Bauphysik Studie: Unterschied zwischen den Versionen

Aus Wissen Wiki
Zur Navigation springen Zur Suche springen
 
(378 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
''Studie von [[MOLL bauökologische Produkte GmbH - pro clima|MOLL bauökologische Produkte GmbH]] initiiert'':
''Studie von [[MOLL bauökologische Produkte GmbH - pro clima|MOLL bauökologische Produkte GmbH]] initiiert'':
----
----
;Berechnungen des Bauschadensfreiheitspotenzials von Wärmedämmungen in Holz- und Stahlbaukonstruktionen
<span style="font-size:120%;> Berechnungen des Bauschadens-Freiheits-Potenzials von Wärmedämmungen in Holz- und Stahlbaukonstruktionen </span>
 
<span style="font-size:120%;> Feuchtevariable Dampfbremsen der pro clima INTELLO-Familie mit intelligentem Feuchtemanagement  </span>
 
: <span style="font-size:120%;>  – Dach, Wand, Decke –  </span>
 
<span style="font-size:120%;> Deutschland, Österreich, Schweiz </span>
 
 
Computergestützte Simulationsberechnung des gekoppelten Wärme- und Feuchtetransports
von Dach- und Wandkonstruktionen unter Berücksichtigung der natürlichen Klimabedingungen und innerbaustofflichen Flüssigkeitstransporte.


;Feuchtevariable Dampfbremsen pro clima DB+ und INTELLO mit intelligentem Feuchtemanagement


;– Dach, Wand, Decke –
;Deutschland


''Computergestützte Simulationsberechnung des gekoppelten Wärme- und Feuchtetransports'' <br />
''von Dach- und Wandkonstruktionen unter Berücksichtigung der natürlichen Klimabedingungen und innerbaustofflichen Flüssigkeitstransporte''
----
== Bauschadensfreiheit von Wärmedämmungen in Holzbaukonstruktionen ==
== Bauschadensfreiheit von Wärmedämmungen in Holzbaukonstruktionen ==
; Eine Frage der Trocknungsreserven und des intelligenten Feuchtemanagements
; Eine Frage der Trocknungsreserven und des intelligenten Feuchtemanagements
=== Übersicht und Einleitung ===
=== Übersicht und Einleitung ===
Die Studie beschreibt die Berechnung des Bauschadensfreiheitspotenzials einer Steildachkonstruktion, wie Bauschäden in Wärmedämmkonstruktionen entstehen
Diese Studie beschreibt die Berechnung des Bauschadens-Freiheits-Potenzials verschiedener Dach- und Wandkonstruktionen, wie Bauschäden in Wärmedämmkonstruktionen entstehen und wie sich Konstruktionen sicher gegen [[Bauschaden|Bauschäden]] schützen lassen. <br />
und wie sich Konstruktionen sicher gegen [[Bauschaden|Bauschäden]] schützen lassen.
Bauschäden entstehen, wenn die Feuchtigkeitseinträge in eine Konstruktion höher sind als die mögliche Austrocknung aus dem Bauteil heraus. Um Bauschäden zu vermeiden, konzentriert man sich üblicherweise auf die Reduzierung der Feuchtigkeitsbelastung von Bauteilen. Diese lassen sich allerdings nicht vollständig gegen Feuchteeinflüsse schützen. <br />
 
Die vorhersehbaren Feuchtebelastungen durch [[Diffusion]] sind so gut wie nie Ursache für Bauschäden. In der Regel sind es die [[unvorhergesehen]]en Feuchtebelastungen, die nicht völlig ausgeschlossen werden können. Um Bauschäden und [[Schimmel]] zu vermeiden, sollte daher das Trocknungsvermögen von Feuchtigkeit aus der Konstruktion heraus im Vordergrund stehen. Es werden Konstruktionen hinsichtlich Ihrer möglichen Austrocknungspotenziale vergleichend betrachtet.
Bauschäden entstehen, wenn die Feuchtigkeitseinträge auf eine Konstruktion höher sind als die mögliche Austrocknung aus dem Bauteil heraus. Um Bauschäden
zu vermeiden, konzentriert man sich üblicherweise auf die Reduzierung der Feuchtigkeitsbelastung. <br />
Baukonstruktionen lassen sich allerdings nicht vollständig gegen Feuchteeinflüsse schützen. Die vorhersehbaren Feuchtebelastungen durch [[Diffusion]] sind so gut wie nie Ursache für Bauschäden. In der Regel sind es die [[unvorhergesehen]]en Feuchtebelastungen, die nicht völlig ausgeschlossen werden können. <br />
Damit Bauschäden und [[Schimmel]] ausgeschlossen werden können, sollte daher das Trocknungsvermögen von Feuchtigkeit aus der Konstruktion heraus im Vordergrund stehen. Konstruktionen mit einem hohen Trocknungsvermögen bei gleichzeitig reduzierten Feuchteeinträgen, wie sie [[Dampfbremse]]n mit variablem [[sd-Wert|s<sub>d</sub>-Wert]] ermöglichen, bieten auch bei unvorhergesehenen Feuchtebelastungen eine hohe Sicherheit gegen Bauschäden.


=== Kondensation - Taupunkt - Tauwassermenge ===
=== Kondensation - Taupunkt - Tauwassermenge ===


{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{| align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1"  
|valign="top" width="260px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|260px|]]
| colspan="2" style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;"| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> ⇒ es fällt früher Tauwasser aus.
|valign="top" width="260px" | [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|260px|]]
|-
|- style="font-size:90%;"
| valign="top" width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''1. Feuchtephysik der Luft bei 50 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|400px|]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | 1. Unter Normklimabedingungen <br />(20&nbsp;°C / 50&nbsp;% rel. Luftfeuchte) wird der Taupunkt <br /> bei 9,2&nbsp;°C erreicht. Bei -10&nbsp;°C fällt Kondensat <br /> von '''6,55&nbsp;g/m³''' Luft aus.
| valign="top" width="400px" | '''2. Feuchtephysik der Luft bei 65 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|400px|]]
| 2. Bei erhöhter Raumluftfeuchtigkeit von '''65&nbsp;%''' rel. Luftfeuchte wird der Taupunkt schon <br /> bei 13,2&nbsp;°C erreicht. Bei -10&nbsp;°C fällt Kondensat <br /> von '''9,15&nbsp;g/m³''' Luft aus.
|-  
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20&nbsp;°C / 50&nbsp;% rel. Luftfeuchte wird der Taupunkt bei 8,7&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 5,35&nbsp;g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65&nbsp;% wird der Taupunkt schon bei 13,2&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 7,95&nbsp;g/m³ Luft aus.
|}
|}
Die [[Wärmedämmung]] in Holz- und Stahlbauten trennt die warme Innenluft mit ihrem hohen Feuchtegehalt von der winterlich kalten Außenluft mit geringer absoluter [[Luftfeuchtigkeit|Feuchtigkeit]]. Dringt warme Innenraumluft in der kalten Jahreszeit (z. B. durch [[Konvektion]]) in ein Bauteil ein, kühlt sie sich auf ihrem Weg durch die Konstruktion ab. Aus dem in der Luft enthaltenen Wasserdampf kann flüssiges Wasser auskondensieren. Ursächlich für den Wasserausfall ist das physikalische Verhalten der Luft: <br />  
Die [[Wärmedämmung]] der Gebäudehülle trennt im winterlichen Klima die warme Innenraumluft mit ihrem hohen Feuchtegehalt von der kalten Außenluft mit geringer absoluter [[Luftfeuchtigkeit|Feuchtigkeit]]. Dringt warme Innenraumluft in das Bauteil ein, kühlt sie sich auf ihrem Weg durch die Konstruktion ab. Aus dem in der Luft enthaltenen Wasserdampf kann dann flüssiges Wasser auskondensieren. Ursächlich für den Ausfall von Wasser ist das physikalische Verhalten der Luft: <br />  
Warme Luft kann mehr Wasser aufnehmen als kalte Luft. ''(siehe auch: [[Luftfeuchtigkeit]])''. Bei höherer rel. Raumluftfeuchtigkeit (z. B. Neubauten mit 65 %) erhöht sich die [[Taupunkttemperatur]] und als unmittelbare Folge die Tauwassermenge (Siehe Abb. 1 und 2). <br />
Warme Luft kann mehr Wasser aufnehmen als kalte Luft ''(siehe auch: [[Luftfeuchtigkeit]])''. Bei höherer rel. Raumluftfeuchtigkeit (z. B. Neubauten mit 65 %) erhöht sich die [[Taupunkttemperatur]] und als unmittelbare Folge die Tauwassermenge (siehe Abb. 1 und 2). <br />
Tauwasser fällt an, wenn sich eine [[diffusionsdicht]]ere Bauteilschicht unterhalb der Taupunkttemperatur befindet. Das heißt: <br />
Tauwasser kann im Bauteil anfallen, wenn die Taupunkttemperatur unterschritten wird und enthaltener Wasserdampf durch [[diffusionsdicht]]ere Bauteilschichten auf der Außenseite nicht aus dem Bauteil heraustrocknen kann.
Bauphysikalisch ungünstig sind Bauteilschichten, die auf der Außenseite der Wärmedämmung diffusionsdichter sind als die Bauteilschichten auf der Innenseite. Sehr problematisch ist es, wenn warme Luft durch [[Konvektion|konvektive Ströme]], d. h. infolge von Undichtheiten in der [[Luftdichtung]]sebene, in das Bauteil gelangen kann.  
Das heißt: Bauphysikalisch ungünstig sind Bauteilschichten, die auf der Außenseite der Wärmedämmung diffusionsdichter sind als die Bauteilschichten auf der Innenseite. Sehr problematisch ist es, wenn feuchtwarme Luft durch [[Konvektion|konvektive Ströme]], d. h. infolge von Undichtheiten in der [[Luftdichtung]]sebene, in das Bauteil gelangen kann. <br />
Als diffusionsoffen gelten nach [[DIN 4108|DIN 4108-3]] Baustoffe, deren äquivalente Luftschichtdicke ([[sd-Wert|s<sub>d</sub>-Wert]]) niedriger als 0,50 m ist. Der s<sub>d</sub>-Wert wird definiert als Produkt der Dampfdiffusionswiderstandszahl ([[μ-Wert]]) als Materialkonstante und der Dicke des Bauteils in Meter:


Als diffusionsoffen gelten nach [[DIN 4108|DIN 4108-3]] Bauteile, deren äquivalente Luftschichtdicke ([[sd-Wert|s<sub>d</sub>-Wert]]) niedriger als 0,50 m ist. Der s<sub>d</sub>-Wert wird definiert als Produkt der Dampfdiffusionswiderstandszahl ([[μ-Wert]]) als Materialkonstante und der Dicke des Bauteils in Meter:
:: <span style="font-size:140%;"> <math> \mathsf { s_{d} = \mu \cdot s} </math> [m] </span>
: '''s<sub>d</sub> = µ · d [m]'''
Ein niedriger s<sub>d</sub>-Wert kann erreicht werden durch einen niedrigen μ-Wert bei einer größeren Schichtdicke (z. B. [[Holzfaserdämmplatte]]n) oder durch einen höheren μ-Wert bei einer sehr geringen Schichtdicke (z. B. [[Unterspannbahn]]en).


Der Wasserdampf orientiert sich zunächst am [[μ-Wert]], dann erst an der Dicke der Baustoffschicht. Das heißt, dass bei einem höheren μ-Wert der Tauwasserausfall schneller auftritt als bei einem niedrigen μ-Wert. <br />
Im Bereich von Unterspannbahnen besteht wegen der häufig fehlenden Temperatur- und Feuchtedifferenz nur ein geringes Dampfdruckgefälle. Das erklärt, warum es auch bei
diffusionsoffenen Unterspannbahnen zu Bauschäden kommen kann, wenn der Feuchtestrom im Bauteil erhöht ist. [[Unterdeckbahn|Unterdeck-]] und [[Unterspannbahn]]en mit [[monolithisch]]er porenfreier Membran, z. B. [[SOLITEX UD]], die [[SOLITEX MENTO Reihe]] und [[SOLITEX PLUS]], bieten hier Vorteile, da die Diffusion nicht passiv durch Poren, sondern aktiv entlang der Molekülketten erfolgt. <br />
Der Diffusionswiderstand von SOLITEX UD und SOLITEX PLUS ist variabel. Bei [[Kondensat]]gefahr reduziert er sich unter 0,02 m. Die Bahn ermöglicht dann einen extrem schnellen und aktiven Feuchtetransport und schützt die Konstruktion optimal gegen Tauwasser und Schimmelbefall.


Wenn Wasser in der Konstruktion ausfällt, kann es im kalten Winterklima zu einer Reif- oder Eisbildung unterhalb der Unterspann- bzw. Unterdeckbahn kommen. Eis ist für Wasserdampf undurchlässig und stellt eine [[Dampfsperre]] auf der Außenseite dar. Konstruktionen, die außen eine diffusionshemmende oder diffusionsdichte Schicht haben, sind bauphysikalisch kritischer als nach außen diffusionsoffener werdende Konstruktionen. <br />
Ein niedriger s<sub>d</sub>-Wert kann erreicht werden durch einen niedrigen μ-Wert bei einer größeren Schichtdicke (z. B. [[Holzfaserdämmplatte]]n) oder durch einen höheren μ-Wert bei einer sehr geringen Schichtdicke (z. B. [[Unterdeckbahn]]en). <br />
Zu den diffusionsdichten Konstruktionen gehören z. B. Steildächer mit diffusionshemmender Vordeckung, z. B. Bitumenbahnen, Dächer mit Blecheindeckungen, Flachdächer und Gründächer. An der diffusionsdichten Schicht staut sich die Feuchtigkeit in der Konstruktion und es kommt zu einem [[Kondensat]]ausfall.
Maßgeblich ist also zunächst der [[μ-Wert]] und erst dann die Dicke der Baustoffschicht. Das heißt, dass bei einem hohen μ-Wert ein Tauwasserausfall im Vergleich früher auftreten kann als bei einem niedrigen μ-Wert. Im Bereich von diffusionsoffenen Unterdeckbahnen besteht wegen der insbesondere während der kalten Jahreszeiten fehlenden Temperatur- und Feuchtedifferenz nur ein geringes Dampfdruckgefälle. Das erklärt, warum es auch in Kombination mit diffusionsoffenen Unterdeckbahnen zu Bauschäden kommen kann, wenn der Feuchtestrom bedingt durch unvorhergesehene Feuchteeinträge im Bauteil erhöht ist. [[Unterdeckbahn|Unterdeck-]] und [[Unterspannbahn]]en mit [[monolithisch]]er porenfreier Membran, z. B. aus der pro clima [[SOLITEX-Familie]], bieten in diesem Fall große Vorteile, da die Diffusion aufgrund der speziellen Polymerkombination nicht passiv durch Poren, sondern aktiv entlang der Molekülketten erfolgt. <br />
Die Bahnen ermöglichen dadurch einen extrem schnellen aktiven Feuchtetransport aus dem Bauteil heraus und schützen die Konstruktion optimal vor hoher Tauwasserbildung und Schimmelpilzbefall. Fällt Tauwasser auf der Innenseite der Unterdeckung aus, kann es bei winterlich kalten Temperaturen zu einer Reif- oder Eisbildung auf der Innenoberfläche der Bahnen kommen. Eis ist für Wasserdampf undurchlässig und führt zur Bildung einer Dampfsperre auf der Außenseite des Bauteils. Die Folge ist, dass die Austrocknung nach außen aus dem Bauteil heraus stark reduziert, wenn nicht sogar ganz gestoppt wird. <br />
Konstruktionen die auf der kalten Außenseite mit [[diffusionshemmend]]en oder [[diffusionsdicht]]en Schichten versehen sind, gelten als bauphysikalisch kritischer als außen [[diffusionsoffen]]e Konstruktionen. Unterdeckbahnen mit aktivem Feuchtetransport reduzieren die Gefahr von Bauschäden im Vergleich deutlich. <br />
 
Bei Flachdachkonstruktionen lassen sich stark diffusionshemmende Bahnenmaterialien auf der Außenseite nicht vermeiden. Der Hintergrund ist, dass die Wasserdichtheit der Bahnen im Vordergrund steht und insbesondere bei begrünten oder bekiesten Dachkonstruktionen mit langfristig hohen Feuchtegehalten der Schichten oberhalb der Abdichtung zu rechnen ist. <br />
Diffusionsoffene oder leicht dampfbremsende Materialien würden zu einem hohen Feuchteeintrag von außen in das Bauteil hinein führen. Zu den diffusionsdichten Konstruktionen gehören z. B. auch unbelüftete Steildächer mit Bitumenbahnen oder Dächer mit unbelüfteten Blecheindeckungen. An der diffusionsdichten Schicht staut sich die Feuchtigkeit in der Konstruktion und es kommt zu einem [[Kondensat]]ausfall.


