48.791
Bearbeitungen
K |
|||
Zeile 270: | Zeile 270: | ||
|[[Bild:Tech_membran_mikroporen.jpg|center|200px|]] | |[[Bild:Tech_membran_mikroporen.jpg|center|200px|]] | ||
|- style="font-size:90%;" | |- style="font-size:90%;" | ||
|Passiver Feuchtetransport durch Poren (Gasaustausch) vergrößert die Gefahr von Eisbildung im Bauteil. | | Passiver Feuchtetransport durch Poren (Gasaustausch) vergrößert die Gefahr von Eisbildung im Bauteil. | ||
|} | |} | ||
Wird die Luftdichtungsebene wie in Fall 2 (1:1-Lösung) bzw. Fall 3 (2:1-Lösung) beschrieben oberhalb der Sparrenlage verlegt, sollte eine diffusionsoffene Luftdichtungsbahn mit einem feuchtevariablen und monolithischen Funktionsfilm eingesetzt werden. Die pro clima [[SOLITEX UD]] verfügt über einen entsprechenden [[TEEE-Film]] und bietet der Konstruktion folgende Vorteile: | Wird die Luftdichtungsebene wie in Fall 2 (1:1-Lösung) bzw. Fall 3 (2:1-Lösung) beschrieben oberhalb der Sparrenlage verlegt, sollte eine diffusionsoffene Luftdichtungsbahn mit einem feuchtevariablen und monolithischen Funktionsfilm eingesetzt werden. Die pro clima [[SOLITEX UD]] verfügt über einen entsprechenden [[TEEE-Film]] und bietet der Konstruktion folgende Vorteile: | ||
Zeile 280: | Zeile 280: | ||
; - [[Feuchtevariabilität]]: Der [[TEEE-Film]] der [[SOLITEX UD]] hat feuchtevariable Eigenschaften. Dadurch sinkt der Diffusionswiderstand der Bahnen bei [[Kondensat]]bildung bis auf einen s<sub>d</sub>-Wert unter 0,02 m. Dadurch wird der üblichen Erhöhung des [[Diffusionswiderstand]]es, z. B. infolge des Porenverschlusses durch Wasser, optimal vorgebeugt. | ; - [[Feuchtevariabilität]]: Der [[TEEE-Film]] der [[SOLITEX UD]] hat feuchtevariable Eigenschaften. Dadurch sinkt der Diffusionswiderstand der Bahnen bei [[Kondensat]]bildung bis auf einen s<sub>d</sub>-Wert unter 0,02 m. Dadurch wird der üblichen Erhöhung des [[Diffusionswiderstand]]es, z. B. infolge des Porenverschlusses durch Wasser, optimal vorgebeugt. | ||
Soll die Luftdichtungsbahn oberhalb der Sparren verlegt werden, bietet die [[SOLITEX UD]] bei der 1:1- bzw. 2:1-Lösung im Vergleich zu mikroporösen Luftdichtungsbahnen die beste Performance. | Soll die Luftdichtungsbahn oberhalb der Sparren verlegt werden, bietet die [[SOLITEX UD]] bei der 1:1- bzw. 2:1-Lösung im Vergleich zu mikroporösen Luftdichtungsbahnen die beste Performance.<br clear="all" /> | ||
====Fall 4: [[Sub-and-Top]]-Lösung==== | ====Fall 4: [[Sub-and-Top]]-Lösung==== | ||
Zeile 299: | Zeile 299: | ||
Die Sanierungs-Dampfbremse kann mit allen faserförmigen Dämmstoffen kombiniert werden. Eine Luftdichtungsbahn oberhalb der Zwischensparrendämmung ist dabei nicht erforderlich. Durch den Einsatz der Sanierungs-Dampfbremse liegt das Feuchtigkeitsniveau in der Wärmedämmung unmittelbar unter der Holzweichfaserplatte im unschädlichen Bereich. Die Feuchtigkeitsspitze von 85 % tritt nur sehr kurz bei Temperaturen um den Gefrierpunkt auf. Es treten keine materialschädigenden Feuchtegehalte auf. Unter diesen Randbedingungen können [[Schimmelpilz]]e bei den verwendeten Materialien weder auskeimen, noch ist ein weiteres [[Schimmelpilz]]wachstum möglich. <br /> | Die Sanierungs-Dampfbremse kann mit allen faserförmigen Dämmstoffen kombiniert werden. Eine