständig || G <sub>k,j,sup</sub> || G <sub>k,j,inf</sub>  
| ψ<sub>2,1</sub> &middot; Q <sub>k,1</sub>  
| ψ<sub>2,1</sub> &middot; Q <sub>k,1</sub>  
| colspan="2" | ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
| colspan="2" | ψ<sub>2,i</sub> &middot; Q <sub>k,i</sub>
Zeile 337: Zeile 349:
|}
|}
'''Tab. 1.1:''' Bemessungswerte der Einwirkungen und empfohlene Teilsicherheitsbeiwerte nach [[EN 1990]]:2003 <ref group="N" name="OENORM EN 1990" /> (Zusammenfassung)
'''Tab. 1.1:''' Bemessungswerte der Einwirkungen und empfohlene Teilsicherheitsbeiwerte nach [[EN 1990]]:2003 <ref group="N" name="OENORM EN 1990" /> (Zusammenfassung)


====Kombinationsbeiwerte ψ<sub>0</sub>, ψ<sub>1</sub> und ψ<sub>2</sub>====
====Kombinationsbeiwerte ψ<sub>0</sub>, ψ<sub>1</sub> und ψ<sub>2</sub>====
Zeile 356: Zeile 366:
| colspan="4" | Nutzlasten im Hochbau <sup>a)</sup>
| colspan="4" | Nutzlasten im Hochbau <sup>a)</sup>
|- align="center"
|- align="center"
| align="left" width="500px" | Kategorie A: Wohngebäude || width="60px" | 0,7 || width="60px" | 0,5 || width="60px" | 0,3
| align="left" width="500px" | &nbsp;&nbsp; Kategorie A: Wohngebäude || width="60px" | 0,7 || width="60px" | 0,5 || width="60px" | 0,3
|- align="center"
|- align="center"
| align="left" | Kategorie B: Bürogebäude || 0,7 || 0,5 || 0,3
| align="left" | &nbsp;&nbsp; Kategorie B: Bürogebäude || 0,7 || 0,5 || 0,3
|- align="center"
|- align="center"
| align="left" | Kategorie C: Versammlungsbereiche || 0,7 || 0,7 || 0,6
| align="left" | &nbsp;&nbsp; Kategorie C: Versammlungsbereiche || 0,7 || 0,7 || 0,6
|- align="center"
|- align="center"
| align="left" | Kategorie D: Verkaufsflächen || 0,7 || 0,7 || 0,6
| align="left" | &nbsp;&nbsp; Kategorie D: Verkaufsflächen || 0,7 || 0,7 || 0,6
|- align="center"
|- align="center"
| align="left" | Kategorie E: Lagerflächen || 1,0 || 0,9 || 0,8
| align="left" | &nbsp;&nbsp; Kategorie E: Lagerflächen || 1,0 || 0,9 || 0,8
|- align="center"
|- align="center"
| align="left" | Kategorie F: Fahrzeugverkehr im Hochbau, Fahrzeuggewicht &le; 30 kN || 0,7 || 0,7 || 0,6
| align="left" | &nbsp;&nbsp; Kategorie F: Fahrzeugverkehr im Hochbau, Fahrzeuggewicht &le; 30 kN || 0,7 || 0,7 || 0,6
|- align="center"
|- align="center"
| align="left" | Kategorie G: Fahrzeugverkehr im Hochbau, 30 kN < Fahrzeuggewicht &le; 160 kN || 0,7 || 0,5 || 0,3  
| align="left" | &nbsp;&nbsp; Kategorie G: Fahrzeugverkehr im Hochbau, 30 kN < Fahrzeuggewicht &le; 160 kN || 0,7 || 0,5 || 0,3  
|- align="center"
|- align="center"
| align="left" | Kategorie H: [[Dach|Dächer]] || 0 || 0 || 0
| align="left" | &nbsp;&nbsp; Kategorie H: [[Dach|Dächer]] || 0 || 0 || 0
|-
|-
| colspan="4" | Schneelasten im Hochbau (siehe [[EN 1991]]-1-3)<sup>b)</sup>
| colspan="4" | Schneelasten im Hochbau (siehe [[EN 1991]]-1-3)<sup>b)</sup>
|- align="center"
|- align="center"
| align="left" | - Finnland, Island, Norwegen, Schweden || 0,7 || 0,5 || 0,2
| align="left" | &nbsp;&nbsp;  Finnland, Island, Norwegen, Schweden || 0,7 || 0,5 || 0,2
|- align="center"
|- align="center"
| align="left" | - für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe über 1.000 m ü. NN || 0,7 || 0,5 || 0,2
| align="left" | &nbsp;&nbsp;  für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe über 1.000 m ü. NN || 0,7 || 0,5 || 0,2
|- align="center"
|- align="center"
| align="left" | - für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe niederiger als 1.000 m ü. NN || 0,5 || 0,2 || 0
| align="left" | &nbsp;&nbsp;  für Orte in CEN-Mitgliedsstaaten mit einer Seehöhe niederiger als 1.000 m ü. NN || 0,5 || 0,2 || 0
|- align="center"
|- align="center"
| align="left" | Windlasten im Hochbau (siehe [[EN 1991]]-1-4) <sup>c)</sup>|| 0,6 || 0,2 || 0
| align="left" | Windlasten im Hochbau (siehe [[EN 1991]]-1-4) <sup>c)</sup>|| 0,6 || 0,2 || 0
Zeile 394: Zeile 404:




