Luftdichtungsbahn monolithisch: Unterschied zwischen den Versionen

Aus Wissen Wiki
Zur Navigation springen Zur Suche springen
Zeile 5: Zeile 5:
==== 1. [[Mikroporöse Membran]]en ====
==== 1. [[Mikroporöse Membran]]en ====
{|align="right"  
{|align="right"  
|valign="top" | [[Bild:Tech_membran_mikroporen.jpg|right|thumb|220px|Mikroskop. Aufnahme der Mikroporen in herkömmlicher [[Unterdeckbahn]]]]
|valign="top" | [[Bild:Tech_membran_mikroporen.jpg|right|thumb|220px|Mikroskop. Aufnahme der Mikroporen in herkömmlicher Unterdeckbahn]]
|[[Bild:Tech_membran_poren.jpg|right|thumb|200px|Mikroporen im Funktionsfilm]]
|[[Bild:Tech_membran_poren.jpg|right|thumb|200px|Mikroporen im Funktionsfilm]]
|}
|}

Version vom 3. Mai 2024, 16:25 Uhr

Vergleich der Techniken

Am Markt unterscheidet man zwischen zwei verschiedene Arten von Unterspann-, Unterdeckbahnen:

1. Mikroporöse Membranen

Mikroskop. Aufnahme der Mikroporen in herkömmlicher Unterdeckbahn
Mikroporen im Funktionsfilm

Mikroporöse Membranen finden als Unterspann-, Unterdeckbahnen (mit Mikroporen) ihre Anwendung. Diese Membranen werden überwiegend aus Polypropylen als geschlossene Folie hergestellt. Das Material der Folie ist diffusionsdicht. Um die Anforderungen an die Diffusionsoffenheit der Unterspann-, Unterdeckbahnen zu erfüllen, wird in der Produktion die PP-Folie zur Porenbildung gestretcht und Calciumcarbonat zugegeben.

Bei herkömmlichen PP-Bahnen mit Mikroporen gelangt der Wasserdampf durch winzige Löcher nach außen. Muss viel Dampf hindurch, kann sich ein Feuchtefilm an der Innenseite der Bahn bilden. Folge: Die Bahn wird dichter, Schäden drohen. Der Feuchtetransport nach außen ist ein passiver Vorgang, der nur funktioniert, wenn ein relativ hohes Dampfteildruckgefälle anliegt. In modernen, hochgedämmten Konstruktionen ist dies nicht immer zu erreichen.

Schutz vor Wasser von außen besteht, weil Wassertropfen zu groß sind und aufgrund ihrer Oberflächenspannung nicht durch die Poren gelangen können. Bei Schlagregen oder wenn Holzinhaltsstoffe und Kettensägenöl oder Lösemittel die Oberflächenspannung herabsetzen, können jedoch erhebliche Mengen Wasser in die Wärmedämmung eindringen und Schimmelbildung und Schäden an der Konstruktion verursachen.


2. Porenfreie Bahnen mit monolithischer Funktionsschicht

Gleiche Vergrößerung einer monolithischen, porenfreien Membran
Monolithische Membran

Monolithische Unterdeckbahnen wie die der pro clima SOLITEX MENTO-Familie verfügen über einen TEEE-Film und bieten folgende Vorteile:

Porenfreie monolithische Membranen transportieren Feuchte aktiv nach außen – je mehr ansteht, desto schneller. Ihr Diffusionswiderstand sinkt. Für den Transport ist nur ein minimales Dampfteildruckgefälle erforderlich. Die besondere Schlagregensicherheit entsteht, weil keine Poren vorhanden sind. Hohe Aufprallgeschwindigkeiten oder reduzierte Oberflächenspannung von Wassertropfen sind im SOLITEX Unterdeckbahnen-System unproblematisch.


Auszug einer von MOLL bauökologische Produkte GmbH initiierten Sanierungs-Studie[1]:

  • Luftdichtheit:
    Der monolithische Funktionsfilm gewährleistet eine 100 %ige Luftdichtheit. Im Gegensatz zu herkömmlichen Luftdichtungsbahnen mit mikroporösen Filmen ist die monolithische Bahn absolut porenfrei.
  • Diffusionsoffenheit:
    Der monolithische TEEE-Film ermöglicht einen aktiven Feuchtigkeitstransport durch das Bahnenmaterial. Steht Kondensat innenseitig in Tropfenform an, wird diese entlang der Molekülketten aktiv nach außen weiter transportiert. Dadurch wird die Gefahr von Eisbildung (= Dampfsperre) an der Luftdichtungsbahn im Vergleich zu einer Bahn mit mikroporösen Funktionsfilmen deutlich reduziert.


Fazit für porenfreie SOLITEX-Membranen:

Einzelnachweis