Luftdichtungsbahn oberhalb der Zwischensparrendämmung ist dabei nicht erforderlich. Durch den Einsatz der Sanierungs-Dampfbremse liegt das Feuchtigkeitsniveau in der Wärmedämmung unmittelbar unter der Holzweichfaserplatte im unschädlichen Bereich. Die Feuchtigkeitsspitze von 85 % tritt nur sehr kurz bei Temperaturen um den Gefrierpunkt auf. Es treten keine materialschädigenden Feuchtegehalte auf. Unter diesen Randbedingungen können [[Schimmelpilz]]e bei den verwendeten Materialien weder auskeimen, noch ist ein weiteres [[Schimmelpilz]]wachstum möglich. <br /> | ||
Konstruktionen mit dieser Sanierungs-Dampfbremse sind bei luftdichter Verlegung und Verklebung keiner Gefahr von [[Schimmelpilz]]bildung im Bauteil ausgesetzt. Sie bieten damit die '''größte Sicherheit''' für alle faserförmigen Dämmstoffe und für die Konstruktion. | Konstruktionen mit dieser Sanierungs-Dampfbremse sind bei luftdichter Verlegung und Verklebung keiner Gefahr von [[Schimmelpilz]]bildung im Bauteil ausgesetzt. Sie bieten damit die '''größte Sicherheit''' für alle faserförmigen Dämmstoffe und für die Konstruktion. | ||
<br clear="all" /> | <br clear="all" /> | ||
===Fazit Vergleich Luftdichtung außen zu Luftdichtung und Dampfbremse innen=== | ===Fazit Vergleich Luftdichtung außen zu Luftdichtung und Dampfbremse innen=== | ||
Berechnungen mit [[Diffusionsberechnungsmodelle|instationären Simulationsverfahren]] | Berechnungen mit [[Diffusionsberechnungsmodelle|instationären Simulationsverfahren]] können Risiken der Tauwasserbildung darstellen und lassen Rückschlüsse auf das [[Bauschadensfreiheitspotential]] einer Konstruktion zu. Werden Konstruktionen mit außen liegenden Luftdichtungen ohne ausreichende Überdämmung betrachtet, zeigt das Ergebnis rel. [[Luftfeuchtigkeit]]en oberhalb von 90 % und große [[Tauwasser]]bildung an den Grenzschichten der Wärmedämmung zur Luftdichtung. Es besteht die Gefahr von [[Schimmel]]bildung in der Konstruktion. | ||
Sind Innenbekleidungen nicht vollflächig fugenfrei vorhanden, kann es zu einem hohen [[Tauwasser]]ausfall innerhalb der Konstruktion kommen. Die innere Dämmschicht kann im Bereich von Zwischenwänden, z. B. bei Undichtheiten im Giebelmauerwerk, luftdurchströmt werden | Sind Innenbekleidungen nicht vollflächig fugenfrei vorhanden, kann es zu einem hohen [[Tauwasser]]ausfall innerhalb der Konstruktion kommen. Die innere Dämmschicht kann im Bereich von Zwischenwänden, z. B. bei Undichtheiten im Giebelmauerwerk, luftdurchströmt werden. Die Wahrscheinlichkeit von [[Schimmelpilz]]wachstum steigt nochmals. | ||
Die Bestimmung der [[sd-Wert|s<sub>d</sub>-Werte]] hochdiffusionsoffener Materialien kann entsprechendden Anmerkungen der [[DIN EN ISO 12572]] einem hohen [[Wasserdampfdurchlässigkeit#Messunsicherheiten bei hochdiffusionsoffenen Materialien|Messfehler]] unterliegen. Die Erhöhung des [[Diffusionswiderstand]]es der [[Luftdichtung]]sbahn um 0,01 m (von 0,02 auf 0,03 m) verursacht eine Erhöhung des max. Feuchtegehaltes an der Grenzschicht Dämmstoff/Luftdichtungsbahn in der Berechnung von Fall 1 mit Innenbekleidung um mehr als 60 %. Steigt der Wert auf 0,04 m erhöht sich der max. Feuchtegehalt um über das Doppelte (120 %) des Ausgangswertes. Leichte Abweichungen des Diffusionswiderstandes erhöhten also die Gefahr von [[Schimmelpilz]]bildung enorm.