'''<big>1.4</big>'''


===Basisvariable===
===Basisvariable===
Zeile 399: Zeile 410:
Der Bemessungswert der Tragfähigkeit eines Querschnitts, Bauteils bzw. einer Verbindung wird im Holzbau mit Hilfe der Gleichung (1.9) berechnet.
Der Bemessungswert der Tragfähigkeit eines Querschnitts, Bauteils bzw. einer Verbindung wird im Holzbau mit Hilfe der Gleichung (1.9) berechnet.


{{FmAm| <math> \mathsf {X_{d} = \frac{k_{mod} \cdot X_{k}}{\gamma_{M}}  \qquad \mbox{bzw.} \qquad R_{d} = \frac{k_{mod} \cdot R_{k}}{\gamma_{M}}} </math> |(1.9)}}
{{FmAm| <math> \mathsf {X_{d} = \frac{k_{mod} \cdot X_{k}}{\gamma_{M}}  \qquad \mbox{bzw.} \qquad R_{d} = \frac{k_{mod} \cdot R_{k}}{\gamma_{M}}} </math> |(1.9)|80%|0em 1em 0em 0em}}


{|
{|
Zeile 434: Zeile 445:
| sehr kurz || kürzer als 1 Minute || außergewöhnliche Lasten, Anpralllasten,<br /> Erdbebenlasten
| sehr kurz || kürzer als 1 Minute || außergewöhnliche Lasten, Anpralllasten,<br /> Erdbebenlasten
|}
|}
'''Tab. 1.3:''' Zuordnung von Tragwerken in KLED nach [[EN 1995]]-1-1:2004/A1:2008 und [[ÖNORM B 1995]]-1-1:2010  
'''Tab. 1.3:''' Zuordnung von Tragwerken in KLED nach [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> und [[ÖNORM B 1995]]-1-1:2010 <ref group="N" name="OENORM B 1995 3" />




Zeile 478: Zeile 489:
|}
|}
'''Tab. 1.4:''' Zuordnung von Tragwerken in KLED nach [[DIN 1055]]-1, DIN 1055-3, DIN 1055-4, DIN 1055-5, DIN 1055-9, DIN 1055-10 und DIN 1055-100
'''Tab. 1.4:''' Zuordnung von Tragwerken in KLED nach [[DIN 1055]]-1, DIN 1055-3, DIN 1055-4, DIN 1055-5, DIN 1055-9, DIN 1055-10 und DIN 1055-100




Zeile 501: Zeile 513:
|}
|}


'''Tab. 1.5:''' Zuordnung von Tragwerken in Nutzungsklassen nach [[ÖNORM B 1995]]-1-1 und [[DIN 1052]]:2008
'''Tab. 1.5:''' Zuordnung von Tragwerken in Nutzungsklassen nach [[ÖNORM B 1995]]-1-1 <ref group="N" name="OENORM B 1995 3" /> und [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" />


Zur Verminderung von Schwindrissen und Maßänderungen sollten die verwendeten Holzbauteile für die Nutzungsklassen 1 und 2 mit einer Einbaufeuchte u &le; 20 %, und für die Nutzungsklasse 3 mit u &le; 25 % begrenzt werden (lt. [[DIN 1052]]:2008).
Zur Verminderung von Schwindrissen und Maßänderungen sollten die verwendeten Holzbauteile für die Nutzungsklassen 1 und 2 mit einer Einbaufeuchte u &le; 20 %, und für die Nutzungsklasse 3 mit u &le; 25 % begrenzt werden (lt. [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> ).




Zeile 556: Zeile 568:
Baustoffeigenschaften nach [[DIN 1052]]:2008
Baustoffeigenschaften nach [[DIN 1052]]:2008
|}
|}
'''<big>1.5</big>'''


===Baustoffeigenschaften===
===Baustoffeigenschaften===
==== Modifikationsbeiwerte der Festigkeiten zur Berücksichtigung der Nutzungsklasse und Lasteinwirkungsdauer ====
==== Modifikationsbeiwerte der Festigkeiten zur Berücksichtigung der Nutzungsklasse und Lasteinwirkungsdauer ====
Anmerkungen aus [[EN 1995]]-1-1:2004/A1:2008 und [[DIN 1052]]:2008 : <br />
Anmerkungen aus [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> und [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> : <br />
Setzt sich eine Lastkombination aus unterschiedlichen Lasteinwirkungsdauern zusammen, ist in der Regel der Wert für '''k'''<sub>mod</sub> mit der kürzeren Dauer zu verwenden.  
Setzt sich eine Lastkombination aus unterschiedlichen Lasteinwirkungsdauern zusammen, ist in der Regel der Wert für '''k'''<sub>mod</sub> mit der kürzeren Dauer zu verwenden.  


