Diffusion: Unterschied zwischen den Versionen
K |
K (→Definitionen) |
||
(68 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
== Definitionen == | |||
Bei der '''Diffusion''' durchdringen Gase andere Gase oder feste Körper in Folge von Konzentrationsunterschieden. Die Diffusion ist ein ohne äußere Einwirkung eintretender Ausgleich unterschiedlicher Gaskonzentrationen. | Bei der '''Diffusion''' durchdringen Gase andere Gase oder feste Körper in Folge von Konzentrationsunterschieden. Die Diffusion ist ein ohne äußere Einwirkung eintretender Ausgleich unterschiedlicher Gaskonzentrationen. | ||
{| align="left" | |||
|- | |- | ||
| ''' | | Einstufung der Stoffe hinsichtlich Dampfdurchlässigkeit nach [[DIN 4108-3]]: | ||
{| class="wikitable" | |||
| width="200px" | '''Begriff''' || width="360px" align="center" | '''[[sd-Wert|s<sub>d</sub>-Wert]]''' (Bereich) | |||
|- | |||
| diffusionsoffene Schicht || align="center" | s<sub>d</sub> ≤ 0,5 m | |||
|- | |||
| diffusionsbremsende Schicht || align="center" | 0,5 m < s<sub>d</sub> ≤ 10 m | |||
|- | |- | ||
| | | diffusionshemmende Schicht || align="center" | 10 m < s<sub>d</sub> ≤ 100 m | ||
|- | |- | ||
| ''' | | diffusionssperrende Schicht || align="center" | 100 m < s<sub>d</sub> < 1.500 m | ||
|- | |||
| diffusionsdichte Schicht || align="center" | s<sub>d</sub> ≥ 1.500 m | |||
|- | |||
| Schicht mit variablem s<sub>d</sub>-Wert || align="center" | Bauteilschicht, die ihren s<sub>d</sub>-Wert in Abhängigkeit von der umgebenden relativen Luftfeuchte verändert | |||
|} | |||
| width="50px" | | |||
| valign="top" | nach [[WTA]] Merkblatt 6-8: | |||
{| class="wikitable" | |||
| width="160px" | '''Begriff''' || width="160px" align="center" | '''s<sub>d</sub>-Wert''' (Bereich) *) | |||
|- | |||
| diffusionsoffen || align="center" | s<sub>d</sub> ≤ 0,5 m | |||
|- | |||
| moderat dampfbremsend || align="center" | 2,0 m < s<sub>d</sub> ≤ 5,0 m | |||
|- | |||
| stark dampfbremsend || align="center" | 10 m < s<sub>d</sub> < 100 m | |||
|- | |||
| dampfsperrend || align="center" | 100 m < s<sub>d</sub> < 400 m | |||
|- | |||
| dampfdicht || align="center" | s<sub>d</sub> ≥ 1.500 m | |||
|} | |||
|- | |||
| valign="top" | || || *) Nicht definierte Zwischenbereiche sind in ihrer Wirkung nicht eindeutig zuordenbar. | |||
|} | |} | ||
<br clear="all" /> | |||
[[Feuchtevariabilität|Feuchtevariable Dampfbremsen]] (auch 'feuchteadaptiv' genannt): <br /> | |||
Bei trockenem Umgebungsklima (im Winter auf der Raumseite) weisen sie einen höheren [[sd-Wert|s<sub>d</sub>-Wert]] auf, bei höheren [[Luftfeuchtigkeit]]en (z. B. im Sommer) sinkt der [[Diffusionswiderstand]]. <ref name="Qu_1" /> | |||
== Diffusion, die planbare Größe == | |||
{|align="right" | |||
|[[Bild:BPhys GD 1 07_Dachschn.Diffusion-01-2.jpg|right|thumb|450px|Diffusion erfolgt planmäßig]] | |||
|} | |||
In der Bauphysik beschreibt die '''Dampfdiffusion''' den Feuchtetransport durch Molekülwanderung, verursacht durch den Dampfdruckunterschied der das Bauteil umgebenden Luftschichten. Der Austausch erfolgt also, im Gegensatz zur [[Konvektion]], nicht über Fugen, sondern durch die Wanderung der Feuchtigkeit durch eine [[monolithisch]]e, [[Luftdichtung|luftdichte]] Materialschicht. | |||
Der Diffusionsstrom richtet sich im Winter regulär von innen nach außen, bei Erwärmung der Bauteilaußenseite infolge Sonneneinstrahlung - auch im Winter – kehrt sich die Richtung um. Durch diese [[Umkehrdiffusion|Umkehr-]] oder Rückdiffusion besteht die Möglichkeit, dass im Bauteil enthaltene Feuchtigkeit auch zur Raumseite hin austrocknen kann <ref name="Qu_1" />. Der Zeitraum mit warmen Außentemperaturen ist in Mitteleuropa länger, als der mit winterlichen Temperaturen, so dass mehr Feuchtigkeit aus der [[Konstruktion]] heraus trocknen kann. | |||