=== Feuchtebelastungen der Konstruktion ===
=== Feuchtebelastungen der Konstruktion ===
Eine Feuchtebelastung innerhalb einer Wärmedämmkonstruktion, z. B. im Dach, kann verschiedene Ursachen haben. Zum Beispiel kann durch eine undichte [[Dachhaut]] Wasser eindringen (Anschlusspunkte, Nahtstellen, Unwetter, Nagetiere). Dies können große Mengen Feuchtigkeit sein, bei denen das Wasser in den bewohnten Raum tropft. Geringe Leckagen können zu einer schleichenden Auffeuchtung führen. Diese ist oft begleitet durch [[Schimmel]]befall der in der Konstruktion enthaltenen Materialien. Eine Belastung der Konstruktion durch Feuchtigkeit kann aber auch von innen erfolgen durch:
Eine Feuchtebelastung innerhalb einer Wärmedämmkonstruktion kann verschiedene Ursachen haben. Zum Beispiel kann durch eine undichte Flachdachabdichtung Wasser von außen in ein Bauteil eindringen. Diese Feuchtigkeitsmengen können so groß sein, dass Wasser in den bewohnten Bereich tropft. Geringe Leckagen in Abdichtungen können dagegen in der Konstruktion zu einer allmählichen Auffeuchtung führen. Als Folge treten oft [[Schimmel]]befall der enthaltenen Materialien bis hin zum Entstehen holzzerstörender Pilze auf. Feuchtigkeit kann aber auch von der beheizten Innenseite in eine Konstruktion eindringen durch:
 
; a) Vorhersehbare Feuchtebelastung:
* Diffusionsvorgänge


; Vorhersehbare Feuchtebelastung:
; b) Unvorhergesehene Feuchtebelastungen:
* Diffusionsvorgänge (s.u.)
;Unvorhergesehene Feuchtebelastung:
* [[Konvektion]], d. h. Luftströmung (Undichtheiten in der Luftdichtungsebene)  
* [[Konvektion]], d. h. Luftströmung (Undichtheiten in der Luftdichtungsebene)  
* Konstruktiv bedingter [[Feuchtetransport]] (z. B. [[Flankendiffusion]] durch angrenzendes Mauerwerk)  
* Konstruktiv bedingter [[Feuchtetransport]] (z. B. [[Flankendiffusion]] durch angrenzendes Mauerwerk)  
* Erhöhte [[Einbaufeuchte]] der verwendeten Baustoffe  
* Erhöhte [[Einbaufeuchte]] der verwendeten Baustoffe (z. B. der Hölzer)
* Nicht koordinierter Bauablauf
* Fehler im Bauablauf
 
Im Einzelnen:


==== Feuchtebelastung durch Diffusion ====
==== Feuchtebelastung durch Diffusion ====
Je höher der innenseitige sd-Wert ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von
{| align="right" widht="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1"
[[Dampfsperre]]n mit hohen Diffusionswiderständen Bauschäden verhindern würde. Dass die Realität anders ist, wurde bereits vor über 20 Jahren bei der Markteinführung der pro clima DB+ mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.
| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> ⇒ es fällt früher Tauwasser aus.
|}
Je höher der innenseitige [[sd-Wert|s<sub>d</sub>-Wert]] ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von Dampfsperren mit hohen Diffusionswiderständen Bauschäden verhindern würde. <br />
Dass die Realität anders ist, wurde bereits vor über 25 Jahren bei der Markteinführung der ersten feuchtevariablen Dampfbremse [[DB+]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2,30&nbsp;m durch bauphysikalische Berechnungen belegt.  


Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, macht zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Angabe: Dampfsperren »unterbinden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist«. <ref name="Qu_01" />
Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre s<sub>d</sub> > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, trifft zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Aussage: Dampfsperren »unter binden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche
Restleckagen erforderlich ist«. <ref name="Qu_01" />


Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über [[Rücktrocknungspotenzial]]e verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.
Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über ein ausreichendes [[Rücktrocknungspotenzial]] verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.


Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine [[Dampfsperre]] infolge [[Konvektion]] selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt.
Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 <ref name="Qu_02" />, dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250&nbsp;g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.
Das entspricht einer [[Kondensat]]menge, welche durch eine [[Dampfbremse]] mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3,3&nbsp;m während eines Winters diffundiert <ref name="Qu_03" />.
 
{{Textrahmen01|'''Fazit:''' <br /> Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.}}
{| align="left"
| width="50%" algin="left" | {{Textrahmen vario|Fazit: |Auch in Konstruktionen mit [[Dampfsperre]]n, deren rechnerische [[sd-Wert|s<sub>d</sub>-Werte]] 50&nbsp;m, 100&nbsp;m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine [[Rücktrocknung]] zu. Dadurch entstehen Feuchtefallen.|900px}}
|} <br clear="all" />
----


==== Feuchtebelastung durch Konvektion ====  
==== Feuchtebelastung durch Konvektion ====  
{|align="right" width="180px" style="border-style:solid; border-width:1px; class="rahmenfarbe1"
{|align="right" width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 5px;" class="rahmenfarbe1" id="ganz_oben"
| colspan="2" |'''3. Feuchtigkeitsmenge durch Konvektion'''
|+ id="Ü-id" | '''Feuchteeintrag in die Konstruktion durch Undichtheiten in der Dampfsperre'''
|- id="K-id"
| '''3. Feuchtigkeitsmenge durch Konvektion'''
|-
|-
|valign="top" colspan="2" | [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01.jpg|left|220px|]]
| [[Bild:BPhys GD 1 05_Konvekt_Fuge_Feuchte1-01-3.jpg|center|400px]]
|} 
{|align="right" valign="bottom" width="420px" style="margin: 0px 0px 0px 5px; padding:5px 0px 5px 5px;"
|-
| colspan="3" |  <br /> <br /> <br /> <br />
|-
|-
|Feuchtetransport ||
| colspan="2" | '''Feuchtetransport'''
|-
|-
|durch Dampfbremse: <br /> durch 1 mm Fuge: || 0,5 g/(m² · 24 h) <br /> 800 g/(m · 24 h)  
| durch Dampfsperre: <br /> durch 1 mm Fuge: || valign="bottom" | 0,5 g/(m²·24 h) <br /> 800 g/(m·24 h)
|-
| '''Erhöhung Faktor:''' ||  '''1.600'''
|-
|-
|'''Erhöhung Faktor:''' || '''1.600'''
| <br /> Randbedingungen
|-
|-
| <small>''Randbedingungen:''</small>  
| Dampfbremse s<sub>d</sub>-Wert: || valign="bottom" | 30 m
|-
|-
|<small>''Dampfbremse sd-Wert'' <br /> ''Innentemperatur'' <br /> ''Außentemperatur''</small>|| <small>''= 30 m'' <br /> ''= +20 °C'' <br /> ''= -10 °C''</small>
| Innentemperatur: <br /> Außentemperatur: || +20 °C <br /> &nbsp; &nbsp;&nbsp;0 °C
|-
|-
| valign="top" | <small>''Druckdifferenz''</small> || <small>''= 20 Pa <br />~ Windstärke 2-3</small>''
| valign="top" | Druckdifferenz: || 20 Pa (entspricht Windstärke 2-3)
|-
|-
| colspan="2" | <small>Messung: [[Institut für Bauphysik]], Stuttgart<ref name="Qu_04" /></small>
| valign="top" | Messung: || [[Institut für Bauphysik]], Stuttgart <ref name="Qu_04" />
|}
|}  
Durch [[Konvektion]], also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen. (Siehe Abb. 3)
Durch [[Konvektion]], also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen (siehe Abb. 3).
 