<br /> | Die Bestimmung der [[sd-Wert|s<sub>d</sub>-Werte]] hochdiffusionsoffener Materialien kann entsprechendden Anmerkungen der [[DIN EN ISO 12572]] einem hohen [[Wasserdampfdurchlässigkeit#Messunsicherheiten bei hochdiffusionsoffenen Materialien|Messfehler]] unterliegen. Die Erhöhung des [[Diffusionswiderstand]]es der [[Luftdichtung]]sbahn um 0,01 m (von 0,02 auf 0,03 m) verursacht eine Erhöhung des max. Feuchtegehaltes an der Grenzschicht Dämmstoff/Luftdichtungsbahn in der Berechnung von Fall 1 mit Innenbekleidung um mehr als 60 %. Steigt der Wert auf 0,04 m erhöht sich der max. Feuchtegehalt um über das Doppelte (120 %) des Ausgangswertes. Leichte Abweichungen des Diffusionswiderstandes erhöhten also die Gefahr von [[Schimmelpilz]]bildung enorm.<br /> | ||
Wird die Luftdichtungsebene in die Mitte der Wärmedämmebene verlegt ( | Wird die Luftdichtungsebene in die Mitte der Wärmedämmebene verlegt (1:1-Lösung), sinken die rel. Luftfeuchten an der Grenzschicht unterhalb kritischer Werte.<br /> | ||
Bei dieser Vorgehensweise können alle faserförmigen Dämmstoffe zwischen den Sparren eingesetzt werden. | Bei dieser Vorgehensweise können alle faserförmigen Dämmstoffe zwischen den Sparren eingesetzt werden. | ||
Alternativ kann bei der Verwendung von sorptiven [[Dämmstoff]]en, wie z. B. [[Holzweichfaser]] und [[Zellulose]], die Stärke der Aufdachdämmung auf 1/3 der Gesamtdämmstärke verringert werden ( | Alternativ kann bei der Verwendung von sorptiven [[Dämmstoff]]en, wie z. B. [[Holzweichfaser]] und [[Zellulose]], die Stärke der Aufdachdämmung auf 1/3 der Gesamtdämmstärke verringert werden (2:1-Lösung). Ist bereits eine Dämmung vorhanden, müssen mindestens 40 mm der Dämmung vor der [[Luftdichtung]]sebene aus einer sorptiven Dämmung bestehen. | ||
Die beiden vorgestellten Lösungen wurden aufgrund verschiedener im Markt erhältlichen Qualitäten von Holzweichfaserplatten produktunabhängig ermittelt. Hersteller von [[Holzweichfaserplatte]]n können von diesen Angaben abweichende Aufbauten empfehlen. Diese haben genaue Kenntnis über die technischen Eigenschaften ihrer Produkte, so dass die für die [[Aufdachdämmung]] erforderlichen Schichtdicken geringer ausfallen können. <br /> | |||
Bei von unseren Angaben abweichenden Bauteilen wenden Sie sich für Freigaben und Konstruktionsempfehlungen bitte direkt an den Lieferanten/Hersteller der Holzweichfaserplatten. | |||
Die sicherste Lösung stellt im Vergleich die Konstruktion mit der [[Sub-and-Top]] verlegten Dachsanierungs-Dampfbremse [[DASATOP]] dar. Sie kann mit allen faserförmigen Dämmstoffen kombiniert werden. Die Wärmedämmung ist durch die innenseitig verlegte Dampfbremse mit einem [[sd-Wert|s<sub>d</sub>-Wert]] bis zu 2 m ausreichend vor der Befeuchtung aus dem Innenraum geschützt. An keiner Stelle innerhalb der Konstruktion treten schimmelkritische Feuchtigkeiten auf. | Die sicherste Lösung stellt im Vergleich die Konstruktion mit der [[Sub-and-Top]] verlegten Dachsanierungs-Dampfbremse [[DASATOP]] dar. Sie kann mit allen faserförmigen Dämmstoffen kombiniert werden. Die Wärmedämmung ist durch die innenseitig verlegte Dampfbremse mit einem [[sd-Wert|s<sub>d</sub>-Wert]] bis zu 2 m ausreichend vor der Befeuchtung aus dem Innenraum geschützt. An keiner Stelle innerhalb der Konstruktion treten schimmelkritische Feuchtigkeiten auf. | ||
