Bauphysik Sanierungs-Studie: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
K
Zeile 654: Zeile 654:
Werden Bahnen Sub-and-Top verlegt, ist klar, dass diese oberseitig der Tragkonstruktion einen möglichst geringen Diffusionswiderstand annehmen sollten. S<sub>d</sub>-Werte unterhalb von
Werden Bahnen Sub-and-Top verlegt, ist klar, dass diese oberseitig der Tragkonstruktion einen möglichst geringen Diffusionswiderstand annehmen sollten. S<sub>d</sub>-Werte unterhalb von
0,1 m sind ideal, damit durch hohe Diffusionsoffenheit möglichst große Mengen an [[Feuchtigkeit]] vom [[Sparren]] abtrocknen können. <br />
0,1 m sind ideal, damit durch hohe Diffusionsoffenheit möglichst große Mengen an [[Feuchtigkeit]] vom [[Sparren]] abtrocknen können. <br />
Feuchtevariable Dampfbremsen für [[Zwischensparrendämmung]]en erreichen einen s<sub>d</sub>-Wert im feuchten Bereich von ca. 0,25 m. Sie bieten daher ein geringeres Bauschadens-Freiheits-Potenzial als die [[DASATOP]]. <br />
Feuchtevariable Dampfbremsen für [[Zwischensparrendämmung]]en erreichen einen s<sub>d</sub>-Wert im feuchten Bereich von ca. 0,25 m. Sie bieten daher ein geringeres [[Bauschadens-Freiheits-Potenzial]] als die [[DASATOP]]. <br />
Wird der Diffusionsstrom durch ein Material nach [[DIN 4108-3]] im stationären Zustand mittels Berechnung der [[Wasserdampfdiffusionsstromdichte]] g [kg/m² x h] erfasst, wird die Leistungsfähigkeit unterschiedlich dichter Bahnen deutlich. <br />
Wird der Diffusionsstrom durch ein Material nach [[DIN 4108-3]] im stationären Zustand mittels Berechnung der [[Wasserdampfdiffusionsstromdichte]] g [kg/m² x h] erfasst, wird die Leistungsfähigkeit unterschiedlich dichter Bahnen deutlich. <br />
Die [[Wasserdampfdiffusionsstromdichte]] wird ermittelt durch die Differenz der Wasserdampfteildrucke p<sub>i</sub> (innen) [Pa] und p<sub>a</sub> (außen) [Pa] dividiert durch den [[Wasserdampfdiffusions-Durchlasswiderstand|Wasserdampfdurchlasswiderstand]] Z [m² x h x Pa/kg]. Durch Multiplikation mit 24 erhält man den täglichen Wasserdampfdurchgang ([[Wasserdampfdurchgang |WDD]]) [g/m² x 24 h]. Beispielhaft wird der Diffusionsstrom bei Erreichen des [[Taupunkt]]es kombiniert mit einer winterlichen Außentemperatur berechnet. Für p<sub>i</sub> wird ein Wert von 1.163 Pa (9,2 °C / 100 % rel. Luftfeuchtigkeit (Taupunkttemperatur bei Normklima) und für pa ein Wert von 208 Pa (-10 °C / 80 % rel. Luftfeuchtigkeit) zugrunde gelegt.
Die [[Wasserdampfdiffusionsstromdichte]] wird ermittelt durch die Differenz der Wasserdampfteildrucke p<sub>i</sub> (innen) [Pa] und p<sub>a</sub> (außen) [Pa] dividiert durch den [[Wasserdampfdiffusions-Durchlasswiderstand|Wasserdampfdurchlasswiderstand]] Z [m² x h x Pa/kg]. Durch Multiplikation mit 24 erhält man den täglichen Wasserdampfdurchgang ([[Wasserdampfdurchgang |WDD]]) [g/m² x 24 h]. Beispielhaft wird der Diffusionsstrom bei Erreichen des [[Taupunkt]]es kombiniert mit einer winterlichen Außentemperatur berechnet. Für p<sub>i</sub> wird ein Wert von 1.163 Pa (9,2 °C / 100 % rel. Luftfeuchtigkeit (Taupunkttemperatur bei Normklima) und für pa ein Wert von 208 Pa (-10 °C / 80 % rel. Luftfeuchtigkeit) zugrunde gelegt.
