Biogas: Unterschied zwischen den Versionen

K
 
(19 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
==Biogas==
== Biogas ==
'''Biogas''' entsteht durch Vergärung. Darunter versteht man den mikrobiologischen Abbau von organischen Stoffen in feuchter Umgebung unter Luftabschluss (anaerobes Milieu). Dieser biologische Zersetzungsprozess (Faulung/Gärung) wandelt die organische [[Biomasse]] hauptsächlich in die Bestandteile Wasser, [[Kohlendioxid]] und [[Methan]] um.
{|align="right"
|valign="top"|[[Bild:Umwelt nawaro biogasanlagen.png|thumb|400px| Bestandsentwicklung Biogasanlagen - Quelle: FNR nach FvB (2016)  © [[FNR]] 2016]]
|-
|valign="top"|[[Bild:Umwelt nawaro biogasausbeuten.png|thumb|400px| Biogasausbeuten - Quelle: KTBL (2015)  © [[FNR]] 2015]]
|}
Ob in Mooren und Sümpfen oder im Verdauungstrakt von Wiederkäuern: Biogas bildet sich überall dort, wo organisches Material in feuchter Umgebung unter Sauerstoffabschluss zersetzt wird. Verschiedene Bakterien, darunter Methanbakterien, leisten dabei die Hauptarbeit. In einer Biogasanlage wird dieser Prozess technisch nachvollzogen. Die Biogaserträge, aber auch die Zusammensetzung des Biogases variieren je nach Zusammensetzung der Ausgangsstoffe sowie der Verfahrens- und Prozesstechnik. Der Energiegehalt des Biogases ist schließlich direkt vom Methangehalt abhängig. So hat ein Kubikmeter (m³) Methan einen Energiegehalt von etwa 10 Kilowattstunden (9,97 kWh).
 
Mit Inkrafttreten des [[Erneuerbare-Energien-Gesetz]] (EEG) stieg die Zahl der Biogasanlagen in Deutschland deutlich an (siehe Abbildung ...). Ende 2012 waren mehr als 8.000 Biogasanlagen mit einer elektrischen Leistung von insgesamt über 4.000 MW am Netz und liefern soviel Strom wie  drei größere Atomkraftwerke.
 
=== Die Rohstoffe ===
Biogas kann aus einer Vielzahl von organischen Ausgangsstoffen gewonnen werden. In landwirtschaftlichen Anlagen dienen überwiegend gezielt angebaute Energiepflanzen und tierische Exkremente (Gülle und Mist) als Substrate. Die Nutzung von Gülle und anderen Wirtschaftsdüngern ist nicht nur aus Sicht des Klimaschutzes (Emissionsvermeidung) und der Kaskadennutzung von großer Bedeutung, sondern hat auch eine den Prozess stabilisierende Wirkung. Als nachwachsende Rohstoffe zum Beispiel Mais, Gräser, Getreide u. v. m. in Frage, wobei der Mais derzeit als Kultur mit hohen Masse- und Gaserträgen sowie mit den geringsten spezifischen Kosten den größten Anbauumfang einnimmt. Negativ kann sich der hohe Maisanbau in einigen Regionen jedoch auf Bodenfruchtbarkeit und Biodiversität auswirken.
 
In der Abbildung werden die Richtwerte für die Gaserträge verschiedener Biogassubstrate und deren durchschnittlicher Methangehalt gezeigt. Die in der Praxis erzielbaren Gaserträge können durchaus abweichen, da diese vom Substratmix und den technischen und biologischen Kennziffern der jeweiligen Biogasanlage abhängig sind. <br clear="all" />
 
=== Aufbau einer Biogasanlage ===
{|align="right"
|valign="top"|[[Bild:Umwelt nawaro biogasanlage aufbau.png|thumb|400px| Aufbau einer landwirtschaftlichen Biogasanlage - Quelle: [[FNR]] ]]
|}
 