Der Feuchteeintrag in die Konstruktion hängt vom [[Wasserdampfdiffusionswiderstand|Diffusionswiderstand]] (µ-Wert) des Materials ab. | |||
<br clear="all" /> | |||
==Feuchtebelastung durch Diffusion== | |||
''Auszug einer von MOLL bauökologische Produkte GmbH initiierten'' Studie<ref name="Qu_001" />: | |||
{| align="right" widht="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1" | |||
| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus. <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur <br /> ⇒ es fällt früher Tauwasser aus. | |||
|} | |||
Je höher der innenseitige [[sd-Wert|s<sub>d</sub>-Wert]] ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von Dampfsperren mit hohen Diffusionswiderständen Bauschäden verhindern würde. <br /> | |||
Dass die Realität anders ist, wurde bereits vor über 25 Jahren bei der Markteinführung der ersten feuchtevariablen Dampfbremse [[DB+]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30 m durch bauphysikalische Berechnungen belegt. | |||
Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, trifft zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Aussage: Dampfsperren »unter binden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche | |||
Restleckagen erforderlich ist«. <ref name="Qu_01" /> | |||
Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über ein ausreichendes [[Rücktrocknungspotenzial]] verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden. | |||
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250 g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3 m während eines Winters diffundiert <ref name="Qu_03" />. | |||
{| align="left" | |||
| width="50%" algin="left" | {{Textrahmen vario|Fazit: |Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50 m, 100 m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.|900px}} | |||
|} <br clear="all" /> | |||
==Berechnungsmodelle für Diffusionsvorgänge == | |||
; Siehe [[Diffusion - Berechnungsmodelle]] | |||
<!-- | |||
''Auszug einer von MOLL bauökologische Produkte GmbH initiierten'' Sanierungs-Studie<ref name="Qu_002" />: | |||
{{{TabH1/2 r}} Genaue Ergebnisse mit instationären Berechnungsmodellen | |||
|- class="hintergrundfarbe2" | |||
| width="350px"| '''Stationäre Modelle''' | |||
|- | |||
| | |||
* [[Glaser-Verfahren|Verfahren nach Glaser]] <br /> | |||
* [[Jenisch|Verfahren nach Glaser mit Jenisch-Klimadaten]] <br /> | |||
=> liefern grobe Anhaltswerte | |||
|- class="hintergrundfarbe2" | |||
| '''Instationäre Modelle''' | |||
|- | |||
| | |||
* [[WUFI#WUFI Pro|WUFI Pro]] / [[WUFI#WUFI 2D|WUFI 2D]] <br /> | |||
* [[Delphin]] <br /> | |||
=> liefern genauste Werte für Feuchtegehalte für jede Position im Bauteil <br /> | |||
- ideal für die Berechnung der Bauteilsicherheit | |||
|} | |||
Für die Berechnung der Feuchtetransporte durch Diffusion innerhalb der Konstruktion stehen verschiedene Berechnungsmodelle mit unterschiedlicher Genauigkeit zur Verfügung. In der [[DIN 4108-3]] wird die [[Tauwasser]]- bzw. Verdunstungsmenge, die durch Diffusion in das betrachtete Bauteil hinein- bzw. heraus gelangen kann, mit standardisierten Klimabedingungen nach dem [[Glaser-Verfahren]] errechnet. Für die Berechnung stehen 2 Blockklimate (Winter- bzw. Sommerklima) zur Verfügung. | |||