Mit der | Mit der [[DASATOP]] ist es nicht erforderlich, das Bauteil zum Schutz vorschädlicher Tauwasserbildung mit einer zusätzlichen Aufdachdämmung zu versehen. | ||
{{Textrahmen01| | {{Textrahmen01| | ||
===Zehn Punkte führen zur dauerhaft sicheren Konstruktion=== | ===Zehn Punkte führen zur dauerhaft sicheren Konstruktion=== | ||
# Als optimal sicher gelten Konstruktionen, die mit [[Dampfbremse|Dampfbrems-]] und [[Luftdichtung]]sebenen die [[Goldene Regel 1/3 zu 2/3]] (1/3 innen, 2/3 außen) einhalten. | # Als optimal sicher gelten Konstruktionen, die mit [[Dampfbremse|Dampfbrems-]] und [[Luftdichtung]]sebenen die [[Goldene Regel 1/3 zu 2/3]] (1/3 innen, 2/3 außen) einhalten (siehe Abschnitt [[#Goldene Regel 1/3 zu 2/3|Goldene Regel 1/3 zu 2/3]]). | ||
# Je weiter die Luftdichtungsebene in Richtung Innenraum liegt, umso sicherer werden die Konstruktionen. Je weiter außen sich die Luftdichtungsebene befindet, umso problematischer ist die Konstruktion: Das [[Bauschadensfreiheitspotential]] ist dann verringert. | # Je weiter die Luftdichtungsebene in Richtung Innenraum liegt, umso sicherer werden die Konstruktionen. Je weiter außen sich die Luftdichtungsebene befindet, umso problematischer ist die Konstruktion: Das [[Bauschadensfreiheitspotential]] ist dann verringert. | ||
# Vollflächige, fugenfreie Innenbekleidungen verhindern bei außen verlegten Luftdichtungsbahnen Feuchteeintrag durch [[Konvektion]]. | # Vollflächige, fugenfreie Innenbekleidungen verhindern bei außen verlegten Luftdichtungsbahnen Feuchteeintrag durch [[Konvektion]]. | ||
# [[Sub-and-Top]]-Lösungen der [[DASATOP]] bieten das größte [[Bauschadensfreiheitspotential]] mit allen faserförmigen Dämmstoffen, da sich diese unterhalb der Wärmedämmung im warmen Bereich befindet (wärmer als die Taupunkttemperatur). Auf den Sparren kann sie den [[Diffusionswiderstand]] einer [[Unterspannbahn]] annehmen. | # [[Sub-and-Top]]-Lösungen der [[DASATOP]] bieten das größte [[Bauschadensfreiheitspotential]] mit allen faserförmigen Dämmstoffen, da sich diese unterhalb der Wärmedämmung im warmen Bereich befindet (wärmer als die Taupunkttemperatur). Auf den Sparren kann sie den [[Diffusionswiderstand]] einer [[Unterspannbahn]] annehmen. | ||
# Werden sorptive Dämmstoffe, wie z. B. [[Holzweichfaser]] oder [[Zellulose]], verwendet, kann die | # Werden sorptive Dämmstoffe, wie z. B. [[Holzweichfaser]] oder [[Zellulose]], verwendet, kann die 2:1-Lösung in Verbindung mit einer Luftdichtungsbahn mit einer feuchteaktiven, luftdichten [[Monolithische Membran|monolithischen Membran]] ([[TEEE]]) mit der [[SOLITEX UD]] als Luftdichtungsebene gewählt werden. | ||
# Konstruktionen können mit nicht sorptiven [[Dämmstoff]]en, wie z. B. [[Mineralwolle]], als sicher angesehen werden, wenn die Luftdichtungsebene raumseitig von 50 % des Gesamt[[wärmedurchlasswiderstand]]es liegt. | # Konstruktionen können mit nicht sorptiven [[Dämmstoff]]en, wie z. B. [[Mineralwolle]], als sicher angesehen werden, wenn die Luftdichtungsebene raumseitig von 50 % des Gesamt[[wärmedurchlasswiderstand]]es liegt. | ||