Anmerkungen aus [[EN 1995]]-1-1:2004/A1:2008 : <br />
Anmerkungen aus [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> : <br />
Besteht eine Verbindung aus Holzteilen mit unterschiedlichen zeitabhängigem Verhalten, so ist '''k'''<sub>mod</sub> mit '''k'''<sub>mod,1</sub> und '''k'''<sub>mod,2</sub> der beiden Holzteile mittels <math> \mathsf{ k_{mod} = \sqrt {k_{mod,1} \cdot k_{mod,2}}} </math> zu ermitteln.
Besteht eine Verbindung aus Holzteilen mit unterschiedlichen zeitabhängigem Verhalten, so ist '''k'''<sub>mod</sub> mit '''k'''<sub>mod,1</sub> und '''k'''<sub>mod,2</sub> der beiden Holzteile mittels <math> \mathsf{ k_{mod} = \sqrt {k_{mod,1} \cdot k_{mod,2}}} </math> zu ermitteln.


Zeile 700: Zeile 715:
'''Tab. 1.10:''' Empfohlene Verformungsbeiwert k<sub>def</sub> nach [[EN 1995]]-1-1:2004/A1:2008
'''Tab. 1.10:''' Empfohlene Verformungsbeiwert k<sub>def</sub> nach [[EN 1995]]-1-1:2004/A1:2008


Anmerkung zu [[EN 1995]]-1-1:2004/A1:2008 :<br />
Anmerkung zu [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> :<br />
Besteht eine Verbindung aus Holzbauteilen mit dem gleichen zeitabhängigen Verhalten, so ist der Wert von '''k'''<sub>def</sub> zu verdoppeln. Wenn eine Verbindung aus Holz- und/oder [[Holzwerkstoff]]en mit unterschiedlichem zeitabhängigen Verhalten besteht, ist in der Regel der Wert für '''k'''<sub>def</sub> mit den Verformungsbeiwerten '''k'''<sub>def,1</sub> und '''k'''<sub>def,2</sub> der beteiligten Holzbaustoffe mittels <math> \mathsf{ k_{def} = 2 \cdot \sqrt {k_{def,1} \cdot k_{def,2}}} </math> zu berechnen.
Besteht eine Verbindung aus Holzbauteilen mit dem gleichen zeitabhängigen Verhalten, so ist der Wert von '''k'''<sub>def</sub> zu verdoppeln. Wenn eine Verbindung aus Holz- und/oder [[Holzwerkstoff]]en mit unterschiedlichem zeitabhängigen Verhalten besteht, ist in der Regel der Wert für '''k'''<sub>def</sub> mit den Verformungsbeiwerten '''k'''<sub>def,1</sub> und '''k'''<sub>def,2</sub> der beteiligten Holzbaustoffe mittels <math> \mathsf{ k_{def} = 2 \cdot \sqrt {k_{def,1} \cdot k_{def,2}}} </math> zu berechnen.


Zeile 740: Zeile 755:
'''Tab. 1.11:''' Empfohlener Verformungsbeiwert '''k'''<sub>def</sub> nach [[DIN 1052]]:2008
'''Tab. 1.11:''' Empfohlener Verformungsbeiwert '''k'''<sub>def</sub> nach [[DIN 1052]]:2008


Anmerkung zu [[DIN 1052]]:2008<br />
Anmerkung zu [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> <br />
Ist der ständige Lastanteil > 70 % der Gesamtlast soll die Steifigkeit druckbeanspruchter Bauteile um den Faktor 1 / (1+'''k'''<sub>def</sub>) abgemindert werden. Bei Tragwerken aus Bauteilen mit unterschiedlichen zeitabhängigen Verformungsverhalten sollen die Steifigkeiten der einzelnen Bauteile um den Faktor&nbsp;1&nbsp;/&nbsp;(1+k<sub>def</sub>) abgemindert werden.
Ist der ständige Lastanteil > 70 % der Gesamtlast soll die Steifigkeit druckbeanspruchter Bauteile um den Faktor 1 / (1+'''k'''<sub>def</sub>) abgemindert werden. Bei Tragwerken aus Bauteilen mit unterschiedlichen zeitabhängigen Verformungsverhalten sollen die Steifigkeiten der einzelnen Bauteile um den Faktor&nbsp;1&nbsp;/&nbsp;(1+k<sub>def</sub>) abgemindert werden.