Als Option ist in der [[DIN 4108-3]] das Verfahren nach [[Jenisch]] enthalten. Dieses liefert differenziertere Ergebnisse aufgrund regional angepasster Klimarandbedingungen. | |||
Die beiden in der [[DIN 4108-3]] genannten Ansätze erlauben keine detaillierte Betrachtung der Wärme- und Feuchteströme. Es ist nicht möglich, den genauen Feuchtegehalt eines der eingesetzten Materialien zu bestimmen. Das [[Glaser]]verfahren dient seit Jahrzehnten im Baubereich ausschließlich der groben Abschätzung von [[Tauwasser]]- bzw. Verdunstungsmengen. | |||
Die instationären Berechnungsmodelle gemäß [[DIN EN 15026]], wie sie im [[WUFI#WUFI Pro|WUFI Pro]] bzw. [[WUFI#WUFI 2D|WUFI 2D]] oder im [[Delphin]] enthalten sind, simulieren die Feuchte- und Wärmeströme innerhalb von Konstruktionen. Werden stündlich ermittelte Klimadaten zur Berechnung verwendet, liefern diese mit Abstand die genauesten Ergebnisse. Alle beschriebenen Berechnungsmodelle gehen davon aus, dass die Schichten im Bauteil luftdicht sind. | |||
===Berechnung nach [[DIN 4108-3]]=== | |||
* [[Glaser-Verfahren| Verfahren nach Glaser]] | |||
* [[Jenisch| Verfahren nach Glaser mit Jenisch-Klimadaten]] | |||
===Berechnung nach [[DIN EN 15026]]=== | |||
Wirklich realistische Ergebnisse liefern die instationären Berechnungsverfahren wie [[WUFI#WUFI Pro|WUFI Pro]], [[WUFI#WUFI 2D|WUFI 2D]] oder [[Delphin]]. Sie berechnen den Feuchte- und Wärmetransport in der Konstruktion basierend auf realen Klimadaten (Temperatur, Luftfeuchte, (Schlag-) Regen, Sonne, Wind usw.) bzw. Baustoffeigenschaften ('''Diffusion''', Wasseraufnahme, -speicherung und -transport usw.) und der geographischen Ausrichtung der Gebäudeteile (Neigung, Himmelsrichtung). [[Baufeuchte|Feuchtigkeitsgehalt]] und Temperatur können für jeden Punkt der betrachteten Konstruktion ausgegeben werden. | |||
--> | |||
== Einzelnachweise == | |||
<references> | |||
<ref name="Qu_1">INFORMATIONSDIENST HOLZ, spezial, ''Flachdächer in Holzbauweise'', Oktober 2008</ref> | |||
<ref name="Qu_001"> ''Moll bauökologische Produkte GmbH, Bauphysik-Studie'' - [[Bauphysik Studie#Feuchtebelastung durch Diffusion|Link zum Absatz]]; PDF: [http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf Download]</ref> | |||
<ref name="Qu_01"> Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig, [http://holzbauphysik-kongress.eu/mediapool/69/694318/data/Konsens_Flachdaecher_2011_03_END.pdf holzbauphysik-kongress.eu: Konsens_Flachdaecher_2011_03_END.pdf] </ref> | |||
<ref name="Qu_02">TenWolde, A. et al.: ”''Air pressures in wood frame walls, proceedings thermal VII.''” Ashrae Publication Atlanta, 1999</ref> | |||
<ref name="Qu_03">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref> | |||
<!-- | |||
<ref name="Qu_002"> pro clima: WISSEN 2010/11 [[WISSEN 2010/11 - pro clima#Sanierungs-Studie|"''Sanierungs-Studie''"]], 2010, S. 71 - zum '''[[WISSEN 2010/11 - pro clima#Sanierungs-Studie|Download]]''' | zum ''' [[Konstruktionsempfehlung - Dachsanierung|Stammartikel]]''' </ref> | |||
--> | |||
</references> | |||
==Siehe auch== | |||
* [[Wasserdampfdiffusionswiderstand]] | * [[Wasserdampfdiffusionswiderstand]] | ||
* [[Wasserdampfdurchlässigkeit]] | * [[Wasserdampfdurchlässigkeit]] | ||
{{NAV Bphys gd1}} | |||
[[Kategorie:Bauphysik]][[Kategorie:Glossar]] | [[Kategorie:Bauphysik]][[Kategorie:Glossar]] |
Aktuelle Version vom 29. Oktober 2024, 15:27 Uhr
Definitionen
Bei der Diffusion durchdringen Gase andere Gase oder feste Körper in Folge von Konzentrationsunterschieden. Die Diffusion ist ein ohne äußere Einwirkung eintretender Ausgleich unterschiedlicher Gaskonzentrationen.