Eine landwirtschaftliche Biogasanlage besteht aus den Grundelementen Vorgrube/Substrateinbringung, Fermenter mit Rührwerk, Gasspeicher, Gärrückstandslager und Biogasverwertung (z. B. Blockheizkraftwerk oder Gasaufbereitung). In der Vorgrube werden die Substrate zwischengelagert, wenn nötig zerkleinert, verdünnt und vermischt und gelangen von hier in den isolierten und beheizten Fermenter. Er ist das Kernstück der Anlage und muss gas- und wasserdicht sowie lichtundurchlässig ausgeführt sein. Entsprechende Rührtechnik gewährleistet die Homogenität des Gärsubstrates und unterstützt die Gasbildung. Das Biogas gelangt in den Gasspeicher, während das ausgegorene Substrat in das Gärrestlager transportiert wird, das i. d. R. auch als Nachgärbehälter dient. <br />
 
Der flüssige oder feste Rückstand der Vergärung wird als Gärrest oder Biogasgülle bezeichnet und von den Landwirten wegen seiner hohen Nährstoffgehalte meist als organischer Dünger verwendet.
 
'''Zur Abbildung:''' <br />
In landwirtschaftlichen Biogasanlagen werden in der Regel Gülle oder Mist und nachwachsende Rohstoffe, wie z.B. Mais, Gras, Getreide oder Zuckerrüben, vergoren.
 
Das in Fermenter und Nachgärer produzierte Biogas wird entweder als aufbereitetes Biomethan ins Erdgasnetz eingespeist oder wie vom Großteil der Anlagen in Deutschland in einem Blockheizkraftwerk in Strom und Wärme umgewandelt. Der Strom wird in das öffentliche Netz eingespeist und die anfallende Wärme wird für die Beheizung der Wohn- und Wirtschaftgebäude genutzt oder auch über Wärmenetze an private, kommunale und gewerbliche Nutzer verteilt.
 
Nach Abschluss des Gärprozesses kann dann der angefallene Gärrest als wertvoller organischer Dünger auf den Feldern der Landwirte genutzt werden.
 
Hiermit wird der Stoffkreislauf einer landwirtschaftlichen Biogasanlage geschlossen.
 
=== Die Abläufe im Fermenter ===
{|align="right"
|valign="top"|[[Bild:Umwelt nawaro biogas fermentation.png|thumb|230px| Schematische Darstellung des Fermentationsprozesses - Quelle: [[FNR]] ]]
|}
Der Vergärungsprozess im Fermenter läuft prinzipiell in vier voneinander abhängigen Teilschritten unter anaeroben Bedingungen (ohne Sauerstoff) ab, an denen jeweils verschiedene Gruppen von Mikroorganismen beteiligt sind. Das gebildete Gasgemisch besteht überwiegend aus Methan (50-75 %), Kohlendioxid (25-45 %) und geringen Anteilen an Wasserdampf, Sauerstoff , Stickstoff, Schwefelwasserstoff und weiteren Spurengasen. <br />
 
Das so gebildete Gasgemisch besteht überwiegend aus
* 50–75 % Methan (CH<sub>4</sub>),
* 25–45 % [[Kohlendioxid]] (CO<sub>2</sub>),
* 2–7 % Wasserdampf (H<sub>2</sub>O),
* < 2 % Sauerstoff (O<sub>2</sub>),
* < 2 % Stickstoff (N<sub>2</sub>),
* < 1 % Schwefelwasserstoff (H<sub>2</sub>S) und
* < 2 % Spurengasen.
 
