Bauschadensfreiheitspotential: Unterschied zwischen den Versionen

Aus Wissen Wiki
Zur Navigation springen Zur Suche springen
Zeile 224: Zeile 224:
Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
|-  
|-  
|[[Bild:BPhys_GD_2Studie_23-Bausfp_s11.jpg|center|thumb|280px|14. Bauschadensfreiheitspotential Steildach, Nordseite, 40° Dachneigung]]
|[[Bild:BPhys GD 2Studie 24 BSFP N 40.jpg|center|thumb|280px|14. Bauschadensfreiheitspotential Steildach, Nordseite, 40° Dachneigung]]
|-
|-
|[[Bild:BPhys_GD_2Studie_24_bausfp_seite_11.jpg|center|thumb|280px|15. Bauschadensfreiheitspotential Gründach und Kiesdach]]
|[[Bild:BPhys_GD_2Studie_24_bausfp_seite_11.jpg|center|thumb|280px|15. Bauschadensfreiheitspotential Gründach und Kiesdach]]

Version vom 5. März 2012, 19:22 Uhr

Bauschadensfreiheit ist das Ziel jeglicher Bautätigkeit, insbesondere hinsichtlich des langfristigen Bauerhalts. Nachfolgend:
Auszug einer von MOLL bauökologische Produkte GmbH initiierten Studie [1]:

Definition

Das Bauschadensfreiheitspotential (BSFP) gibt an, wie viel Feuchtigkeit unvorhergesehen durch Undichtheiten, Flankendiffusion, feuchte Baustoffe in eine Konstruktion eindringen kann, ohne einen Bauschaden oder einen Schimmelbefall zu verursachen.

Berechnung des Bauschadensfreiheitspotentials (BSFP)

Um die Sicherheiten eines Bauteils bei unvorhergesehenem Feuchteeintrag (z. B. durch Konvektion oder Flankendiffusion) zu ermitteln, wird folgender Ansatz verwendet: Zu Beginn der Berechnung wird eine definierte Feuchtemenge in die Wärmedämmung eingebracht. Die Berechnung zeigt, wie schnell diese wieder austrocknen kann. Die Trocknungsmenge, die pro Jahr unter der Annahme der erhöhten Anfangsfeuchtigkeit aus der Konstruktion entweichen kann, ist das Bauschadensfreiheitspotential der Konstruktion. Die Berechnungen erfolgen unter ungünstigen Bedingungen (z. B. Nordseite eines Steildaches), in unterschiedlichen Klimabereichen (z. B. Hochgebirge) und mit unterschiedlichen Dachformen (Steildach, bekiestes oder begrüntes Flachdach). Bauphysikalisch günstigere Konstruktionen bieten entsprechend höhere Sicherheiten.

Weiteres Kriterium für die Funktion einer Konstruktion sind die maximalen Feuchtegehalte, die sich in den Bauteilschichten einstellen.

Dachkonstruktion

Exemplarisch die im Folgenden als bauphysikalisch kritisch geltende Konstruktion. Standorte und Dampfbremsen werden variiert.

Aufbau der Konstruktion

Es handelt sich um ein nordorientiertes Steildach mit 200 mm Dämmung (Mineralwolle). Dieses wird mit roten Dachziegeln belegt.

Aufbau der Dachkonstruktion
1. Aufbau der Dachkonstruktion
Bauteilschichten:
Dampfbremsen: sd-Wert:
  • PE-Folie
100 m konstant
  • Dampfbremse
5 m konstant
0,6 – 4 m, feuchtevariabel
0,25 – 10 m, feuchtevariabel
Dachvarianten:
mit 40° Neigung zur Nordseite, rote Dachsteine
mit 5 cm Kiesschicht
mit 10 cm Gründachaufbau
Alle Konstruktionen sind unbeschattet.
Standorte:
  • Holzkirchen, Deutschland:
Höhenlage über NN = 680 m - (NN = Normal Null)
  • Davos, Schweiz:
Höhenlage über NN = 1.560 m
Berechnung:

Beschattungen (z. B. durch Photovoltaik-Anlagen, Gebäudesprünge, hohe Bäume oder Topografie) werden bei den Berechnungen nicht berücksichtigt.