Durch Leckagen in Konstruktionen mit äußeren diffusionsdichten Bauteilschichten eingedrungene Feuchtigkeit kann schnell zu einem Bauschaden führen. Konvektive Feuchteeinträge können wegen ihrer hohen Feuchtelast aber auch für außen diffusionsoffene Bauteile gefährlich werden, v. a. wenn bereits [[Tauwasser]] ausgefallen und es im winterlich kalten Klima zur Bildung von Eisschichten z. B. an der Unterdeckung gekommen ist.
<br clear="all" />
 
----


Für Konstruktionen mit außen diffusionsdichten Bauteilschichten hat ein Feuchteeintrag über Konvektion schnell einen Bauschaden zur Folge. Konvektive Feuchtemengen können wegen ihrer hohen Feuchtelast aber auch für diffusionsoffene Bauteile auf der Außenseite gefährlich werden, vor allem wenn bereits [[Tauwasser]] ausgefallen ist.
==== Konstruktiv bedingte Feuchtigkeit - Flankendiffusion ====
Verschiedene Bauschäden wurden in der Literatur dokumentiert, die sich allein mit [[Diffusion]]s- und [[Konvektion]]svorgängen durch Dampfsperren nicht erklären ließen. <br />
Ruhe <ref name="Qu_05" /> und Klopfer <ref name="Qu_06" /> haben 1995 bzw. 1997 bei einem Bauschaden auf das Problem der Flankendiffusion hingewiesen <ref name="Qu_07" />.


==== Konstruktiv bedingte Feuchtigkeit - Flankendiffusion ====
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" width="800px"
Es sind in der Praxis Bauschäden aufgetreten, die sich allein mit [[Diffusion]]s- und [[Konvektion]]svorgängen nicht erklären ließen. Ruhe <ref name="Qu_05" /> und Klopfer <ref name="Qu_06" /> haben 1995 bzw. 1997 bei einem Bauschaden auf das Problem der '''Flankendiffusion''' hingewiesen.<ref name="Qu_07" />
| width="50%" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''4. Bauschaden: Feuchteeintrag trotz luftdichtem Anschluss und Verwendung einer Dampfsperre'''
{|align="right" style="margin: 0 0 0 15px;"  
| '''5. Ursache des Feuchteeintrags: Feuchtetransport über die Flanke, hier das Mauerwerk'''
|'''4. Bauschaden: Feuchteeintrag<br />trotz luftdichtem Anschluss und<br />Verwendung einer [[Dampfsperre]]'''  
||'''5. Ursache des Feuchteeintrags: <br />[[Feuchtetransport]] über die <br />Flanke, hier das Mauerwerk'''
|-
|-
|[[Bild:BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg|left|thumb|200px|Luftdichte Konstruktion mit [[PE]]-Folie und luftdichter
| width="50%" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg|center|400px|]]
Putzschicht, außen Bitumendachbahn.]]
| [[Bild:BPhys GD 1 09_Dachschn.Flankendiffusion-01-2.jpg|center|400px]]
|[[Bild:BPhys GD 1 09_Dachschn.Flankendiffusion-01.jpg|left|thumb|200px|Feuchteeintrag durch Flankendiffusion über das angrenzende
|-
Mauerwerk.]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Luftdichte Konstruktion mit Dampfsperrfolie ([[PE]]) und luftdichter Putzschicht, außen Bitumendachbahn.
| Feuchteeintrag durch Flankendiffusion über das angrenzende Mauerwerk.
|}
|}
;Die Konstruktion
''' Die Konstruktion:''' <br />
Dach, außenseitig Holzschalung und Bitumendachbahn, innenseitig Kunststofffolie aus [[Polyethylen]] (PE), dazwischen der mit [[Mineralwolle]] voll ausgedämmte Sparrenzwischenraum. Trotz perfekter [[Luftdichtheit]] tropfte im Sommer Wasser aus den Anschlüssen der Bahn auf die unteren angrenzenden Bauteile. <br />
Steildach: außen Bitumenbahn auf Holzschalung, innen Dampfsperre aus [[Polyethylen]] (PE), der Zwischenraum ist vollständig mit [[Mineralwolle]] ausgedämmt. Trotz perfekter [[Luftdichtheit]] tropfte im Sommer
Zunächst wurde angenommen, dass die Ursache erhöhte [[Einbaufeuchtigkeit]] sei. Da das Abtropfen von Jahr zu Jahr zunahm, war dies ausgeschlossen. Nach 5 Jahren wurde das Dach geöffnet. Die Holzschalung war bereits größtenteils verfault. <br />
Wasser aus den Anschlüssen der Bahn auf die unteren angrenzenden Bauteile. Zunächst wurde angenommen, dass die Ursache erhöhte [[Einbaufeuchtigkeit]] sei. Da das Abtropfen von Jahr zu Jahr zunahm, war dies ausgeschlossen. <br />
Diskutiert wurde der Feuchteeintrag durch Flankendiffusion. Dabei dringt Feuchtigkeit über die Flanke des seitlichen Luftdichtungsanschlusses, hier ein porosiertes Ziegelmauerwerk, ins Dach ein. Der Feuchtestrom umgeht dadurch die [[PE]]-Folie. (siehe Abb. 4 und 5)<br />
Nach 5 Jahren wurde das Dach geöffnet. Die Holzschalung war bereits erheblich durch holzzerstörende Pilze geschädigt. Diskutiert wurde der Feuchteeintrag durch Flankendiffusion. Dabei dringt Feuchtigkeit
Unter Bauphysikern wurde der Sachverhalt zu Beginn kontrovers diskutiert, bis Künzel <ref name="Qu_08" /> 1997 die Flankendiffusion mit Hilfe von Berechnungen des zweidimensionalen Wärme- und [[Feuchtetransport]]s mit [[WUFI|WUFI 2D]] rechnerisch nachwies. <br />
über die Flanke des angrenzenden Mauerwerks (hier porosierter Ziegel) ins Dach ein. Der Feuchtestrom umgeht dadurch die Dampfsperrfolie (siehe Abb. 4 und 5). <br />
Nach der Berechnung erhöhte sich die Holzfeuchtigkeit über dem Ziegelmauerwerk bereits nach einem Jahr auf ca. 20 % und damit bereits über die [[schimmel]]kritische Grenze, nach 3 Jahren stieg sie auf 40 % und nach 5 Jahren auf 50 %.
Unter Bauphysikern wurde der Sachverhalt zu Beginn kontrovers diskutiert bis Künzel <ref name="Qu_08" /> 1997 die Flankendiffusion mit Hilfe von Berechnungen des zweidimensionalen Wärme- und [[Feuchtetransport]]s mit [[WUFI|WUFI 2D]] rechnerisch nachwies.
In der Simulation erhöhten sich die rel. Feuchtegehalte der Schalung über dem Ziegelmauerwerk bereits nach einem Jahr auf ca. 20 %, nach 3 Jahren stieg sie auf 40 % und nach 5 Jahren auf 50 %.
 
<br clear="all" />
 
----


==== Hohe Einbaufeuchte von Baustoffen ====
==== Hohe Einbaufeuchte von Baustoffen ====
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
|[[Bild:BPhys GD 1 10_Dachschn.Baust._Feuchte-01.jpg|center|260px|]]
|[[Bild:BPhys GD 1 10_Dachschn.Baust._Feuchte-01-2.jpg|center|400px|]]
|- style="font-size:90%;"
|-
|Unvorhergesehen: Feuchtigkeit aus Baustoffen
|Unvorhergesehen: Feuchtigkeit aus Baustoffen
|}
|}
Werden Baustoffe mit einem erhöhten Feuchtegehalt verarbeitet, ist die Konstruktion darauf angewiesen, dass diese Feuchtigkeit wieder austrocknen kann. Auch wenn es sich heute durchgesetzt hat, dass trockenes Bauholz verwendet wird, kann ein Regenschauer zu einer erhöhten Holzfeuchtigkeit führen.