Grundsätzlich finden die vier Phasen zeitgleich und parallel statt. Aufgrund der unterschiedlichen Milieubedingungen der verschiedenen Mikroorganismen muss daher ein Kompromiss der optimalen Parameter, wie insbesondere Gärtemperatur, pH-Wert oder Nährstoffversorgung, gefunden werden.
<br clear="all" />
 
=== Aufbereitung und Nutzung von Biogas ===
{|align="right"
|valign="top"|[[Bild:Umwelt nawaro biogas nutzung.png|thumb|400px| Nutzungsmöglichkeiten von Biogas - Quelle: [[FNR]] ]]
|-
|valign="top"|[[Bild:Umwelt nawaro biogas aufbereitung.png|thumb|250px| Verfahrensschritte zur Biogasaufbereitung <br /> Quelle: [[FNR]] ]]
|}
Biogas bietet eine Vielzahl von Nutzungsoptionen. Es kann sowohl für die Strom- und Wärmeerzeugung als auch als Kraftstoff und Erdgas-Äquivalent eingesetzt werden. Hinzu kommt, dass Biogas speicherbar und über das Erdgasnetz transportierbar ist und dadurch jederzeit und unabhängig vom Entstehungsort zur Verfügung steht. Die Energieerzeugung aus Biogas unterliegt keinen tages- und jahreszeitlichen oder witterungsbedingten Schwankungen und kann somit bedarfsgerecht und auch kontinuierlich erfolgen.
 
Dank fester Vergütungssätze durch das [[EEG]] für die Verstromung ist die Erzeugung von Strom und Wärme direkt an der Biogasanlage die derzeit vorrangige Nutzungsart von Biogas. Sie erfolgt in [[Blockheizkraftwerk]]en (BHKW), man spricht dabei von [[Kraft-Wärme-Kopplung]] (KWK), weil Strom und Wärme gleichzeitig erzeugt werden.
Grundsätzlich eignet sich Biogas auch als Energieträger für Brennstoffzellen, Stirlingmotoren und Mikrogasturbinen. Vorteile dieser Technologien, wie größere Wirkungsgrade oder geringere Betriebskosten, werden derzeitig noch durch die höheren Kosten überlagert.
 
In den letzten Jahren hat sich außerdem die Aufbereitung und Einspeisung von Biogas in das Erdgasnetz zunehmend etabliert. Ende 2014 produzierten 170 Biogasaufbereitungsanlagen etwa 100.000 Normkubikmeter Biomethan pro Stunde. Bei der Aufbereitung wird das gewünschte Methan von Kohlendioxid und anderen Begleitgasen abgetrennt und das Biomethan (auch Bioerdgas genannt) ist als Erdgassubstitut nutzbar. Durch die vorhandene Infrastruktur des Erdgasnetzes kann das Biomethan dann über beliebige Distanzen transportiert werden und entkoppelt von der Produktion an Orten mit großer Nachfrage in KWK-Anlage oder zur Wärmeerzeugung genutzt werden. Ebenfalls als Kraftstoff in Erdgasfahrzeugen wird Biomethan verwendet – mit steigender Tendenz.  


Das Endprodukt ist das brennbare Biogas, ein Gemisch, das im Wesentlichen aus [[Methan]] (50-75 %), [[Kohlendioxid]] (25-45 %) sowie geringen Anteilen an Wasser (2-7 %) und Spurengasen wie Schwefelwasserstoff, Sauerstoff, [[Stickstoff]], Ammoniak und Wasserstoff besteht.
'''Zur Abbildung:''' <br />


Das [[Methan]] im Biogas entspricht chemisch im Prinzip Erdgas und ist der hauptsächliche energietragende Bestandteil. Der energetische Nutzen von einem Kubikmeter Biogas beträgt bei 60-prozentigem Methananteil ca. sechs Kilowattstunden. Der durchschnittliche Heizwert eines Kubikmeters Biogas liegt also bei etwa 0,6 Liter Heizöl.
Biogas ist vielfältig nutzbar. Bei der direkten Verstromung über ein Blockheizkraftwerk entsteht neben „grünem“ Strom auch Wärme, die z. B. im landwirtschaftlichen Betrieb oder zu Heizzwecken in Bioenergiedörfern genutzt werden kann.