Einflussfaktoren auf die Höhe des Bauschadensfreiheitspotentials

Eine wesentliche Größe für die Bauschadens- und Schimmelfreiheit ist die Rückdiffusion im Sommer und damit verbunden die Austrocknung der Konstruktion nach innen. Deren Höhe hängt von der Außentemperatur ab, genauer gesagt von der Temperatur an der Außenseite der Wärmedämmung. Durch die Sonneneinstrahlung hat die Dach-/Wandoberfläche eine höhere Temperatur als die Luft. Die Zeit, welche die Wärme von außen braucht, bis sie an der Wärmedämmung ankommt,ist entscheidend. Bei einem Steildach ist dies schneller der Fall als bei einem bekiesten oder begrünten Flachdach.
Bei einem Steildach hängt die Höhe der Dachoberflächentemperatur ab von der Dachneigung, der Ausrichtung des Daches (Norden/Süden) und der Farbe der Dacheindeckung (heller/dunkler).
Das Bauschadensfreiheitspotential wird weiterhin durch die gewählte Dämmschichtdicke beeinflusst. Große Dämmstärken führen i. d. R. zu verringerten Rücktrocknungsmengen, da die Durchwärmung des Bauteils langsamer erfolgt und als Folge die Rücktrocknungszeiträume kürzer werden.

Ungünstige Faktoren sind
  • Dachneigung nach Norden
  • Hohe Dachneigung (> 25°)
  • Helle Farbe der Dacheindeckung oder Abdichtungsbahn
  • Diffusionsdichtes Unterdach
  • Kaltes Klima, z. B. im Gebirge
  • Große Dämmschichtdicken
  • Kies-/Gründachschichten oberhalb der Abdichtung

Um den Einfluss der Dampfbremse auf das Bauschadensfreiheitspotential zu verdeutlichen, wird in der Berechnunge in diffusionsdichtes Unterdach angenommen. Zudem können im Winter diffusionsoffene Unterdächer durch gefrierendes Tauwasser zu Dampfsperren werden.


Klimadaten Standort Holzkirchen

Holzkirchen liegt zwischen München und Salzburg auf einer Seehöhe von 680 m mit einem rauen, kalten Klima. Für die Klimarandbedingungen wurde aus dem Wufi das Feuchtereferenzjahr ausgewählt, welches ein besonders feuchtes und kaltes Jahr abbildet. Die Diagramme zeigen die Temperaturverläufe über ein Jahr. Die blaue Linie zeigt die Innen-, die roten Balken die Außentemperaturen. (Siehe Abb. 2 - 5)

Unter Berücksichtigung der Sonnen und Globalstrahlung ergibt sich, verglichen mit der Lufttemperatur, eine z. T. wesentlich höhere Dachoberflächentemperatur. Wenn die Außentemperatur (rot) die Innentemperatur (blau) überschreitet, findet bei feuchtevariablen Dampfbremsen eine Austrocknung nach innen statt. Selbst bei Nordausrichtung ist dadurch in Holzkirchen an vielen Tagen im Jahr eine Rückdiffusion möglich, bei Südorientierung bereits im Winter an sonnigen Tagen. Im vorliegenden Berechnungsfall wurde der ungünstigste Fall angenommen: Nordausrichtung des Daches mit 40° Neigung.

Temperaturverläufe Holzkirchen, Höhe: 680 m über NN, Südbayern, Deutschland - Dach: rote Ziegel bzw. Kies
2. Lufttemperaturen (Feuchtereferenzklima)
3. Dachoberflächentemperatur
Nordseite, 40° Dachneigung
4. Dachoberflächentemperatur
Südseite, 40° Dachneigung
5. Dachoberflächentemperatur
Kiesdach


Bauschadensfreiheitspotential Steildach in Holzkirchen, Nordseite, 40° Dachneigung

Berechnung des Bauschadensfreiheitspotentials
Standort Holzkirchen, Dach
Angenommene zusätzl. Feuchtigkeit zu Beginn: 4.000 g/m²

Feuchtegehalt der Konstruktion im Trockenzustand
(= Feuchtigkeitsgehalt der Holzschalung bei 15 %): 1.700 g/m²

6. Bauschadensfreiheitspotential Steildach, Nordseite, 40° Dachneigung
7. Bauschadensfreiheitspotential Flachdach mit 5 cm Kies
8. Bauschadensfreiheitspotential Gründach mit 10 cm Aufbau
9. BSFP mit INTELLO und sd-Wert 5 m: verschiedene Dämmdicken