Besteht eine Verbindung aus Holzbaustoffen mit unterschiedlichen '''k'''<sub>def</sub>-Werten, ist das arithmetische Mittel zu verwenden. Bei Stahlblech-Holz-Verbindungen ist der Verformungsbeiwert des Holzes zu verwenden.
Besteht eine Verbindung aus Holzbaustoffen mit unterschiedlichen '''k'''<sub>def</sub>-Werten, ist das arithmetische Mittel zu verwenden. Bei Stahlblech-Holz-Verbindungen ist der Verformungsbeiwert des Holzes zu verwenden.


====Baustoffkennwerte====
====Baustoffkennwerte====
Zeile 749: Zeile 766:
* 5 %-Quantilwerte bei Festigkeiten und Rohdichten, und
* 5 %-Quantilwerte bei Festigkeiten und Rohdichten, und
* 5 %-Quantilwerte oder Mittelwerte bei Steifigkeiten.
* 5 %-Quantilwerte oder Mittelwerte bei Steifigkeiten.


=====[[Vollholz]]=====
=====[[Vollholz]]=====
''- Dieser Abschnitt ist ausgelagert, siehe: [[Vollholz]] ''
''- Dieser Abschnitt ist ausgelagert, siehe: [[Vollholz]] ''
=====[[Brettschichtholz]]=====
=====[[Brettschichtholz]]=====
''- Dieser Abschnitt ist ausgelagert, siehe: [[Brettschichtholz]]''
''- Dieser Abschnitt ist ausgelagert, siehe: [[Brettschichtholz]]''
'''<big>1.6</big>'''


===Nachweise im Grenzzustand der Tragfähigkeit===
===Nachweise im Grenzzustand der Tragfähigkeit===
Zeile 759: Zeile 781:
====Allgemeines====
====Allgemeines====
Im Zuge der Nachweisführung für Tragwerke / Bauwerke sind nach [[EN 1990]] (6.4.1) folgende Nachweise zu erfüllen:
Im Zuge der Nachweisführung für Tragwerke / Bauwerke sind nach [[EN 1990]] (6.4.1) folgende Nachweise zu erfüllen:
* EQU (engl.: ''equilibrium'') <br />  
* '''EQU''' (engl.: ''equilibrium'') <br /> Verlust der Lagesicherheit des Tragwerks oder eines seiner Teile, die als Starrkörper betrachtet werden dürfen <ref name="Q_24" />
Verlust der Lagesicherheit des Tragwerks oder eines seiner Teile, die als Starrkörper betrachtet werden dürfen <ref name="Q_24" />
{{FmAm| <math> \mathsf { E_{d,dst}\ \le\ R_{d,stb} } </math> |(1.10)}}
{{FmAm| <math> \mathsf { E_{d,dst}\ \le\ R_{d,stb} } </math> |(1.10)}}
* STR (engl.: ''structural failure'') <br />  
* '''STR''' (engl.: ''structural failure'') <br /> Versagen oder übermäßige Verformungen des gesamten Tragwerks oder von Tragwerksteilen, wobei die Tragfähigkeit von Bauteilen und deren Festigkeit maßgebend wird (Stabilität) <ref name="Q_24" />
Versagen oder übermäßige Verformungen des gesamten Tragwerks oder von Tragwerksteilen, wobei die Tragfähigkeit von Bauteilen und deren Festigkeit maßgebend wird (Stabilität) <ref name="Q_24" />
{{FmAm| <math> \mathsf { E_{d}\ \le\ R_{d} } </math> |(1.11)}}
{{FmAm| <math> \mathsf { E_{d}\ \le\ R_{d} } </math> |(1.11)}}
* GEO (engl.: ''geotechnic'') <br />  
* '''GEO''' (engl.: ''geotechnic'') <br /> Versagen oder übermäßige Verformungen des Baugrundes <ref name="Q_24" />
Versagen oder übermäßige Verformungen des Baugrundes <ref name="Q_24" />
{{FmAm| <math> \mathsf { E_{d}\ \le\ R_{d} } </math> |(1.12)}}
{{FmAm| <math> \mathsf { E_{d}\ \le\ R_{d} } </math> |(1.12)}}
* FAT (engl.: ''fatique'') <br />  
* '''FAT''' (engl.: ''fatique'') <br /> Ermüdungsversagen des gesamten Tragwerks oder von Tragwerksteilen <ref name="Q_24" />
Ermüdungsversagen des gesamten Tragwerks oder von Tragwerksteilen <ref name="Q_24" />
 


{|
{|
Zeile 792: Zeile 809:


{|align="left" valign="top"  
{|align="left" valign="top"  
|[[Bild:BPhys_Statik_Semi_1-5_Flussdiagr.gif|left|600px|Ablaufschema beim Nachweis der Grenzzustände der Tragfähigkeit von Bauteilen]]
|[[Bild:BPhys_Statik_Semi_1-5_Flussdiagr.png|left|600px|Ablaufschema beim Nachweis der Grenzzustände der Tragfähigkeit von Bauteilen]]
|}
|}
<br clear="all" />
<br clear="all" />
Zeile 799: Zeile 816:




====Querschnittsnachweise nach <ref group="N" name="OENORM B 1995 3" /> und <ref group="N" name="DIN 1052 6" />====
====Querschnittsnachweise nach OENORM B 1995 <ref group="N" name="OENORM B 1995 3" /> und DIN 1052 <ref group="N" name="DIN 1052 6" />====
=====Zug in Faserrichtung=====
=====Zug in Faserrichtung=====
Aus den charakteristischen Werten der ständigen Einwirkungen G<sub>k</sub> und der veränderlichen Einwirkungen '''Q'''<sub>k</sub> erhält man nach Ermittlung der maßgebenden Lastkombination den Bemessungswert der Zugbeanspruchung '''s'''<sub>t,0,d</sub>. Diesem wird der Bemessungswert der Zugfestigkeit '''f'''<sub>t,0,d</sub> gegenübergestellt. Bei der Bemessung der Querschnittstragfähigkeit sind evtl. vorhandene Querschnittsschwächungen zu berücksichtigen <br />(A<sub>Netto</sub> ~ 0,3 · A<sub>Brutto</sub> bis 0,8 · A<sub>Brutto</sub> (abhängig von derVerbindungsart)).
Aus den charakteristischen Werten der ständigen Einwirkungen G<sub>k</sub> und der veränderlichen Einwirkungen '''Q'''<sub>k</sub> erhält man nach Ermittlung der maßgebenden Lastkombination den Bemessungswert der Zugbeanspruchung '''s'''<sub>t,0,d</sub>. Diesem wird der Bemessungswert der Zugfestigkeit '''f'''<sub>t,0,d</sub> gegenübergestellt. Bei der Bemessung der Querschnittstragfähigkeit sind evtl. vorhandene Querschnittsschwächungen zu berücksichtigen <br />(A<sub>Netto</sub> ~ 0,3 · A<sub>Brutto</sub> bis 0,8 · A<sub>Brutto</sub> (abhängig von derVerbindungsart)).
Zeile 811: Zeile 828:
|<math> \mathsf {\sigma_{t,0,d} = \frac {N_{d}}{A_{netto}}} </math> || || Bemessungswert der Zugspannung  
|<math> \mathsf {\sigma_{t,0,d} = \frac {N_{d}}{A_{netto}}} </math> || || Bemessungswert der Zugspannung  
|-
|-
|<math> \mathsf {f_{t,0,d} = \frac {k_{mod} \cdot f_{t,0,d}} {\gamma_{M}}} </math> || || Bemessungswert der Zugfestigkeit
|<math> \mathsf {f_{t,0,d} = \frac {k_{mod} \cdot f_{t,0,k}} {\gamma_{M}}} </math> || || Bemessungswert der Zugfestigkeit
|}
|}


=====Druck in Faserrichtung des Holzes=====
=====Druck in Faserrichtung des Holzes=====
Zeile 875: Zeile 891:


Für die effektive Druckfläche A<sub>ef</sub> rechtwinklig zur Faserrichtung des Holzes, darf die tatsächliche Kontaktlänge durch den Einhängeeffekt parallel zur Faserrichtung um bis zu 30 mm je Seite verlängert werden.
Für die effektive Druckfläche A<sub>ef</sub> rechtwinklig zur Faserrichtung des Holzes, darf die tatsächliche Kontaktlänge durch den Einhängeeffekt parallel zur Faserrichtung um bis zu 30 mm je Seite verlängert werden.


=====Druck unter einem Winkel zur Faserrichtung des Holzes=====
=====Druck unter einem Winkel zur Faserrichtung des Holzes=====
Für 0° < &alpha; < 90° sind die folgenden Nachweise zu führen:
Für 0° < &alpha; < 90° sind die folgenden Nachweise zu führen:


Nachweis nach [[EN 1995]]-1-1:2004/A1:2008
Nachweis nach [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" />
{{FmAm| <math> \mathsf {\sigma_{c,\alpha,d} \le\ \frac {f_{c,0,d}} {\frac {f_{c,0,d}} {k_{c,90} \cdot f_{c,90,d}} \cdot \sin^2 \alpha + \cos^2 \alpha} } </math> |(1.18)}}
{{FmAm| <math> \mathsf {\sigma_{c,\alpha,d} \le\ \frac {f_{c,0,d}} {\frac {f_{c,0,d}} {k_{c,90} \cdot f_{c,90,d}} \cdot \sin^2 \alpha + \cos^2 \alpha} } </math> |(1.18)}}