Der nach der Vergärung übrig bleibende Gärrest (nicht abgebaute [[Biomasse]] und Mineralien) besitzt hervorragende Düngeeigenschaften, sodass dieser anschließend im landwirtschaftlichen Ackerbau eingesetzt wird.  
Größere Anlagen bereiten Biogas oft zu Biomethan auf und speisen es als Bioerdgas in das Erdgasnetz ein. So kann Biomethan dort, wo es benötigt wird, zur kombinierten Strom- und Wärmenutzung, zur ausschließlichen Wärmenutzung oder zum Tanken in Erdgasfahrzeugen zum Einsatz kommen. Biomethan lässt sich im Erdgasnetz mit den vorhandenen Erdgasspeichern oder auch begrenzt anlagennah speichern und bedarfsgerecht einsetzen.


==Methan aus Biogas==
=== Was muss beachtet werden? ===
Autos, die statt eines flüssigen einen gasförmigen Energieträger nutzen, gibt es schon heute: Sie fahren mit Erdgas. Reine oder bivalente Erdgasfahrzeuge werden inzwischen von vielen Automobilherstellern serienmäßig angeboten. In ihnen kann ohne weitere technische Anpassung '''Bio-Methan''' aus Biogas eingesetzt werden. Entsprechende Aufbereitungsverfahren für Biogas auf Erdgasqualität sind allerdings noch relativ neu - einige Projekte sind jedoch in Deutschland bereits umgesetzt und weiter in der Planung.  
Für die Errichtung und den anschließenden Betrieb von Biogasanlagen sowie die Ausbringung der Gärreste ist eine Vielzahl von Gesetzen und Verordnungen zu beachten. Diese Anforderungen umfassen das Planungs-,  Bau-,  Wasser-, Naturschutz- und Abfallrecht. Ebenso sind die Vorschriften von Immissionsschutz-,  Düngemittel- und Hygienerecht relevant.  


Biogas ist brennbar und in Mischungen mit 6–12 % Luft explosiv. Aus diesem Grund sind die Sicherheitsregeln für Biogasanlagen und die entsprechenden allgemeinen Regelwerke zu beachten (siehe Literaturverzeichnis). Grundsätzlich sind die Entstehung und das Entweichen von gefährlichen Gasen zu vermeiden.  <br />
Die Betreiber haben eine Vielzahl von Nachweisen zu erbringen und Prüfungen durchzuführen,welche den sicheren Betrieb gewährleisten. Hierbei sind die europäischen und nationalen Vorschriften sowie die technischen Normen und Regelwerke (wie z. B.VDI, DVGW, [[DIN]]) zu beachten. Bei Einhaltung der gesetzlichen Vorgaben und  Erfüllung der Sicherheitsstandards stellt der Umgang mit Biogas kein größeres Risiko dar als der mit Erdgas.
----


{{{TabH1/2}}Steckbrief Bio-Methan
{{{TabH1/2}}Steckbrief Bio-Methan
|-
|-
|Rohstoffe ||[[Energiepflanzen]]; Gülle und [[organische Reststoffe]]
|Rohstoffe ||[[Energiepflanzen]]; Gülle und [[Organischer Reststoff|organische Reststoffe]]
|-
|-
|Jahresertrag je Hektar ||4.950 m³/ha bzw. 3560 kg<sup>1)</sup>
|Jahresertrag je Hektar ||4.945 m³/ha bzw. 3560 kg<sup>1)</sup>
|-
|-
|Kraftstoff-Äquivalent || 1kg Methan ersetzt ca. 1,4l Ottokraftstoff
|Kraftstoff-Äquivalent || 1kg Methan ersetzt ca. 1,5l Ottokraftstoff o. 1,3 l Diesel
|-
|-
|Marktpreis ||0,80 - 0,90 EUR/kg
|Marktpreis ||1,10 - 1,15 EUR/kg
|-
|-
|[[CO2-Einsparung|CO<sub>2</sub>-Minderung]] || keine Angaben
|THG-Minderung || 16 g/CO2 äq/MJ für Biomethan aus Gülle (Vergleichskraftstoff Benzin: 83,8 g/CO2 äq/MJ)
|-
|-
|Technische Hinweise ||Bio-Methan kommt ohne Anpassung in Erdgasfahrzeugen zum Einsatz
|Technische Hinweise ||Biomethan kommt ohne technische Anpassung in Erdgasfahrzeugen zum Einsatz (DIN 51624)
|}
|}
<sup>1)</sup> Grundlage: Flächenertrag von Mais 45 [t/ha*a]; Biogasausbeute 190 [m³/t]; Methangehalt 55 %
<sup>1)</sup> Grundlage: Flächenertrag von Mais 50 [t/ha*a]; Biogasausbeute 200 [m³/t]; Methangehalt 53 % <br />
 