Die Trocknungsgeschwindigkeit der erhöht angenommenen Anfangsfeuchtigkeit beschreibt das Bauschadensfreiheitspotential der Konstruktion gegenüber unvorhergesehener Feuchtigkeit (Konvektion, Flankendiffusion etc.). Die Berechnungsergebnisse zeigen, dass die PE-Folie (sd-Wert 100 m) keine Austrocknung der 200 mm starken Dämmschicht ermöglicht. Feuchtigkeit, die sich in der Konstruktion befindet, kann nicht mehr entweichen. Bei einer Dampfbremse mit einem konstanten sd-Wert von 5 m bestehen nur geringe Trocknungsreserven. Die Konstruktion mit der pro clima DB+ führt zu einer wesentlich schnelleren Austrocknung und weist erhebliche Sicherheitsreserven auf von 1800 g/m² x Jahr.

Die Hochleistungs-Dampfbremse INTELLO bietet der Konstruktion das größte Sicherheitspotential. Innerhalb eines Jahres kann die Konstruktion gemäß den WUFI pro -Berechnungen mit ca. 3.400 g/m² Wasser pro Jahr belastet werden, ohne dass ein Bauschaden eintritt. (Siehe Abb. 6)

Bauschadensfreiheitspotential Flachdächer

Für die Berechnung von Grün- und Kiesdächern stehen aktuell überarbeitete Datensätze vom Fraunhofer-Institut für Bauphysik (IBP) zur Verfügung. Diese wurden auf der Grundlage von Messungen an verschiedenen begrünten und bekiesten Dachkonstruktionen an mehreren Standorten erstellt.

Neu ist, dass die zeitliche Veränderungen einer begrünten bzw. bekiesten Konstruktion stärker berücksichtigt wurden. So sind z. B. eine stärkere Berücksichtigung von Effekten aus dem Bewuchs (Verschattung durch Pflanzenbewuchs (Gräser)) bereits im Datensatz enthalten. Das Fraunhofer IBP kennzeichnet diese als den aktuellen Stand der Forschung.

Bekiestes Flachdach

Das bekieste Flachdach weist geringere Sicherheiten auf als das Steildach, da die Bauteilschichten (Kies) über der Wärmedämmung nur langsam durchwärmt werden.
Als Folge stellt sich eine geringere Durchwärmung der darunter liegenden Bauteilschichten inklusive der Dämmebene ein. Die Abb. 3-5 zeigen die Temperaturen einer nord- bzw. südgeneigten Steildachkonstruktion im Vergleich zu einem bekiesten Flachdach. Besonders deutlich wird der Unterschied bei dem südgeneigten Steildach, aber auch das nordorientierte Steildach hat ca. 8-10 °C höhere Spitzentemperaturen als das bekieste Flachdach.

Wie beim Steildach besteht beim Kiesdach mit der PE-Folie keine Austrocknung aufgrund des mit 100 m sd-Wert hohen Diffusionswiderstandes. Auch die Dampfbremse mit dem konstanten sd-Wert von 5 m bietet in dieser Kiesdachkonstruktion keine Rücktrocknungssicherheiten.

Dies ist eine Folge der verringerten Bauteiltemperaturen, welche die Rückdiffusion reduzieren. Bereits bei geringen unvorhergesehenen Feuchtebelastungen entsteht ein Bauschaden.

Dahingegen verfügt die Konstruktion mit der pro clima DB+ über ein Bauschadensfreiheitspotential von 700 g/m² x Jahr. Obwohl die Oberflächentemperturen des Kiesdaches deutlich reduziert sind, bietet die Hochleistungs-Dampfbremse INTELLO der Konstruktion ein ansehnliches Sicherheitspotential. Innerhalb eines Jahres kann das Bauteil gemäß den WUFI pro-Berechnungen pro Jahr mit ca. 1.500 g/m² Wasser belastet werden, ohne dass ein Bauschaden eintritt. (Siehe Abb. 7)

Begrüntes Flachdach

Begrünte Flachdachkonstruktionen verhalten sich aufgrund der dicken Substratschicht und den darin gespeicherten Wassermengen nochmals etwas träger als die Variante mit Kiesschüttung. Die Temperaturen auf der Abdichtungsbahn erreichen im Sommer Maximalwerte von 35-40 °C. Trotzdem verfügt die unbeschattete Konstruktion mit 200 mm Dämmstärke und einer INTELLO bzw. INTELLO PLUS über ein Bauschadensfreiheitspotential von 700 g/m² x Jahr. Das Bauteil verfügt über ausreichende Sicherheiten bei einem unvorhergesehenen Feuchteeintrag. Hier wird der berücksichtigte Einfluss aus dem Bewuchs (Verschattung) und die dadurch im Datensatz enthaltene Sicherheit deutlich. Für begrünte Flachdächer sind die INTELLO und INTELLO PLUS die erste Wahl. Die DB+ bietet für Gründachkonstruktionen ausreichende Bauschadensfreiheitspotentiale bis zu einer Höhenlage von 400 m ü. NN.