Nachweis nach [[DIN 1052]]:2008
Nachweis nach [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" />
{{FmAm| <math> \mathsf { \frac {\sigma_{c,0,d}} {k_{c,\alpha} \dot f_{c,\alpha,d}} \le\ 1} </math> |(1.19)}}
{{FmAm| <math> \mathsf { \frac {\sigma_{c,0,d}} {k_{c,\alpha} \dot f_{c,\alpha,d}} \le\ 1} </math> |(1.19)}}
{{FmAm| <math> \mathsf {k_{c,\alpha} = 1 + \left( k_{c,90} - 1 \right) \cdot \sin \alpha } </math> |(1.20)}}
{{FmAm| <math> \mathsf {k_{c,\alpha} = 1 + \left( k_{c,90} - 1 \right) \cdot \sin \alpha } </math> |(1.20)}}
Zeile 897: Zeile 914:
|k<sub>c,90</sub> || || Querdruckbeiwert siehe [[#Tab. 1.14|Tab. 1.14]]
|k<sub>c,90</sub> || || Querdruckbeiwert siehe [[#Tab. 1.14|Tab. 1.14]]
|}
|}


=====Biegung=====
=====Biegung=====
Zeile 918: Zeile 936:
|k<sub>m</sub> = 1,0 || || Beiwert für andere Querschnitte
|k<sub>m</sub> = 1,0 || || Beiwert für andere Querschnitte
|}
|}




Zeile 1.016: Zeile 1.033:
Nach [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> muss die Bedingung nach Gleichung (1.33)
Nach [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> muss die Bedingung nach Gleichung (1.33)


{{FmAm| <math> \mathsf { \frac {\tau_{tor,d}}{f_{v,d}} \left( \frac {\tau_{y,d}}{f_{v,d}} \right) ^2 + \left( \frac {\tau_{z,d}}{f_{v,d}} \right) ^2 \le\ 1} </math> |(1.33)}}
{{FmAm| <math> \mathsf { \frac {\tau_{tor,d}}{f_{v,d}} + \left( \frac {\tau_{y,d}}{f_{v,d}} \right) ^2 + \left( \frac {\tau_{z,d}}{f_{v,d}} \right) ^2 \le\ 1} </math> |(1.33)}}
erfüllt werden.
erfüllt werden.


<small>Anmerkung:<br />
<small>Anmerkung:<br />
In der [[EN 1995]]-1-1:2004/A1:2008 sind keine Angaben zu dieser Beanspruchungsart zu finden.</small>
In der [[EN 1995]]-1-1:2004/A1:2008 sind keine Angaben zu dieser Beanspruchungsart zu finden.</small>


====Bauteilnachweise (Stabilitätsnachweise)====
====Bauteilnachweise (Stabilitätsnachweise)====
Zeile 1.029: Zeile 1.044:


Im Folgenden wird die Nachweisführung nach [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> für Druckstäbe nach dem sog. „Ersatzstabverfahren“ dargestellt. Für die Nachweisführung nach [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> wird auf die Festlegungen des Abschnittes 6.3 der genannten Norm verwiesen.
Im Folgenden wird die Nachweisführung nach [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" /> für Druckstäbe nach dem sog. „Ersatzstabverfahren“ dargestellt. Für die Nachweisführung nach [[EN 1995]]-1-1:2004/A1:2008 <ref group="N" name="EN 1995 2" /> wird auf die Festlegungen des Abschnittes 6.3 der genannten Norm verwiesen.


=====Druckstäbe mit planmäßig mittigem Druck=====
=====Druckstäbe mit planmäßig mittigem Druck=====
Zeile 1.037: Zeile 1.053:
mit {{FmAm| <math> \mathsf {k_{c} = min \begin{Bmatrix} \frac {1}{k + \sqrt {k^2 - \lambda_{rel,c}^2}} ; 1 \end{Bmatrix} } </math> |(1.35)}}
mit {{FmAm| <math> \mathsf {k_{c} = min \begin{Bmatrix} \frac {1}{k + \sqrt {k^2 - \lambda_{rel,c}^2}} ; 1 \end{Bmatrix} } </math> |(1.35)}}


und {{FmAm| <math> \mathsf {k = 0{,}5 \cdot \left[ 1 + \beta_{c} \left( \lambda_{rel,c} - 0{,}3 \right) + \lambda_{rel,c}^2 \right] } </math> |(1.36)}}
und {{FmAm| <math> \mathsf {k = 0{,}5 \cdot \left[ 1 + \beta_{c} \cdot \left( \lambda_{rel,c} - 0{,}3 \right) + \lambda_{rel,c}^2 \right] } </math> |(1.36)}}
{|
{|
|β<sub>c</sub> = 0,2 || || für [[Vollholz]] und Balkenschichtholz,
|β<sub>c</sub> = 0,2 || || für [[Vollholz]] und Balkenschichtholz,
Zeile 1.051: Zeile 1.067:
|σ<sub>c,crit</sub> || || kritische Druckspannung, berechnet mit den 5%-Quantilen der Steifigkeitskennwerte
|σ<sub>c,crit</sub> || || kritische Druckspannung, berechnet mit den 5%-Quantilen der Steifigkeitskennwerte
|-
|-
|λ = λ<sub>ef</sub> / π || || Schlankheitsgrad
|λ = l<sub>ef</sub> / i || || Schlankheitsgrad
|-
|-
|π || || Trägheitsradius
|i || || Trägheitsradius
|-
|-
|λ<sub>ef</sub> = β &middot; s oder β &middot; h  || || Ersatzstablänge
|l<sub>ef</sub> = β &middot; s oder β &middot; h  || || Ersatzstablänge
|-
|-
|β || || Knicklängenbeiwert
|β || || Knicklängenbeiwert
Zeile 1.061: Zeile 1.077:
|s bzw. h || || Stablänge
|s bzw. h || || Stablänge
|}
|}