Zeile 668: Zeile 668:
==== Berechnung des Bauschadens-Freiheits-Potenzials ====
==== Berechnung des Bauschadens-Freiheits-Potenzials ====
{| align="right" width="300px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{| align="right" width="300px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| '''Berechnung des Bauschadens-Freiheits-Potenzials Standort Holzkirchen, Dach'''
| '''Berechnung des [[Bauschadens-Freiheits-Potenzial]]s Standort Holzkirchen, Dach'''
|-
|-
| valign="top" | <br /> [[Bild:BPhys GD 3SS 25 Schnitt.jpg|center|240px|]]
| valign="top" | <br /> [[Bild:BPhys GD 3SS 25 Schnitt.jpg|center|240px|]]
Zeile 698: Zeile 698:
in die Wärmedämmebene. <br />
in die Wärmedämmebene. <br />
Um die Entfeuchtungsleistung darzustellen, wird über die Holzfeuchte der Sparren die zusätzliche Feuchtigkeitsmenge eingebracht. Diese wird mit einem Materialfeuchtegehalt von 80 % (= 2.300 g Wasser pro lfm Sparren) in der Berechnung berücksichtigt und simuliert einen Feuchtigkeitsausfall zwischen Dampfbrems- / Luftdichtungsbahn und Sparren. <br />
Um die Entfeuchtungsleistung darzustellen, wird über die Holzfeuchte der Sparren die zusätzliche Feuchtigkeitsmenge eingebracht. Diese wird mit einem Materialfeuchtegehalt von 80 % (= 2.300 g Wasser pro lfm Sparren) in der Berechnung berücksichtigt und simuliert einen Feuchtigkeitsausfall zwischen Dampfbrems- / Luftdichtungsbahn und Sparren. <br />
Aus der errechneten Rücktrocknungsmenge kann anschließend das Bauschadens-Freiheits-Potenzial in [g] H₂O/[m] Sparren pro Jahr errechnet werden. Im Normalfall haben die Sparren einen Feuchtigkeitsgehalt von ca. 300 g pro lfm.
Aus der errechneten Rücktrocknungsmenge kann anschließend das [[Bauschadens-Freiheits-Potenzial]] in [g] H₂O/[m] Sparren pro Jahr errechnet werden. Im Normalfall haben die Sparren einen Feuchtigkeitsgehalt von ca. 300 g pro lfm.


; Das Bauschadens-Freiheits-Potenzial beschreibt
; Das [[Bauschadens-Freiheits-Potenzial]] beschreibt
* wie tolerant die Konstruktion bei unvorhergesehener Feuchtebelastung ist und
* wie tolerant die Konstruktion bei unvorhergesehener Feuchtebelastung ist und
* wie viel Wasser in eine Konstruktion (unvorhergesehen) eindringen kann und
* wie viel Wasser in eine Konstruktion (unvorhergesehen) eindringen kann und
Zeile 733: Zeile 733:


=== Fazit: Vergleich von Sub-and-Top verlegten Dampfbrems- und Luftdichtungssystemen ===
=== Fazit: Vergleich von Sub-and-Top verlegten Dampfbrems- und Luftdichtungssystemen ===
Die Sub-and-Top-Verlegung mit feuchtevariablen Dampfbrems- und Luftdichtungsbahnen ist aus bauphysikalischer Sicht die beste Lösung für die Sicherheit der Konstruktion und bietet bei unvorhergesehenen Feuchtigkeitsbelastungen das größte Bauschadens-Freiheits-Potenzial. <br />
Die Sub-and-Top-Verlegung mit feuchtevariablen Dampfbrems- und Luftdichtungsbahnen ist aus bauphysikalischer Sicht die beste Lösung für die Sicherheit der Konstruktion und bietet bei unvorhergesehenen Feuchtigkeitsbelastungen das größte [[Bauschadens-Freiheits-Potenzial]]. <br />
Unkritische Holzfeuchtigkeiten werden bei der Verwendung der DASATOP in den Sparren im Vergleich zu Bahnen mit sd-Werten von 2 m bzw. 5 m ca. dreimal bzw. ca. fünfmal (z. T. sogar achtmal) schneller erreicht. <br />