;In konkreten Zahlen heißt das:
Werden Baustoffe mit einem höheren Feuchtegehalt als im Gebrauchszustand eingesetzt, ist die Konstruktion darauf angewiesen, dass diese Feuchtigkeit austrocknen kann. In der Regel werden heute technisch vorgetrocknete Hölzer (Konstruktionsvollholz) eingesetzt. Diese verfügen definitionsgemäß über eine rel. Materialfeuchte von bis zu 18 %. Kommt es zur weiteren Feuchteaufnahme z. B. durch Freibewitterung kann dieser Wert deutlich überschritten werden.
Ein Dach mit Sparren 6/24 und einem Sparrenabstand e = 0,70 m hat pro m² Dachfläche 1,5 lfm Sparren. Bei 10 % Feuchtigkeit enthält diese Dachfläche ca. 1,1 l Wasser aus dem Sparrenanteil.
 
''' Beispiel: ''' <br />
Ein Dach mit Sparren 8/18 oder 6/24 und einem Sparrenabstand e = 0,70 m hat pro m² Dachfläche 1,5 lfm Sparren. <br />
Bei 10 % Feuchtigkeit enthält diese Dachfläche ca. 1,1 l Wasser aus dem Sparrenanteil.
 
''' Bei erhöhter Feuchte bedeutet das: ''' <br />
Die aktuelle [[DIN 68800-2]] fordert, dass Hölzer, die während der Bauphase über eine rel. Feuchte von 20 % aufgefeuchtet werden, innerhalb von höchstens 3 Monaten eine Holzfeuchte von weniger als 20 % erreichen müssen. Wenn die rel. Holzfeuchte 30 % beträgt, müssen zur Einhaltung der Norm '''1,1 l Wasser/m² Dachfläche austrocknen''' können. <br />
 
Dieses Rechenbeispiel gilt auch für eine Holzschalung von 24 mm Stärke. <br />
Der Feuchtegehalt bei 10 % Holzfeuchte beträgt ca. 1,2 l Wasser pro m². Bei 30 % rel. Anfangsfeuchtigkeit, nach einem Regentag keine Seltenheit, müssen 1,2 l Wasser pro m² Dachfläche austrocknen, damit 20 % rel. Holzfeuchte erreicht werden. <br /> 
 
'''Für Sparren + Holzschalung zusammen ergeben sich somit: ~ 2,3 l pro m² Dachfläche.''' <br />
Weitere Konstruktionshölzer, wie Auswechslungen, aber teilweise auch [[Pfette]]n, Zangen, etc., müssten, anteilig ihrer Lage im gedämmten Aufbau, hinzugerechnet werden. <br />


;Das bedeutet:
Die Gesamtmenge an Feuchtigkeit wird häufig unterschätzt. <br />
Wenn die Holzfeuchte zu Beginn 30 % beträgt, muss, damit die [[schimmel]]kritische Feuchtigkeit von 20 % unterschritten wird, 1,1 l Wasser/m² Dachfläche austrocknen können.


Dieses Rechenbeispiel gilt auch für eine Holzschalung von 20 mm Stärke. Der Feuchtegehalt bei 10 % Holzfeuchte beträgt ca. 1,2 l Wasser pro m². Bei 30 % rel. Anfangsfeuchtigkeit, nach einem Regentag keine Seltenheit, müssen zur Unterschreitung der Schimmelgrenze 1,2 l Wasser pro m² Dachfläche austrocknen. Für Sparren und Holzschalung zusammen sind das ca. 2,3 l pro m² Dachfläche.
Beim Mauerwerksbau kann durch die Neubaufeuchtigkeit eine erhebliche Feuchtigkeitsmenge zusätzlich ins Holz gelangen. Wird dann auf der Innenseite einer voll gedämmten Konstruktion eine diffusionsdichte Dampfsperrfolie aus [[Polyethylen]] eingebaut und außen mit einer Bitumendachbahn als Vordeckung kombiniert, ist ein [[Bauschaden]] unausweichlich. <br />


Die Gesamtmenge an Feuchtigkeit wird häufig unterschätzt. Beim Massivbau kann durch die Neubaufeuchtigkeit eine erhebliche Feuchtigkeitsmenge hinzugefügt werden. Wenn sich dann auf der Innenseite eine diffusionsdichte Folie aus [[Polyethylen]] und außen eine Bitumendachbahn als Vordeckung befindet, kann es schnell zu einem [[Bauschaden]] kommen. (mehr siehe: [[Einbaufeuchte]])
Mehr siehe: [[Einbaufeuchte]]
 
<br />
----


==== Zusammenfassung der Feuchtebelastungen ====
==== Zusammenfassung der Feuchtebelastungen ====
Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie auszuschließen ist. Wenn es darum geht schadens- und schimmelfrei zu bauen, ist die Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.
 
{{Textrahmen01|'''Trocknungsvermögen > Feuchtebelastung -> Bauschadensfreiheit'''<br />
Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie ganz auszuschließen ist. Wenn es darum geht schaden- und schimmelfrei zu bauen, ist die Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.
Nur wenn das Trocknungsvermögen kleiner ist als die Feuchtebelastung, kann ein Bauschaden entstehen.<br />
 
'''„Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.“'''<br />
 
Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen.}}
'''Intelligentes Feuchtemanagement Sicherheitsformel:'''
{{Textrahmen vario|Trocknungsvermögen > Feuchtebelastung <nowiki>=</nowiki> Bauschadensfreiheit|• Nur wenn das Trocknungsvermögen kleiner ist als die Feuchtebelastung, kann ein Bauschaden entstehen. <br /> • »Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion [[Bauschadens-Freiheits-Potenzial|bauschadensfrei]].« <br /> Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen. |1200px|center}}
 
== „Intelligente“ Dampfbremsen ==  
== „Intelligente“ Dampfbremsen ==  
=== Austrocknung der Konstruktion nach innen ===
=== Austrocknung der Konstruktion nach innen ===
{{Vollbox-blau|'''Feuchtesituation in der Konstruktion'''  
{{Textrahmen vario|Feuchtesituation in der Konstruktion|  
Der Diffusionsstrom geht immer von der warmen zur kalten Seite.  
Der Diffusionsstrom geht immer von der warmen zur kalten Seite.
Daraus folgt: <br />
Daraus folgt: <br />
Im Winter: <br /> Erhöhte Feuchtigkeit auf der Außenseite. <br />
Im Winter: Erhöhte Feuchtigkeit auf der Außenseite. <br />
Im Sommer: <br /> Erhöhte Feuchtigkeit auf der Innenseite.}}
• Im Sommer: Erhöhte Feuchtigkeit auf der Innenseite.|500px|center}}
Eine zusätzliche entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil durch Aktivierung der inneren Rücktrocknungsfläche: <br />
Immer wenn die Temperatur außenseitig der Dämmung höher ist als innerhalb des Gebäudes, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit drängt dann zur Gebäudeinnenseite. Dieser Effekt setzt bereits bei sonnigen Tagen im Frühjahr ein und wirkt bis in den Herbst hinein – er erfolgt verstärkt in den Sommermonaten. Würde statt einer Dampfbrems- und Luftdichtungsbahn eine [[diffusionsoffen]]e Luftdichtungsbahn verbaut werden, könnte die eventuell in der Konstruktion befindliche [[Feuchtigkeit]] nach innen austrocknen. <br />
Eine diffusionsoffene Bahn würde aber im Winter zu viel [[Feuchtigkeit]] in die Konstruktion gelangen lassen – die großen Feuchtemengen würden unweigerlich zu einem Bauschaden führen. Bei Verwendung von [[Dampfsperre]]n scheint die Konstruktion auf den ersten Blick gegen Feuchtigkeit geschützt. Erfolgt allerdings
ein Eintrag von Feuchtigkeit durch [[Konvektion]], [[Flankendiffusion]] oder [[Einbaufeuchte|erhöhte Baustofffeuchtigkeit]], ist eine [[Rücktrocknung]] im Sommer nach innen nicht möglich. Da diese Bauweise Feuchtefallen begünstigt, wurde ihnen der Status der anerkannten Regeln auf dem 2. Holz[Bau]Physik-Kongress im Februar 2011 aberkannt <ref name="Qu_01" />.