===== Biegestäbe ohne Druckkraft =====
===== Biegestäbe ohne Druckkraft =====
Zeile 1.070: Zeile 1.085:


Der Kippbeiwert '''k'''<sub>m</sub> beträgt  
Der Kippbeiwert '''k'''<sub>m</sub> beträgt  
{{FmAm| <math> \mathsf { k_{c} = min \begin{cases} 1 & f \ddot u r\ \lambda_{rel,m} \le 0{,}75 \\ 1{,}56 - 0{,}75 \cdot \lambda_{rel,m} & f \ddot u r\ 0{,}75 < \lambda_{rel,m} \le 1{,}4 \\ 1 / \lambda_{rel,m}^2 & f \ddot u r\ 1{,}4 < \lambda_{rel,m} \end{cases} } </math> |(1.39)}}
{{FmAm| <math> \mathsf { k_{m} = \begin{cases} 1 & f \ddot u r\ \lambda_{rel,m} \le 0{,}75 \\ 1{,}56 - 0{,}75 \cdot \lambda_{rel,m} & f \ddot u r\ 0{,}75 < \lambda_{rel,m} \le 1{,}4 \\ 1 / \lambda_{rel,m}^2 & f \ddot u r\ 1{,}4 < \lambda_{rel,m} \end{cases} } </math> |(1.39)}}


mit dem bezogenen Kippschlankheitsgrad
mit dem bezogenen Kippschlankheitsgrad
Zeile 1.100: Zeile 1.115:


Für Biegestäbe mit Rechteckquerschnitt und <math> \mathsf { \frac {l_{ef} \cdot h}{b^2} \le 140 } </math> darf k<sub>m</sub> = 1 gesetzt werden. Dabei ist b die Trägerbreite.
Für Biegestäbe mit Rechteckquerschnitt und <math> \mathsf { \frac {l_{ef} \cdot h}{b^2} \le 140 } </math> darf k<sub>m</sub> = 1 gesetzt werden. Dabei ist b die Trägerbreite.


=====Stäbe mit Biegung und Druck=====
=====Stäbe mit Biegung und Druck=====
Zeile 1.119: Zeile 1.133:
| k<sub>red</sub> || || Beiwert nach [[#Biegung|Abschnitt 1.6.2.5 - Biegung]]  
| k<sub>red</sub> || || Beiwert nach [[#Biegung|Abschnitt 1.6.2.5 - Biegung]]  
|}
|}




Zeile 1.134: Zeile 1.149:
| k<sub>red</sub> || || Beiwert nach [[#Biegung|Abschnitt 1.6.2.5 - Biegung]]
| k<sub>red</sub> || || Beiwert nach [[#Biegung|Abschnitt 1.6.2.5 - Biegung]]
|}
|}
'''<big>1.7</big>'''


===Nachweise im Grenzzustand der Gebrauchstauglichkeit===
===Nachweise im Grenzzustand der Gebrauchstauglichkeit===
Zeile 1.154: Zeile 1.172:
| colspan="4" style="font-size:80%;"| <sup>a)</sup> In der [[ÖNORM B 1995]]-1-1 werden die Grenzwerte mit l/250 bzw. l<sub>k</sub>/125 angegeben.
| colspan="4" style="font-size:80%;"| <sup>a)</sup> In der [[ÖNORM B 1995]]-1-1 werden die Grenzwerte mit l/250 bzw. l<sub>k</sub>/125 angegeben.
|}
|}
'''Tab. 1.15:''' Empfohlene Grenzwerte von Durchbiegungen nach [[ÖNORM B 1995]]-1-1:2010 <ref group="N" name="OENORM B 1990 3" /> und [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" />
'''Tab. 1.15:''' Empfohlene Grenzwerte von Durchbiegungen nach [[ÖNORM B 1995]]-1-1:2010 <ref group="N" name="OENORM B 1995 3" /> und [[DIN 1052]]:2008 <ref group="N" name="DIN 1052 6" />




{|align="left" valign="top"  
{|align="left" valign="top"  
|[[Bild:BPhys_Statik_Semi_1-6_Durchbiegung.gif|left|600px|Anteile der Durchbiegungen]]
|[[Bild:BPhys_Statik_Semi_1-6_Durchbiegung.png|left|600px|Anteile der Durchbiegungen]]
|}
|}
{|  
{|  
Zeile 1.173: Zeile 1.191:


Zur Berücksichtigung der Kriechverformungen wird der Faktor k<sub>def</sub> nach [[#Tab. 1.10|Tab. 1.10]] bzw. [[#Tab. 1.11|Tab. 1.11]] zu verwenden.
Zur Berücksichtigung der Kriechverformungen wird der Faktor k<sub>def</sub> nach [[#Tab. 1.10|Tab. 1.10]] bzw. [[#Tab. 1.11|Tab. 1.11]] zu verwenden.