<sup>2)</sup> Standardwerte für THG-Emissionen nach EU-RL 2009/28EG


{{{TabH1/2}} Rohstofferträge zur Herstellung von Biomethan
{{{TabH1/2}} Rohstofferträge zur Herstellung von Biomethan
Zeile 33: Zeile 98:
!Rohstoffertrag || Biogasausbeute || Methangehalt || colspan="2" | Methanausbeute
!Rohstoffertrag || Biogasausbeute || Methangehalt || colspan="2" | Methanausbeute
|- class="hintergrundfarbe2"
|- class="hintergrundfarbe2"
![t/ha] FM || [m³/t] || [%] || [m³/ha] || [kg/ha]
! [t/ha] FM || [m³/t] || [%] || [m³/ha] || [kg/ha]
|- align="center"
|- align="center"
| ca. 45* || ca. 202* || 54 || 4.910 || 3.535
| ca. 45* || ca. 202* || 54 || 4.910 || 3.535
Zeile 39: Zeile 104:
''Quelle: [[FNR]]/KTBL'' - *auf Basis von Silomais; FM = Frischmasse, Dichte Biomethan: 0,72 [kg/m³]
''Quelle: [[FNR]]/KTBL'' - *auf Basis von Silomais; FM = Frischmasse, Dichte Biomethan: 0,72 [kg/m³]


==Quelle==
== Quelle ==
* [http://www.nachwachsenderohstoffe.de/basisinfo-nachwachsende-rohstoffe/biogas.html www.fnr.de]  
* [http://www.bio-kraftstoffe.info www.bio-kraftstoffe.info]
* [http://www.bio-kraftstoffe.info www.bio-kraftstoffe.info]
* http://mediathek.fnr.de/broschuren/bioenergie/bioenergie.html - Abgerufen: 11.08.2017
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>
<div style="clear: both; visibility: hidden;">dient Zeilenumbruch</div>



Aktuelle Version vom 11. August 2017, 08:33 Uhr

Biogas

 
Bestandsentwicklung Biogasanlagen - Quelle: FNR nach FvB (2016) © FNR 2016
 
Biogasausbeuten - Quelle: KTBL (2015) © FNR 2015

Ob in Mooren und Sümpfen oder im Verdauungstrakt von Wiederkäuern: Biogas bildet sich überall dort, wo organisches Material in feuchter Umgebung unter Sauerstoffabschluss zersetzt wird. Verschiedene Bakterien, darunter Methanbakterien, leisten dabei die Hauptarbeit. In einer Biogasanlage wird dieser Prozess technisch nachvollzogen. Die Biogaserträge, aber auch die Zusammensetzung des Biogases variieren je nach Zusammensetzung der Ausgangsstoffe sowie der Verfahrens- und Prozesstechnik. Der Energiegehalt des Biogases ist schließlich direkt vom Methangehalt abhängig. So hat ein Kubikmeter (m³) Methan einen Energiegehalt von etwa 10 Kilowattstunden (9,97 kWh).