{|align="right" width="260px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem sehr niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese »intelligenten« Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima diffusionsdichter und schützen die Konstruktion vor Feuchtigkeitseintrag. <br />
| '''6. Funktionsprinzip <br /> feuchtevariable Bahnen'''
Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen dadurch die Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
{| align="right" width="450px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1"
| colspan="3" | '''6. Das Funktionsprinzip feuchtevariabler Bahnen'''  
|-
|-
|[[Bild:BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg|center|260px|]]
| colspan="3" | <br /> [[Bild:BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg|center|360px|]]
|- style="font-size:90%;"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
|-
|-
| '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
| colspan="3" style="border-bottom:solid; border-width:1px; | <br /> Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit. <br /> &nbsp;
|-
|-  
|[[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|260px|]]
| colspan="3" height="180px" style="border-bottom:solid; border-width:1px; | Umgebende Feuchtigkeit der Dampfbremse <br /> <br /> &nbsp; • &nbsp;im Winter: geringe Luftfeuchtigkeit <br /> &nbsp; &nbsp;&nbsp; ➝ die feuchtevariable Dampfbremse ist diffusionsdichter <br />  &nbsp; • &nbsp;im Sommer: hohe Luftfeuchtigkeit <br /> &nbsp; &nbsp;&nbsp; ➝ die feuchtevariable Dampfbremse ist diffusionsoffener
|- style="font-size:90%;"  
|-  
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]
| colspan="3" height="40px" | '''7. Die Diffusionsströme feuchtevariabler pro&nbsp;clima&nbsp;Dampfbremsen'''
|-
|- class="wikitable" 
| '''9. s<sub>d</sub>-Wert-Verhalten von <br /> pro clima Dampfbremsbahnen'''
| rowspan="2" width="140px" valign="top" | Diffusionsstrom
|-
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
|[[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.png|center|260px|]]
|- class="wikitable"
|- style="font-size:90%;"  
| im Winter
|[[DB+]]:  Mittlere [[Feuchtevariabilität]] <br /> [[INTELLO]]: Hohe Feuchtevariabilität
| im Sommer
|}
|- class="wikitable"
| valign="top" | Diffusionsrichtung
Eine entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil nach innen: Immer wenn die Temperatur außenseitig der Dämmung höher ist als innenseitig, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit strömt zur Innenseite. Dies erfolgt bereits bei sonnigen Tagen im Frühjahr und im Herbst sowie verstärkt in den Sommermonaten.
| nach außen <div style="font-size:86%;"> Richtung [[Unterdeckung]] </div>
 
| nach innen <div style="font-size:86%;"> Richtung [[Dampfbremse]] </div>
Wäre eine Dampfbrems- und Luftdichtungsebene diffusionsoffen, könnte die eventuell in der Konstruktion befindliche Feuchtigkeit nach innen austrocknen. Eine [[diffusionsoffen]]e Dampfbremse würde aber im Winter zu viel [[Feuchtigkeit]] in die Konstruktion diffundieren lassen und dadurch einen [[Bauschaden]] verursachen.
|- class="wikitable"
 
| height="40px" | [[DB+]]   
Bei Verwendung von [[Dampfsperre]]n scheint die Konstruktion auf den ersten Blick gegen Feuchtigkeit geschützt. Erfolgt allerdings ein Eintrag von Feuchtigkeit durch [[Konvektion]], [[Flankendiffusion]] oder [[Einbaufeuchte|erhöhte  Baustofffeuchtigkeit]], ist eine [[Rücktrocknung]] im Sommer nach innen  nicht möglich. Da diese Bauteile Feuchtefallen begünstigen, wurde diesen im Falle von Flachdachkonstruktionen der Status der anerkannten Regeln auf dem 2. Holz[Bau]Physik-Kongress im Februar 2011 aberkannt. <ref name="Qu_01" />
| align="center"| 28 || align="center"| 175
 
|- class="wikitable"
Ideal ist daher eine Dampfbremse mit einem hohen [[Diffusionswiderstand]] im Winter und einem niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese „intelligenten“ Dampfbremsen mit feuchtevariablem [[sd-Wert|s<sub>d</sub>-Wert]] bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren sie umgebenden relativen [[Luftfeuchtigkeit]]. So sind sie im winterlichen Klima  diffusionsdichter und schützen die Konstruktion vor Feuchtigkeit. Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen somit eine Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.
| height="40px" | [[INTELLO&nbsp;Familie]]  
| align="center"| 7 || align="center"| 560
|}
Idealerweise kann im Sommer der [[sd-Wert|s<sub>d</sub>-Wert]] 0,50 m deutlich unterschreiten – erst unterhalb dieses Wertes gilt ein Material als diffusionsoffen (vgl. DIN 4108-3 [10]). Liegt der mögliche [[sd-Wert|s<sub>d</sub>-Wert]] im Sommerfall oberhalb von 0,50 m ist die Austrocknung aus dem Bauteil deutlich reduziert.


=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
=== Wirkungsweise des feuchtevariablen Diffusionswiderstandes ===
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft in bzw. außerhalb eines Gebäudes. <br /> Betrachtet man vereinfacht nur die Temperatur, so strömt die Feuchtigkeit von der warmen Seite zur kalten Seite. Im Winter von innen nach außen und
Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft inner- bzw. außerhalb eines Gebäudes. Werden vereinfacht nur die das Bauteil umgebenden Temperaturen betrachtet, so diffundiert Feuchtigkeit von der warmen zur kalten Seite - im Winter von innen nach außen und im Sommer von außen nach innen. Messungen der Feuchtegehalte in Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei warmen Außentemperaturen zu erhöhten relativen [[Luftfeuchtigkeit]]en an der Dampfbremse, bei unvorhergesehenen Feuchteeinträgen z. T. sogar zu Sommerkondensat (siehe Abb. 6). <br />
im Sommer von außen nach innen.  
Diese Klimabedingungen steuern die Funktion von feuchtevariablen Dampfbremsen – dadurch sind sie im Winterfall diffusionsdichter und im Sommerfall diffusionsoffener.


Messungen in  Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei [[Feuchtigkeit]] im Sparrenfeld dagegen  zu einer erhöhten relativen Luftfeuchtigkeit an der Dampfbremse, z. T.  sogar zu Sommerkondensat. (siehe Abb. 6)
Seit 1991 hat sich die pro clima [[DB+]] in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann [[sd-Wert|s<sub>d</sub>-Wert]]e zwischen 0,4 m und 4 m annehmen. Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima [[INTELLO]] eingeführt. INTELLO hat – wie auch alle anderen Bahnen aus der [[INTELLO-Familie]] – einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 25 m (siehe Abb. 9). <br /> 
Laut ETA-18/1146 können die INTELLO und INTELLO PLUS s<sub>d</sub>-Werte bis 55 m erreichen. Somit wird im oben beschriebenen Winterfall das Bauteil sehr gut vor bauteilschädigendem
Feuchteeintrag durch Diffusion geschützt.


Dampfbremsen mit einem  feuchtevariablen Diffusionswiderstand sind in  trockener Umgebung diffusionsdichter und in feuchter Umgebung diffusionsoffener.  
==== Nachweis der Dauerhaftigkeit ====
Die europäische Normung für Dampfbremsen ([[DIN EN 13984]]) kennt aktuell kein Nachweisverfahren zur Überprüfung des Verlaufs und der Dauerhaftigkeit von feuchtevariablen
Eigenschaften. Dementsprechend können nach der EN nur Dampfbremsen mit konstanten Diffusionswiderständen überprüft werden. Aus diesem Grund wurde die Alterungsbeständigkeit der Feuchtevariabilität von [[INTELLO]] und [[INTELLO PLUS]] nach einem durch einen unabhängigen Sachverständigenausschuss des Deutschen Instituts für Bautechnik ([[DIBt]]) festgelegten Verfahren nachgewiesen. Dabei wurden die beiden Dampfbremsbahnen im Vergleich zur [[DIN EN 13984]] unter deutlich verschärften Beanspruchungen (erhöhte Temperatur und verdoppelter Alterungszeitraum) beschleunigt gealtert. <br />
Bei der Auswertung wurden zudem die zulässigen Abweichungen der gealterten von den ungealterten Diffusionswiderständen gegenüber der europäischen Norm deutlich
verschärft. <br />
Durch die Europäisch Technische Bewertung (ETA-18/1146) verfügen INTELLO und INTELLO PLUS über den nach [[DIN 68800-2]] für Dampfbremsen mit feuchtevariablem Diffusionswiderstand geforderten Nachweis der Alterungsbeständigkeit.