Unkritische Holzfeuchtigkeiten werden bei der Verwendung der DASATOP in den Sparren im Vergleich zu Bahnen mit sd-Werten von 2 m bzw. 5 m ca. dreimal bzw. ca. fünfmal (z. T. sogar achtmal) schneller erreicht. <br />
Bei der Sub-and-Top-Verlegung erfüllt die Bahn unterhalb der Wärmedämmung (Sub) die Funktion einer Dampfbremse. Bei der Verlegung über den Sparren (Top) ist hingegen die Funktion einer Unterdeckbahn von Vorteil, damit Feuchtigkeit möglichst ungehindert austrocknen kann. Dann kann bei nicht perfekt an den Sparren anliegenden Bahnen ein resultierender Feuchtegehalt an den Sparrenflanken wieder zügig austrocknen. <br />
Bei der Sub-and-Top-Verlegung erfüllt die Bahn unterhalb der Wärmedämmung (Sub) die Funktion einer Dampfbremse. Bei der Verlegung über den Sparren (Top) ist hingegen die Funktion einer Unterdeckbahn von Vorteil, damit Feuchtigkeit möglichst ungehindert austrocknen kann. Dann kann bei nicht perfekt an den Sparren anliegenden Bahnen ein resultierender Feuchtegehalt an den Sparrenflanken wieder zügig austrocknen. <br />
Der Diffusionswiderstand kann an jeder Stelle der Bahn einen der jeweiligen Situation klimagesteuert angepassten s<sub>d</sub>-Wert zwischen 0,05 und 2 m annehmen. Die Bahnen können sowohl längs als auch quer verlegt werden. <br />
Der Diffusionswiderstand kann an jeder Stelle der Bahn einen der jeweiligen Situation klimagesteuert angepassten s<sub>d</sub>-Wert zwischen 0,05 und 2 m annehmen. Die Bahnen können sowohl längs als auch quer verlegt werden. <br />
Vorteilhaft erweist sich die Verwendung von diffusionsoffenen Bahnen außen bzw. die Anordnung einer diffusionsoffenen Aufdachdämmung aus faserförmigen Dämmstoffen. <br />
Vorteilhaft erweist sich die Verwendung von diffusionsoffenen Bahnen außen bzw. die Anordnung einer diffusionsoffenen Aufdachdämmung aus faserförmigen Dämmstoffen. <br />
Werden Bahnen mit einem konstanten s<sub>d</sub>-Wert für die Sub-and-Top-Verlegung eingesetzt, sinkt das Bauschadens-Freiheits-Potenzial erheblich. Im Winter schützen die Bahnen im Sub-Bereich die Wärmedämmung wie feuchtevariable
Werden Bahnen mit einem konstanten s<sub>d</sub>-Wert für die Sub-and-Top-Verlegung eingesetzt, sinkt das [[Bauschadens-Freiheits-Potenzial]] erheblich. Im Winter schützen die Bahnen im Sub-Bereich die Wärmedämmung wie feuchtevariable
Bahnen gegen Feuchteeintritt. Im Top-Bereich bieten sie jedoch keine zusätzliche Trocknungsmöglichkeit aus der Konstruktion heraus. Fällt Kondensat an den Sparrenoberseiten aus, kann dieses nur langsam heraustrocknen: Die Gefahr eines Bauschadens nimmt drastisch zu. <br />
Bahnen gegen Feuchteeintritt. Im Top-Bereich bieten sie jedoch keine zusätzliche Trocknungsmöglichkeit aus der Konstruktion heraus. Fällt Kondensat an den Sparrenoberseiten aus, kann dieses nur langsam heraustrocknen: Die Gefahr eines Bauschadens nimmt drastisch zu. <br />
Wärmedämmkonstruktionen sollten grundsätzlich mit möglichst hohen Sicherheitsreserven versehen werden. Dann besteht bei unvorhergesehenen Feuchtebelastungen ein zusätzlicher Schutz vor Bauschaden und Schimmel. <br />
Wärmedämmkonstruktionen sollten grundsätzlich mit möglichst hohen Sicherheitsreserven versehen werden. Dann besteht bei unvorhergesehenen Feuchtebelastungen ein zusätzlicher Schutz vor Bauschaden und Schimmel. <br />

Navigationsmenü