Mit Inkrafttreten des Erneuerbare-Energien-Gesetz (EEG) stieg die Zahl der Biogasanlagen in Deutschland deutlich an (siehe Abbildung ...). Ende 2012 waren mehr als 8.000 Biogasanlagen mit einer elektrischen Leistung von insgesamt über 4.000 MW am Netz und liefern soviel Strom wie drei größere Atomkraftwerke.

Die Rohstoffe

Biogas kann aus einer Vielzahl von organischen Ausgangsstoffen gewonnen werden. In landwirtschaftlichen Anlagen dienen überwiegend gezielt angebaute Energiepflanzen und tierische Exkremente (Gülle und Mist) als Substrate. Die Nutzung von Gülle und anderen Wirtschaftsdüngern ist nicht nur aus Sicht des Klimaschutzes (Emissionsvermeidung) und der Kaskadennutzung von großer Bedeutung, sondern hat auch eine den Prozess stabilisierende Wirkung. Als nachwachsende Rohstoffe zum Beispiel Mais, Gräser, Getreide u. v. m. in Frage, wobei der Mais derzeit als Kultur mit hohen Masse- und Gaserträgen sowie mit den geringsten spezifischen Kosten den größten Anbauumfang einnimmt. Negativ kann sich der hohe Maisanbau in einigen Regionen jedoch auf Bodenfruchtbarkeit und Biodiversität auswirken.

In der Abbildung werden die Richtwerte für die Gaserträge verschiedener Biogassubstrate und deren durchschnittlicher Methangehalt gezeigt. Die in der Praxis erzielbaren Gaserträge können durchaus abweichen, da diese vom Substratmix und den technischen und biologischen Kennziffern der jeweiligen Biogasanlage abhängig sind.

Aufbau einer Biogasanlage

 
Aufbau einer landwirtschaftlichen Biogasanlage - Quelle: FNR

Eine landwirtschaftliche Biogasanlage besteht aus den Grundelementen Vorgrube/Substrateinbringung, Fermenter mit Rührwerk, Gasspeicher, Gärrückstandslager und Biogasverwertung (z. B. Blockheizkraftwerk oder Gasaufbereitung). In der Vorgrube werden die Substrate zwischengelagert, wenn nötig zerkleinert, verdünnt und vermischt und gelangen von hier in den isolierten und beheizten Fermenter. Er ist das Kernstück der Anlage und muss gas- und wasserdicht sowie lichtundurchlässig ausgeführt sein. Entsprechende Rührtechnik gewährleistet die Homogenität des Gärsubstrates und unterstützt die Gasbildung. Das Biogas gelangt in den Gasspeicher, während das ausgegorene Substrat in das Gärrestlager transportiert wird, das i. d. R. auch als Nachgärbehälter dient.

Der flüssige oder feste Rückstand der Vergärung wird als Gärrest oder Biogasgülle bezeichnet und von den Landwirten wegen seiner hohen Nährstoffgehalte meist als organischer Dünger verwendet.

Zur Abbildung:
In landwirtschaftlichen Biogasanlagen werden in der Regel Gülle oder Mist und nachwachsende Rohstoffe, wie z.B. Mais, Gras, Getreide oder Zuckerrüben, vergoren.

Das in Fermenter und Nachgärer produzierte Biogas wird entweder als aufbereitetes Biomethan ins Erdgasnetz eingespeist oder wie vom Großteil der Anlagen in Deutschland in einem Blockheizkraftwerk in Strom und Wärme umgewandelt. Der Strom wird in das öffentliche Netz eingespeist und die anfallende Wärme wird für die Beheizung der Wohn- und Wirtschaftgebäude genutzt oder auch über Wärmenetze an private, kommunale und gewerbliche Nutzer verteilt.