Einfluss der Dämmschichtdicke

In den letzten Jahren hat sich nicht zuletzt durch die regelmäßig steigenden Anforderungen der Energieeinsparverordnung die Stärke der eingebauten Dämmschichten erhöht. Dämmstärken von 300 mm oder mehr, die bei konventionellen Gebäuden in der Vergangenheit nur äußerst selten verwendet wurden, treten in immer größerer Zahl auf.
Hoch wärmegedämmte Konstruktionen haben ein reduziertes Bauschadensfreiheitspotential. Der Hintergrund ist, dass bei steigender Dämmdicke die Durchwärmung des Bauteils zögerlicher verläuft. Dadurch wird der Vorgang der Verdunstung von unvorhergesehenen Feuchteeinträgen verlangsamt. Da die Außenklimabedingungen jedoch identisch bleiben, sinken die Rücktrocknungsmengen auf ein Jahr bezogen.

INTELLO:
Abb. 9 zeigt das Bauschadensfreiheitspotential der oben vorgestellten Konstruktion mit der INTELLO mit den Dämmstärken 200, 300 und 400 mm.

Bei 200 mm Dämmdicke beträgt das Bauschadensfreiheitspotential ca. 3400, bei 300 mm ca. 3000 und bei 400 mm noch 2500 g/m² x Jahr.

DB+:
Auch bei der DB+ hat die Dämmdicke einen Einfluss auf das Bauschadensfreiheitspotential. Die Konstruktion mit der DB+ verfügt bei 200 mm Dämmung über ein Bauschadensfreiheitspotential von von 1800 g/m² x Jahr, bei 300 mm von 900 g/m² x Jahr und bei 400 mm Dämmschichtdicke über ein Bauschadensfreiheitspotential von 700 g/m² x Jahr.

sd-Wert 5 m:
Bei 200 mm Dämmstärke hat die Konstruktion mit der Dampfbremse mit dem konstanten sd-Wert von 5 m bereits ein sehr geringes Bauschadensfreiheitspotential. Bei höheren Dämmdicken sinkt dieses nochmals. Jedoch sind die Sicherheiten bereits bei geringen Dämmschichtdicken so gering, dass eine Verwendung bei außen diffusionsdichten Bauteilen sowohl bei geringen als auch bei hohen Dämmdicken nicht empfehlenswert ist. (Siehe Abb. 9)

Für die INTELLO und die DB+ gilt demnach:
Auch bei nordorientierten außen diffusionsdichten Steildachkonstruktionen (40°) mit hohen Dämmstärken und roten Dachziegeln sind Bauteile ausreichend sicher für Höhenlagen bis 1000 m (DB+) bzw. 1600 m (INTELLO).

Bekieste oder begrünte Konstruktionen sollten bei hohen Dämmschichtdicken im Einzelfall betrachtet werden.


Nachfolgend
WISSENS-WIKI Baustelle    Die Seite wird überarbeitet.

Klimadaten Standort Davos

Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 10 - 13)

Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Innenraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein. In nordgeneigten Dächern sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine Rückdiffusion möglich. Bei südgeneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht.
Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.

Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies
10. Lufttemperatur (Davos, kalt)
11. Dachoberflächentemperatur
Nordseite, 40° Dachneigung
12. Dachoberflächentemperatur
Südseite, 40° Dachneigung
13. Dachoberflächentemperatur
Kiesdach


Bauschadensfreiheitspotential Steildach in Davos, Nordseite, 40° Dachneigung

Berechnung des Bauschadensfreiheitspotentials
Standort Davos, Dach
Angenommene zusätzl. Feuchtigkeit zu Beginn: 4.000 g/m²

Feuchtegehalt der Konstruktion im Trockenzustand
(= Feuchtigkeitsgehalt der Holzschalung bei 15 %): 1.700 g/m²