Einstufung der Stoffe hinsichtlich Dampfdurchlässigkeit nach DIN 4108-3:
|
nach WTA Merkblatt 6-8:
| |||||||||||||||||||||||||||
*) Nicht definierte Zwischenbereiche sind in ihrer Wirkung nicht eindeutig zuordenbar. |
Feuchtevariable Dampfbremsen (auch 'feuchteadaptiv' genannt):
Bei trockenem Umgebungsklima (im Winter auf der Raumseite) weisen sie einen höheren sd-Wert auf, bei höheren Luftfeuchtigkeiten (z. B. im Sommer) sinkt der Diffusionswiderstand. [1]
Diffusion, die planbare Größe
In der Bauphysik beschreibt die Dampfdiffusion den Feuchtetransport durch Molekülwanderung, verursacht durch den Dampfdruckunterschied der das Bauteil umgebenden Luftschichten. Der Austausch erfolgt also, im Gegensatz zur Konvektion, nicht über Fugen, sondern durch die Wanderung der Feuchtigkeit durch eine monolithische, luftdichte Materialschicht.
Der Diffusionsstrom richtet sich im Winter regulär von innen nach außen, bei Erwärmung der Bauteilaußenseite infolge Sonneneinstrahlung - auch im Winter – kehrt sich die Richtung um. Durch diese Umkehr- oder Rückdiffusion besteht die Möglichkeit, dass im Bauteil enthaltene Feuchtigkeit auch zur Raumseite hin austrocknen kann [1]. Der Zeitraum mit warmen Außentemperaturen ist in Mitteleuropa länger, als der mit winterlichen Temperaturen, so dass mehr Feuchtigkeit aus der Konstruktion heraus trocknen kann.
Der Feuchteeintrag in die Konstruktion hängt vom Diffusionswiderstand (µ-Wert) des Materials ab.
Feuchtebelastung durch Diffusion
Auszug einer von MOLL bauökologische Produkte GmbH initiierten Studie[2]:
Feuchtephysik der Luft Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus. • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur ⇒ es fällt früher Tauwasser aus. |
Je höher der innenseitige sd-Wert ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von Dampfsperren mit hohen Diffusionswiderständen Bauschäden verhindern würde.
Dass die Realität anders ist, wurde bereits vor über 25 Jahren bei der Markteinführung der ersten feuchtevariablen Dampfbremse DB+ mit einem sd-Wert von 2,30 m durch bauphysikalische Berechnungen belegt.
Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre sd > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, trifft zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Aussage: Dampfsperren »unter binden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist«. [3]
Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über ein ausreichendes Rücktrocknungspotenzial verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 [4], dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250 g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine Dampfbremse mit einem sd-Wert von 3,3 m während eines Winters diffundiert [5].
Fazit:
Auch in Konstruktionen mit Dampfsperren, deren rechnerische sd-Werte 50 m, 100 m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine Rücktrocknung zu. Dadurch entstehen Feuchtefallen.
|
Berechnungsmodelle für Diffusionsvorgänge
Einzelnachweise
- ↑ 1,0 1,1 INFORMATIONSDIENST HOLZ, spezial, Flachdächer in Holzbauweise, Oktober 2008
- ↑ Moll bauökologische Produkte GmbH, Bauphysik-Studie - Link zum Absatz; PDF: Download
- ↑ Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig, holzbauphysik-kongress.eu: Konsens_Flachdaecher_2011_03_END.pdf
- ↑ TenWolde, A. et al.: ”Air pressures in wood frame walls, proceedings thermal VII.” Ashrae Publication Atlanta, 1999
- ↑ IBP Mitteilungen 355: „Dampfdiffusionsberechnung nach Glaser – quo vadis?“
Siehe auch
Luftdichtung • Konvektion • Diffusion • Flankendiffusion • Einbaufeuchte
Feuchtetransport •
Diffusion-Berechnungsmodelle •
Dampfdurchlässigkeit •
Tauwasserausfall •
Feuchtevariabilität
60/2 und 70/1,5-Regel •
1:1, 2:1 & 3:1 Lösung •
Bauschadens-Freiheits-Potenzial
Studie •
Sanierungs-Studie /
Kurzfassung:
Dachsanierung von außen •
Konstruktionsdetails