Nach Abschluss des Gärprozesses kann dann der angefallene Gärrest als wertvoller organischer Dünger auf den Feldern der Landwirte genutzt werden.

Hiermit wird der Stoffkreislauf einer landwirtschaftlichen Biogasanlage geschlossen.

Die Abläufe im Fermenter

 
Schematische Darstellung des Fermentationsprozesses - Quelle: FNR

Der Vergärungsprozess im Fermenter läuft prinzipiell in vier voneinander abhängigen Teilschritten unter anaeroben Bedingungen (ohne Sauerstoff) ab, an denen jeweils verschiedene Gruppen von Mikroorganismen beteiligt sind. Das gebildete Gasgemisch besteht überwiegend aus Methan (50-75 %), Kohlendioxid (25-45 %) und geringen Anteilen an Wasserdampf, Sauerstoff , Stickstoff, Schwefelwasserstoff und weiteren Spurengasen.

Das so gebildete Gasgemisch besteht überwiegend aus

  • 50–75 % Methan (CH4),
  • 25–45 % Kohlendioxid (CO2),
  • 2–7 % Wasserdampf (H2O),
  • < 2 % Sauerstoff (O2),
  • < 2 % Stickstoff (N2),
  • < 1 % Schwefelwasserstoff (H2S) und
  • < 2 % Spurengasen.

Grundsätzlich finden die vier Phasen zeitgleich und parallel statt. Aufgrund der unterschiedlichen Milieubedingungen der verschiedenen Mikroorganismen muss daher ein Kompromiss der optimalen Parameter, wie insbesondere Gärtemperatur, pH-Wert oder Nährstoffversorgung, gefunden werden.

Aufbereitung und Nutzung von Biogas

 
Nutzungsmöglichkeiten von Biogas - Quelle: FNR
 
Verfahrensschritte zur Biogasaufbereitung
Quelle: FNR

Biogas bietet eine Vielzahl von Nutzungsoptionen. Es kann sowohl für die Strom- und Wärmeerzeugung als auch als Kraftstoff und Erdgas-Äquivalent eingesetzt werden. Hinzu kommt, dass Biogas speicherbar und über das Erdgasnetz transportierbar ist und dadurch jederzeit und unabhängig vom Entstehungsort zur Verfügung steht. Die Energieerzeugung aus Biogas unterliegt keinen tages- und jahreszeitlichen oder witterungsbedingten Schwankungen und kann somit bedarfsgerecht und auch kontinuierlich erfolgen.

Dank fester Vergütungssätze durch das EEG für die Verstromung ist die Erzeugung von Strom und Wärme direkt an der Biogasanlage die derzeit vorrangige Nutzungsart von Biogas. Sie erfolgt in Blockheizkraftwerken (BHKW), man spricht dabei von Kraft-Wärme-Kopplung (KWK), weil Strom und Wärme gleichzeitig erzeugt werden. Grundsätzlich eignet sich Biogas auch als Energieträger für Brennstoffzellen, Stirlingmotoren und Mikrogasturbinen. Vorteile dieser Technologien, wie größere Wirkungsgrade oder geringere Betriebskosten, werden derzeitig noch durch die höheren Kosten überlagert.

In den letzten Jahren hat sich außerdem die Aufbereitung und Einspeisung von Biogas in das Erdgasnetz zunehmend etabliert. Ende 2014 produzierten 170 Biogasaufbereitungsanlagen etwa 100.000 Normkubikmeter Biomethan pro Stunde. Bei der Aufbereitung wird das gewünschte Methan von Kohlendioxid und anderen Begleitgasen abgetrennt und das Biomethan (auch Bioerdgas genannt) ist als Erdgassubstitut nutzbar. Durch die vorhandene Infrastruktur des Erdgasnetzes kann das Biomethan dann über beliebige Distanzen transportiert werden und entkoppelt von der Produktion an Orten mit großer Nachfrage in KWK-Anlage oder zur Wärmeerzeugung genutzt werden. Ebenfalls als Kraftstoff in Erdgasfahrzeugen wird Biomethan verwendet – mit steigender Tendenz.