14. Bauschadensfreiheitspotential Steildach, Nordseite, 40° Dachneigung
Datei:BPhys GD 2Studie 24 bausfp seite 11.jpg
15. Bauschadensfreiheitspotential Gründach und Kiesdach
Datei:BPhys GD 2Studie 25 bausfp seite11.jpg
16. Gebrauchstauglichkeit von Steildachkonstruktionen
(40°/bis 400 mm Dämmung/Holzkirchen)
Datei:BPhys GD 2Studie 25 bausfp seite11.jpg
16. Gebrauchstauglichkeit Kiesdächer
(bis 300 mm Dämmung/Holzkirchen)

Die äußerst niedrige Temperatur im Winter führt zu einem hohen Tauwasserausfall, so dass sich sogar die Konstruktion mit der PE-Folie auffeuchtet, auch wenn man annimmt, dass keine unvorhergesehene Feuchtebelastung gegeben ist. Bei einer Dampfbremse mit einem konstanten sd-Wert von 2,30 m stellt sich eine schnelle Auffeuchtung ein. Auch die pro clima DB+ kann die Konstruktion nicht trocken halten.

Nur die Hochleistungs-Dampfbremse INTELLO bietet eine bauphysikalisch einwandfreie Konstruktion und zusätzlich ein Sicherheitspotential. Innerhalb eines Jahres kann die Konstruktion gemäß den WUFI pro -Berechnungen bis ca. 1500 g/m² Wasser pro Jahr belastet werden, ohne dass ein Bauschaden eintritt.

Bauschadensfreiheitspotential Gründach und Flachdach

Beide Konstruktionen weisen geringere Sicherheiten als das Steildach auf, da die dicken Bauteilschichten über der Wärmedämmung langsamer durchwärmt werden. Mit der PE-Folie ist wie in Holzkirchen keine Austrocknung möglich. Bereits bei geringen unvorhergesehenen Feuchtebelastungen entsteht ein Bauschaden. Bei einer Dampfbremse mit einem konstanten sd-Wert von 2,30 m kommt es bei beiden Konstruktionen zu einer sehr schnellen Auffeuchtung. Die Konstruktion mit der pro clima DB+ führt beim Flachdach zu einer zu hohen Feuchtigkeit.

Die Hochleistungs-Dampfbremse INTELLO bietet für das Flachdach mit 5 cm Kies noch eine Lösung mit hohem Sicherheitspotential. Für das Gründach reicht die Außentemperatur in Davos für eine Rücktrocknung nicht mehr aus. Hier müssen konstruktive Lösungengewählt werden.

Schlussfolgerungen für Dachkonstruktionen

Gemäß der von MOLL bauökologische Produkte GmbH initiierten Studie gilt:
Mit feuchtevariablen Dampfbremsen wie zum Beispiel der pro clima DB+ und der INTELLO werden im Dachbereich sehr hohe Bauschadensfreiheitspotentiale erreicht. Auch bei zusätzlicher Feuchtigkeit durch unvorhergesehene Einflüsse bleiben die Konstruktionen bauschadensfrei. Flankendiffusion bei einem Ziegelmauerwerk, wie von Ruhe [2], Klopfer [3],[4] und Künzel [5] beschrieben, können INTELLO und DB+ kompensieren. Die pro clima DB+ hat sich seit über 10 Jahren in vielen Mio. m² in kritischen Konstruktionen mit ihrer Bauschadensfreiheit bewährt. Mit INTELLO haben außen diffusionsdichte Steildächer und bekieste Flachdächer im Hochgebirge ein ausreichendes Bauschadensfreiheitspotential.


Wandkonstruktionen

Temperaturverläufe Holzkirchen und Davos
Wand, Putzfassade hell
Holzkirchen
Davos

Wandkonstruktionen haben durch ihre senkrechte Ausrichtung eine geringere Sonnenlichtabsorption als Dächer. Daher ist das Rücktrocknungspotential geringer. Im Regelfall sind Wände im Gegensatz zu Dächern außenseitig nicht diffusionsdicht. Es werden keine Bitumendachbahnen verwendet. Eine hohe Anforderung an Wasserdichtigkeit, wie z. B. bei Flachdächern und Gründächern, im Wandbereich existiert nicht. Temperaturen in der Außenwand hängen im Wesentlichen von der Farbe der Fassade ab. Auf hellen Fassaden werden durch die Sonneneinstrahlung niedrigere Temperaturen erreicht als auf dunkleren Fassaden. Die dargestellten Temperaturprofile auf der Außenwand entstehen bei normal hellen Putzfassaden.