# Vorteilhaft als Luftdichtungsbahn bei Fall 2 und Fall 3 ist eine diffusionsoffene [[Unterspannbahn]] mit [[Monolithische Membran|monolithischer Membran]], z. B. [[SOLITEX UD]], welche die Feuchtigkeit aktiv entlang der Molekülketten transportieren kann. Dadurch wird die Gefahr von Eisbildung und damit einer sprunghaften Erhöhung des [[Diffusionswiderstand]]es bei unvorhergesehenem Feuchteeintrag verringert. | # Vorteilhaft als Luftdichtungsbahn bei Fall 2 und Fall 3 ist eine diffusionsoffene [[Unterspannbahn]] mit [[Monolithische Membran|monolithischer Membran]], z. B. [[SOLITEX UD]], welche die Feuchtigkeit aktiv entlang der Molekülketten transportieren kann. Dadurch wird die Gefahr von Eisbildung und damit einer sprunghaften Erhöhung des [[Diffusionswiderstand]]es bei unvorhergesehenem Feuchteeintrag verringert. | ||
Zeile 333: | Zeile 335: | ||
}} | }} | ||
== | == Sub–and–Top–Vergleich des Bauschadensfreiheitspotentials == | ||
{|align="right" valign="top" | {|align="right" valign="top" | ||
|- | |- | ||
Zeile 480: | Zeile 482: | ||
dem Sparren am schnellsten entweichen kann. | dem Sparren am schnellsten entweichen kann. | ||
Unkritische Feuchtegehalte in den Sparren werden bei Unterschreitung des Fasersättigungspunktes des Holzes erreicht. Wird dieser für einen Vergleich der Austrocknungsgeschwindigkeit herangezogen, trocknet der Sparren in der Konstruktion mit der [[DASATOP]] etwa dreimal schneller aus als mit der Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m. Im Vergleich zu einer Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ermöglicht die [[DASATOP]] eine fünfmal schnellere Austrocknung bei Konstruktionen mit [[Aufdachdämmung]]en. Bei Konstruktionen ausschließlich mit der diffusionsoffenen Unterdachbahn bietet die [[DASATOP]] sogar über achtmal schnellere Trocknung als eine Konstruktion mit einer Dampfbremse mit einem s<sub>d</sub>-Wert von 5 m. | Unkritische Feuchtegehalte in den Sparren werden bei Unterschreitung des Fasersättigungspunktes des Holzes erreicht. Wird dieser für einen Vergleich der Austrocknungsgeschwindigkeit herangezogen, trocknet der Sparren in der Konstruktion mit der [[DASATOP]] etwa dreimal schneller aus als mit der Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 2 m. Im Vergleich zu einer Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ermöglicht die [[DASATOP]] eine fünfmal schnellere Austrocknung bei Konstruktionen mit [[Aufdachdämmung]]en. Bei Konstruktionen ausschließlich mit der diffusionsoffenen Unterdachbahn bietet die [[DASATOP]] sogar eine über achtmal schnellere Trocknung als eine Konstruktion mit einer Dampfbremse mit einem s<sub>d</sub>-Wert von 5 m. | ||
===Fazit Vergleich von Sub-and-Top-verlegten Dampfbrems- und Luftdichtungssystemen=== | ===Fazit Vergleich von Sub-and-Top-verlegten Dampfbrems- und Luftdichtungssystemen=== | ||
Zeile 530: | Zeile 532: | ||
# Blendfreie Bahnen mit dunklerer Farbe sind aus Gründen der Unfallrelevanz und des Verlegekomforts hellen, insbesondere weißen Bahnen vorzuziehen. | # Blendfreie Bahnen mit dunklerer Farbe sind aus Gründen der Unfallrelevanz und des Verlegekomforts hellen, insbesondere weißen Bahnen vorzuziehen. | ||
}} | }} | ||
==Einzelnachweise== | ==Einzelnachweise== |