Zur Abbildung:

Biogas ist vielfältig nutzbar. Bei der direkten Verstromung über ein Blockheizkraftwerk entsteht neben „grünem“ Strom auch Wärme, die z. B. im landwirtschaftlichen Betrieb oder zu Heizzwecken in Bioenergiedörfern genutzt werden kann.

Größere Anlagen bereiten Biogas oft zu Biomethan auf und speisen es als Bioerdgas in das Erdgasnetz ein. So kann Biomethan dort, wo es benötigt wird, zur kombinierten Strom- und Wärmenutzung, zur ausschließlichen Wärmenutzung oder zum Tanken in Erdgasfahrzeugen zum Einsatz kommen. Biomethan lässt sich im Erdgasnetz mit den vorhandenen Erdgasspeichern oder auch begrenzt anlagennah speichern und bedarfsgerecht einsetzen.

Was muss beachtet werden?

Für die Errichtung und den anschließenden Betrieb von Biogasanlagen sowie die Ausbringung der Gärreste ist eine Vielzahl von Gesetzen und Verordnungen zu beachten. Diese Anforderungen umfassen das Planungs-, Bau-, Wasser-, Naturschutz- und Abfallrecht. Ebenso sind die Vorschriften von Immissionsschutz-, Düngemittel- und Hygienerecht relevant.

Biogas ist brennbar und in Mischungen mit 6–12 % Luft explosiv. Aus diesem Grund sind die Sicherheitsregeln für Biogasanlagen und die entsprechenden allgemeinen Regelwerke zu beachten (siehe Literaturverzeichnis). Grundsätzlich sind die Entstehung und das Entweichen von gefährlichen Gasen zu vermeiden.
Die Betreiber haben eine Vielzahl von Nachweisen zu erbringen und Prüfungen durchzuführen,welche den sicheren Betrieb gewährleisten. Hierbei sind die europäischen und nationalen Vorschriften sowie die technischen Normen und Regelwerke (wie z. B.VDI, DVGW, DIN) zu beachten. Bei Einhaltung der gesetzlichen Vorgaben und Erfüllung der Sicherheitsstandards stellt der Umgang mit Biogas kein größeres Risiko dar als der mit Erdgas.


Steckbrief Bio-Methan
Rohstoffe Energiepflanzen; Gülle und organische Reststoffe
Jahresertrag je Hektar 4.945 m³/ha bzw. 3560 kg1)
Kraftstoff-Äquivalent 1kg Methan ersetzt ca. 1,5l Ottokraftstoff o. 1,3 l Diesel
Marktpreis 1,10 - 1,15 EUR/kg
THG-Minderung 16 g/CO2 äq/MJ für Biomethan aus Gülle (Vergleichskraftstoff Benzin: 83,8 g/CO2 äq/MJ)
Technische Hinweise Biomethan kommt ohne technische Anpassung in Erdgasfahrzeugen zum Einsatz (DIN 51624)

1) Grundlage: Flächenertrag von Mais 50 [t/ha*a]; Biogasausbeute 200 [m³/t]; Methangehalt 53 %
2) Standardwerte für THG-Emissionen nach EU-RL 2009/28EG

Rohstofferträge zur Herstellung von Biomethan
Rohstoffertrag Biogasausbeute Methangehalt Methanausbeute
[t/ha] FM [m³/t] [%] [m³/ha] [kg/ha]
ca. 45* ca. 202* 54 4.910 3.535

Quelle: FNR/KTBL - *auf Basis von Silomais; FM = Frischmasse, Dichte Biomethan: 0,72 [kg/m³]

Quelle

dient Zeilenumbruch
Sie haben Anregungen und wollen bei dem WISSEN Wiki mitmachen? . ==> bitte hier lang