Die Hochleistungs-Dampfbremse INTELLO bietet auch bei Wandkonstruktionen ein erhebliches Bauschadensfreiheitspotential.

Berechnungen mit WUFI pro mit dem Klima von Holzkirchen zeigen für eine nach Norden ausgerichtete Außenwand mit diffusiondichter Außenbekleidung in heller Farbe mit der INTELLO immer noch ein erhebliches Sicherheitspotential.

Damit ist die INTELLO auch bei außen vorhandenen Holzwerkstoffplatten wie OSB- oder Spanplatten die ideale Lösung für ein hohes Bauschadensfreiheitspotential. Die Gefahr von Schimmelbildung wird deutlich verringert.

Auch in kälteren Klimaregionen bis zu Hochgebirgsstandorten wie Davos sind Wandkonstruktionen mit außenseitig der Dämmung befindlichen Bauteilschichten bis zu einem sd-Wertt von 10 m mit der Hochleistungs-Dampfbremse INTELLO sicher. Für DB+ dürfen für das Klima Holzkirchen die außenseitig der Dämmung befindlichen Bauteile einen sd-Wert von max. 6 m, für Davos max. 0,10 m haben.

Fazit der Studie

Konstruktionen mit DB+ und INTELLO haben enorm große Sicherheitsreserven und beugen mit intelligentem Feuchtemanagement Bauschäden und Schimmelbildung vor. Selbst bei unvorhergesehenen oder in der Baupraxis nicht zu vermeidenden Feuchtebelastungen haben die Konstruktionen dank der hohen Trocknungsreserven durch die feuchtevariablen Diffusionswiderstände ein sehr hohes Bauschadensfreiheitspotential. Die Hochleistungs-Dampfbremse INTELLO hat eine besonders große, in allen Klimabereichen wirksame Variabilität des Diffusionswiderstandes und bietet damit für Wärmedämmkonstruktionen eine bisher unerreichte Sicherheit– ob bei außen diffusionsoffenen oder auch bei bauphysikalisch anspruchsvollen Konstruktionen wie Flachdächern, Gründächern, Metalleindeckungen sowie Dächern mit diffusionsdichten Vordeckungen.

  • Die Leistungsfähigkeit von INTELLO zeigt sich auch bei extremen Klimabedingungen, wie im Hochgebirge.
  • Die DB+ bietet bis in mittlere Höhenlagen (z. B. in Holzkirchen) hohe Sicherheiten für die Dachkonstruktionen.
  • Entsprechend den Voraussetzungen der DIN 68800-2 kann mit feuchtevariablen Dampfbremsen auf chemischen Holzschutz verzichtet werden.

Je höher die Trocknungsreserve einer Konstruktion ist,
umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.


Bewertung der Feuchtigkeitseinflüsse. Definition des Bauschadensfreiheitskriteriums

Auszug einer von MOLL bauökologische Produkte GmbH initiierten Sanierungs-Studie [6]:

Feuchteeinwirkung auf eine
Dämmkonstruktion im Winter
Über eine Dampfbrems- und Luftdichtungsebene mit einem sd-Werten von 3 m gelangen lediglich 5 g Wasser pro m² am Tag in die Konstruktion.
Feuchteeintrag in die Dämmung
durch Leckagen
Über eine 1 mm breite Fuge sind Feuchteeinträge von bis zu 800 g Wasser pro m² am Tag möglich.
Schimmelpilze wachsen
auch unter ungünstigen
Umgebungsbedingungen
Sedlbauer und Krus [7] geben für das Erreichen von Wachstumsbedingungen für fast alle im Baubereich relevanten Schimmelpilze ein rel. Luftfeuchtigkeit von 80 % an. Der optimale Bereich liegt je nach Spezies bei 90 bis 96 % rel. Luftfeuchtigkeit.

Die in den Abbildungen beschriebenen Feuchtigkeitseinträge können innerhalb von Bauteilen zu einer erhöhten rel. Luftfeuchtigkeit bis hin zur Kondensatbildung führen. In Kombination mit einer ausreichend hohen Temperatur an der Stelle des erhöhten Feuchtegehaltes kann es bei ausreichend langer Einwirkung und einer geeigneten Nahrungsquelle zur Auskeimung von Schimmelpilzsporen kommen. Schimmelpilze gelten als so genannte „Erstkolonisierer“, da sie auch „unter biologisch ungünstigen Umgebungsbedingungen“ [7] gedeihen können.