Seit 1991 hat sich die pro clima [[DB+]] in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann [[sd-Wert|s<sub>d</sub>-Wert]]e zwischen 0,6 und 4 m annehmen.
<br />


Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima [[INTELLO]] entwickelt. INTELLO hat - wie auch die [[INTELLO PLUS]] und die [[INTESANA]] - einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 10 m. (siehe Abb. 9)
==== Hoher Diffusionswiderstand im Winter ====
Der Diffusionswiderstand der Dampfbremsen mit dem [[INTELLO Familie|INTELLO]] Funktionsfilm ist so eingestellt, dass die Bahn im winterlichen Klima einen [[sd-Wert|s<sub>d</sub>-Wert]] von mehr als 25 m erreichen kann. Das bewirkt, dass während der kalten Jahreszeit wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine [[Feuchtigkeit]] in das Bauteil gelangen lässt.


==== Hoher Diffusionswiderstand im Winter ====
Die Funktion des feuchtevariablen Diffusionswiderstandes ist unabhängig von der Gebäudehöhenlage. Auch bei langen kalten Wintern bleibt die Eigenschaft erhalten. <br />
{{{TabH1/2 r}} 7. Diffusionsströme der feuchtevariablen <br /> pro clima Dampfbremsen
Bei Konstruktionen mit diffusionsdichten Abdichtungsbahnen auf der Außenseite, können die Bahnen den Feuchtehaushalt regulieren und die Bauteile wirksam vor Feuchtigkeit schützen. <br />
|-
Der hohe [[sd-Wert|s<sub>d</sub>-Wert]] ist auch bei außen planmäßig diffusionsoffenen Dächern von Vorteil, wenn es z. B. durch Reif- und Eisbildung an einer eigentlich diffusionsoffenen [[Unterdeckbahn]] zur Bildung einer Dampfsperre kommt (siehe Abb. 9).
| rowspan="2" width="93px" | Diffusionsstrom
<br clear="all" />
| colspan="2" height="20px"| <div style="font-size:90%;"> [[Wasserdampfdurchlässigkeit|W<sub>DD</sub>-Wert]] in g/m² pro Woche </div>
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 0px 5px 5px;" class="rahmenfarbe1"
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | ''' s<sub>d</sub>-Wert-Verhalten von Dampfbremsen''' <br /> Je größer die Variabilität des Diffusionswiderstandes zwischen Winter und Sommer ist, umso mehr Sicherheit bietet die Dampfbremse. <br />
|-
| '''8. s<sub>d</sub>-Wert-Verhalten von PE-Folie'''
|-
| [[Bild:BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg|center|360px|]]
|-
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[PE]]-Folie: keine [[Feuchtevariabilität]]
|-
|-
| width="77px"| im Winter
| '''9. s<sub>d</sub>-Wert-Verhalten von pro&nbsp;clima&nbsp;Dampfbremsbahnen'''
| width="77px"| im Sommer
|-
|-
| Diffusions-richtung
| [[Bild:BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.jpg|center|360px|]]
| nach außen <div style="font-size:86%;"> Richtung <br /> [[Unterdeckung]] </div>
|-
| nach innen <div style="font-size:86%;"> Richtung <br /> [[Dampfbremse]] </div>
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[DB+]]: Mittlere Feuchtevariabilität <br /> [[INTELLO Familie]]: Hohe Feuchtevariabilität
|-
|-
| [[DB+]] 
| '''10. Nutzung und Bauphase (Austrocknung und Hydrosafe-Wert)'''
| align="center"| 28 || align="center"| 175
|-
|-
| [[INTELLO]] <br /> [[INTELLO PLUS]] <br /> [[INTESANA]]
| [[Bild:BPhys GD 2Studie 32 Diagr Hydrosafe intello db+.png|center|360px|]]
| align="center"| 7 || align="center"| 560
|-
| Für hohen Bauteilschutz während der Bauphase wird ein Hydrosafe-Wert zwischen 1,5 und 2,5&nbsp;m empfohlen.
|}
|}
Der Diffusionswiderstand der Dampfbremse [[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] ist so eingestellt, dass die Bahn im winterlichen Klima einen  [[sd-Wert|s<sub>d</sub>-Wert]] von mehr als 25 m erreichen kann. Das bewirkt, dass im Winter, wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine [[Feuchtigkeit]] in das Bauteil gelangen lässt.
Die Funktion des feuchtevariablen Diffusionswiderstandes ist unabhängig von der Gebäudehöhenlage. Auch bei kalten langen Wintern bleibt die Eigenschaft erhalten. <br />
Bei Konstruktionen mit diffusionsdichten Abdichtungsbahnen auf der Außenseite, können die Bahnen den Feuchtehaushalt regulieren und die Bauteile wirksam vor Feuchtigkeit schützen. <br />
Der hohe [[sd-Wert|s<sub>d</sub>-Wert]] ist auch bei außen diffusionsoffenen Dächern von Vorteil, wenn es um eine Reif- und Eisbildung (Dampfsperre) an einer diffusionsoffenen [[Unterspannbahn]] geht.


==== Niedriger Diffusionswiderstand im Sommer ====
==== Niedriger Diffusionswiderstand im Sommer ====
Der Diffusionswiderstand im sommerlichen Klima kann auf einen [[sd-Wert|s<sub>d</sub>-Wert]] von 0,25 m fallen. Dies bewirkt eine schnelle Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, nach innen. Je nach Höhe des Dampfdruckgefälles entspricht das einer Austrocknungskapazität von 5 – 12 g/m² H<sub>2</sub>O pro Stunde, entsprechend ca. 80 g/m² H<sub>2</sub>O pro Tag, bzw. 560 g/m² H<sub>2</sub>O pro Woche. (Siehe Tab. 7) <br />
Der Diffusionswiderstand im sommerlichen Klima kann auf einen [[sd-Wert|s<sub>d</sub>-Wert]] von unter 0,25 m sinken. Dies bewirkt eine schnelle Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, nach innen. Je nach Höhe des Dampfdruckgefälles entspricht das einer Austrocknungskapazität von 5 – 12 g/m² Wasser pro Stunde, entsprechend ca. 80 g/m² Wasser pro Tag bzw. 560 g/m² Wasser pro Woche (siehe Abb. 7)<br />
Dieses hohe Austrocknungsvermögen bewirkt, dass ein Bauteilgefach schon im Frühjahr schnell austrocknet. Dampfbremsen, die im feuchten Bereich [[sd-Wert|s<sub>d</sub>-Wert]]e von 1 m erreichen können, bieten keine nennenswerten zusätzlichen Sicherheiten.
Dieses hohe Austrocknungsvermögen bewirkt, dass ein Bauteilgefach schon im Frühjahr schnell austrocknet. Entscheidend ist, dass Dampfbremsen mit variablem Diffusionswiderstand im feuchten Bereich (Sommerfall) einen [[sd-Wert|s<sub>d</sub>-Wert]] deutlich kleiner als 0,5 m aufweisen. Ansonsten sind die Sicherheiten bei unvorhergesehenen Feuchteeinträgen zu gering.


==== Ausgewogenes Diffusionsprofil ====
==== Ausgewogenes Diffusionsprofil ====
In Zeiten besserer [[Luftdichtung]]en und damit verbundenen erhöhten [[Luftfeuchtigkeit]]en in Neubauten in Massivbauweise kommt dem [[Diffusionswiderstand]] bei höherer rel. Luftfeuchtigkeit (LF) eine wichtige Bedeutung zu. <br clear="all" />
In Zeiten besserer Luftdichtungen und damit verbundenen erhöhten [[Luftfeuchtigkeit]]en in Neubauten in Mauerwerksbauweise kommt dem [[Diffusionswiderstand]] bei höherer rel. Luftfeuchtigkeit (LF) eine wichtige Bedeutung zu.  