====Nachweise im Grenzzustand der Gebrauchstauglichkeit====
====Nachweise im Grenzzustand der Gebrauchstauglichkeit====
Zeile 1.202: Zeile 1.221:




==Einzelnachweis==
== Einzelnachweise ==
<references>
<references>
<ref name="Q_02"> Kelletshofer, W.; ''Erweiterung der vorhandenen Zulassung Z-9.1-558; Verbinder SHERPA als Holzverbindungsmittel;
<ref name="Q_02"> Kelletshofer, W.; ''Erweiterung der vorhandenen Zulassung Z-9.1-558; Verbinder SHERPA als Holzverbindungsmittel;
Zeile 1.216: Zeile 1.235:
<references group="N">
<references group="N">
<ref group="N" name="OENORM EN 1990"> [[ÖNORM EN 1990]]:2003, ''Eurocode; Grundlagen der Tragwerkslehre'', ''Österreichisches Normungsinstitut (ON)'', Wien, 2003</ref>
<ref group="N" name="OENORM EN 1990"> [[ÖNORM EN 1990]]:2003, ''Eurocode; Grundlagen der Tragwerkslehre'', ''Österreichisches Normungsinstitut (ON)'', Wien, 2003</ref>
<ref group="N" name="EN 1995 2"> [[EN 1995]]-1-1:2009,
<ref group="N" name="EN 1995 2"> [[ÖNORM EN 1995]]-1-1:2009, ''Eurocode 5: Bemessung und Konstruktion von Holzbauten; Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau'', ''[[Österreichisches Normungsinstitut]] (ON)'', Wien, 2009</ref>
''Eurocode 5: Bemessung und Konstruktion von Holzbauten; Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau'', ''[[Österreichisches Normungsinstitut]] (ON)'', Wien, 2010</ref>
<ref group="N" name="OENORM B 1995 3"> [[ÖNORM B 1995]]-1-1:2010,
<ref group="N" name="OENORM B 1995 3"> [[ÖNORM B 1995]]-1-1:2010,
''Eurocode 5: Bemessung und Konstruktion von Holzbauten; Teil 1-1: Allgemeines – Allgemeine Regeln und Regeln für den Hochbau; Nationale Festlegungen, nationale Erläuterungen und nationale Ergänzungen zur ÖNORM EN 1995-1-1'', ''[[Österreichisches Normungsinstitut]] (ON)'', Wien, 2010</ref>
''Eurocode 5: Bemessung und Konstruktion von Holzbauten; Teil 1-1: Allgemeines – Allgemeine Regeln und Regeln für den Hochbau; Nationale Festlegungen, nationale Erläuterungen und nationale Ergänzungen zur ÖNORM EN 1995-1-1'', ''[[Österreichisches Normungsinstitut]] (ON)'', Wien, 2010</ref>
Zeile 1.223: Zeile 1.241:
''Entwurf, Berechnung und Bemessung von Holzbauwerken – Allgemeine Bemessungsregeln und Bemessungsregeln für den Hochbau'', ''DIN [[Deutsches Institut für Normung]] e. V.'', Berlin, 2008</ref>
''Entwurf, Berechnung und Bemessung von Holzbauwerken – Allgemeine Bemessungsregeln und Bemessungsregeln für den Hochbau'', ''DIN [[Deutsches Institut für Normung]] e. V.'', Berlin, 2008</ref>
</references>
</references>
==Autoren / Literaturangabe==
Augustin, M.; Burböck, H.; Flatscher, G.; Maderebner, R.; Salzer, R.; Schickhofer, G;<br />
Holzbau Verbindungen<br />
Publikation der Vinzenz Harrer GmbH, 2010


<!--<ref group="N" name="OENORM EN 1990" />-->
<!--<ref group="N" name="OENORM EN 1990" />-->
<!--<ref group="N" name="EN 1995 2" /> -->
<!--<ref group="N" name="OENORM B 1995 3" />-->
<!--<ref group="N" name="DIN 1052 6" />-->
<!--<ref group="N" name="DIN 1052 6" />-->
<!--<ref name="Q_22" />-->
<!--<ref name="Q_22" />-->
Zeile 1.230: Zeile 1.255:




{{NAV SHERPA}}
[[Kategorie:Bauphysik]] [[Kategorie:Normung]] [[Kategorie:Glossar]]
[[Kategorie:SHERPA Holzverbinder]] [[Kategorie:Bauphysik]] [[Kategorie:Normung]] [[Kategorie:Glossar]]

Navigationsmenü