Sedlbauer und Krus [7] geben für das Erreichen von Wachstumsbedingungen für fast alle im Baubereich relevanten Schimmelpilze eine rel. Luftfeuchtigkeit von 80 % an. Der optimale Bereich liegt je nach Spezies bei 90 bis 96 % rel. Luftfeuchtigkeit. Die in den Zeiträumen erhöhter Feuchtegehalte vorhandene Temperatur muss für die Auskeimung der Sporen, bzw. für das Wachstum des Pilzes im Bereich zwischen 0 und 50°C liegen. Die ideale Wachstumstemperatur liegt bei etwa 30 °C.

Bei dieser Temperatur können auf Mineralwolle ab einer rel. Luftfeuchtigkeit von 92 % Schimmelpilze auskeimen und wachsen. Ist die Temperatur geringer, sind erhöhte rel. Luftfeuchten für die Besiedelung erforderlich.
„Verunreinigungen durch Staub, Fingerabdrücke und Luftverschmutzung (Küche, Rückstände beim Duschen usw.) oder Ausdünstungen des Menschen“ reichen aus, um auf weniger geeigneten Untergründen die Voraussetzungen für einen Bewuchs mit Schimmelpilzen zu verbessern. Diese Randbedingungen haben einen Einfluss auf die Höhe der erforderlichen rel. Luftfeuchtigkeit bzw. Temperatur, die für das Auskeimen erforderlich ist. Temperaturen unterliegen im Tag-Nacht-Wechsel Schwankungen, die dazu führen können, dass zeitweise keine Bedingungen für das Schimmelpilzwachstum vorliegen. In [7] wird nach Zöld angegeben, dass bei Temperaturen unter 20 °C Schimmelpilzgefährdung vorliegt, wenn über 5 Tage an mehr als 12 Stunden eine rel. Luftfeuchtigkeit oberhalb von 75 % in der Konstruktion herrscht. Das Kriterium für eine durch mögliches Schimmelpilzwachstum gefährdete Konstruktion kann wie folgt definiert werden:

  1. Temperatur im Tagesmittel über 0 °C
  2. Rel. Luftfeuchtigkeit im Tagesmittel dauerhaft über 90 %
  3. Temperatur und rel. Luftfeuchte müssen über lange Zeit in diesem Bereich vorhanden sein.



Berechnung des Bauschadensfreiheitspotentials bei der Sub-and-Top-Lösung

- Dieser Abschnitt ist ausgelagert, siehe: Konstruktionsempfehlung - Dachsanierung, Abs.: Sub-and-Top- Vergleich des Bauschadensfreiheitspotentials

Einzelnachweise

  1. Moll bauökologische Produkte GmbH: WISSEN 2010/11 "Studie „Berechnung des Bauschadensfreiheitspotential von Wärmedämmkonstruktionen in Holz- und Stahlbauweise“, 08/2006 , 2010, S. 56-59, 61, 65 - zum Download | zum Stammartikel
  2. DAB 1995; Heft 8, Seite 1479
  3. Klopfer, Heinz; Bauschäden-Sammlung, Band 11, Günter Zimmermann (Hrsg.), Stuttgart: Fraunhofer IRB Verlag, 1997
  4. Klopfer, Heinz; ARCONIS: Wissen zum Planen und Bauen und zum Baumarkt: Flankenübertragung bei der Wasserdampfdiffusion; Heft 1/1997, Seite 8–10
  5. H.M. Künzel; Tauwasserschäden im Dach aufgrund von Diffusion durchangrenzendes Mauerwerk; wksb 41/1996; Heft 37, Seite 34 – 36
  6. Moll bauökologische Produkte GmbH: WISSEN 2010/11 "Sanierungs-Studie", 2010, S. 73-74 - zum Download | zum Stammartikel
  7. 7,0 7,1 7,2 7,3 Tagung Schimmelpilze im Wohnbereich: Schimmelpilz aus bauphysikalischer Sicht - Beurteilung durch aw-Werte oder Isoplethensysteme?, Klaus Sedlbauer, Martin Krus, Fraunhofer IBP, Holzkirchen, 26.06.2002


zurück zum Stammartikel