===== Neubauten: Die 60/2 Regel =====
===== Neubauten: Trocknungsphase (60/2-Regel) =====
{|align="right" width="260" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
In Neubauten und in Feuchträumen (Bäder, Küchen) von Wohnhäusern oder Häusern mit wohnähnlicher Nutzung herrscht bau- und wohnbedingt eine erhöhte Raumluftfeuchte von ca. 70&nbsp;%. Der Diffusionswiderstand einer Dampfbremse sollte so eingestellt sein, dass bei dieser Feuchtigkeit ein [[sd-Wert|s<sub>d</sub>-Wert]] von mindestens 2&nbsp;m erreicht wird, um die Konstruktion ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingt vor [[Schimmel]]bildung zu schützen. <br />
|-
Alle Bahnen der [[INTELLO Familie]] haben bei 60 % mittlerer Feuchtigkeit (70&nbsp;% [[Luftfeuchtigkeit|Raumluftfeuchtigkeit]] und 50&nbsp;% Feuchtigkeit an der [[Wärmedämmung]]) einen [[sd-Wert|s<sub>d</sub>-Wert]] von über 6&nbsp;m, die [[DB+]] von ca. 2,5&nbsp;m (siehe Abb. 10).
| '''10. Neubau und Bauphase <br /> Regel 60/2 und 70/1,5'''
 
|-
===== Bauphase: Hydrosafe-Wert (70/1,5-Regel) =====
|[[Bild:BPhys GD 2Studie 32 Diagr Diffusion Regeln.png|center|260px|]]
In der Bauphase, wenn Wände verputzt oder [[Estrich]] gelegt wurde, herrscht im Gebäude eine sehr hohe Raumluftfeuchte von zum Teil über 90&nbsp;%. <br />
|- style="font-size:90%;"
Der Schutz von gedämmten Holzbau-Konstruktionen während der Bauphase vor baubedingt erhöhter Innenraumfeuchte (Baufeuchte) wird durch den [[Hydrosafe]]-Wert beschrieben. Dieser gibt an, welche äquivalente Luftschichtdicke ([[sd-Wert|s<sub>d</sub>-Wert]]) eine auf der Innenseite verlegte feuchtevariable [[Dampfbremse|Dampfbrems-]] und Luftdichtungsbahn mindestens aufweisen muss, damit Dämmung und Konstruktion in allen Phasen ausreichend vor Feuchtigkeit geschützt sind. Als ausreichend sicher wird ein [[Hydrosafe]]-Wert von mindestens 1,5&nbsp;m bei einer mittleren rel. Luftfeuchtigkeit von 70&nbsp;% beschrieben (siehe [[DIN 68800-2]]).
|Empfohlene Mindest-[[sd-Wert|s<sub>d</sub>-Werte]] während der Bauphase, bei Neubaufeuchte und für Feuchteräume von Wohnhäusern.
|}
In Neubauten und in Feuchträumen von Wohnhäusern (Bädern, Küchen) bau- und wohnbedingt eine erhöhte Raumluftfeuchte von ca. 70&nbsp;%. <br />
Der Diffusionswiderstand einer Dampfbremse sollte so eingestellt sein, dass bei dieser Feuchtigkeit ein Diffusionswiderstand von mindestens 2&nbsp;m erreicht wird, um die Konstruktion ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingt vor Schimmelbildung zu schützen. <br />
[[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] haben bei 60 % mittlerer Feuchtigkeit (70 % Raumluftfeuchtigkeit und 50 % Feuchtigkeit an der Wärmedämmung) einen [[sd-Wert|s<sub>d</sub>-Wert]] von ca. 4&nbsp;m. (Siehe Abb. 10)


===== Bauphase: Die 70/1,5 Regel =====
Die Bahnen aus der [[INTELLO-Familie]] erreichen bei 70&nbsp;% mittlerer Feuchte (90&nbsp;% [[Luftfeuchtigkeit|Raumluftfeuchtigkeit]] und 50&nbsp;% in der [[Wärmedämmung|Dämmebene]]) einen [[sd-Wert|s<sub>d</sub>-Wert]] von über 2&nbsp;m ([[DB+]] 2&nbsp;m) und bieten den Bauteilen auch während baubedingt erhöhten rel. Luftfeuchtigkeiten einen ausreichenden Schutz.   <br />
In der Bauphase, wenn verputzt oder [[Estrich]] verlegt wurde, herrscht im Gebäude eine sehr hohe Raumluftfeuchte von zum Teil über 90&nbsp;%. <br />
Übermäßige Raumluftfeuchte in der Bauphase über einen langen Zeitraum schädigt alle Materialien bzw. Bauteile im Gebäude, führt zu deren Feuchteanreicherung und sollte konsequent zügig und stetig durch Fensterlüftung entweichen können. Ggf. können Bautrockner erforderlich sein (siehe Abb. 10).
Der [[sd-Wert|s<sub>d</sub>-Wert]] einer [[Dampfbremse]] sollte dann mehr als 1,5&nbsp;m betragen, um die Konstruktion vor einem zu hohen Feuchteeintrag aus dem Baustellenklima zu schützen. <br />
[[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] haben bei 70&nbsp;% mittlerer Feuchte (90 % Raumluftfeuchtigkeit und 50 % in der Dämmebene) einen [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m. Übermäßige Raumluftfeuchte in der Bauphase über einen langen Zeitraum schädigt alle Bauteile im Gebäude, führt zu deren Feuchteanreicherung und sollte zügig durch Fensterlüftung entweichen können. Ggf. können Bautrockner erforderlich sein. (Siehe Abb. 10)


==== Höchste Sicherheit ====
==== Höchste Sicherheit ====
Das »intelligente« Verhalten der feuchtevariablen Dampfbremsen von pro clima macht Wärmedämmkonstruktionen je nach Bauart und Lage sehr sicher, auch bei unvorhergesehenem Feuchtigkeitseintrag in die Konstruktion, z. B. durch widrige Klimabedingungen, Undichtheiten, [[Flankendiffusion]] oder erhöhte Einbaufeuchtigkeit von Bauholz oder Dämmstoff. Die feuchtevariablen pro clima Dampfbremsen wirken wie eine Feuchtigkeitstransportpumpe, die aktiv Feuchtigkeit aus dem Bauteil zieht, welche sich evtl. unvorhergesehen in ihm befindet. <br clear="all" />
Das »intelligente« Verhalten der feuchtevariablen Dampfbremsen von pro clima macht Wärmedämmkonstruktionen je nach Bauart und Lage sehr sicher. Auch bei unvorhergesehenem Feuchtigkeitseintrag in die Konstruktion, z. B. durch widrige Klimabedingungen, unvermeidbare Restleckagen, [[Flankendiffusion]] oder erhöhte Einbaufeuchtigkeit von Bauholz oder Dämmstoff können Bauteile von der Schutzfunktion  profitieren. Die feuchtevariablen pro clima Dampfbremsen fördern aktiv das Austrocknen von Feuchtigkeit aus dem Bauteil heraus, welche unvorhergesehen in dieses eingedrungen ist.
 
<br clear="all" />


== Ermittlung des Sicherheitspotenzials einer Dachkonstruktion ==
== Ermittlung des Sicherheitspotenzials einer Dachkonstruktion ==
=== Berechnung der Feuchteströme mit unterschiedlichen Verfahren ===
=== Rechnerischer Nachweis von Bauteilen ===
Zur Berechnung von Feuchtebelastungen innerhalb von Bauteilen stehen stationäre und dynamische Rechenverfahren zur Verfügung. Nach wie vor sind die stationären Berechnungsverfahren nach Glaser mit der Ausnahme von Gründachkonstruktionen für alle anderen Dachkonstruktionen zugelassen. Jedoch sind sie nicht in der Lage materialspezifische und konstruktionsabhängige sowie lage- und klimabedingte Einflüsse zu berücksichtigen. So wird z. B. Materialverhalten wie kapillares Leitungsvermögen und Sorptionsverhalten nur in dynamischen Verfahren berücksichtigt.
Zur Berechnung von Feuchtebelastungen innerhalb von Bauteilen stehen stationäre und dynamische Rechenverfahren zur Verfügung. Stationäre Nachweise von Bauteilen können mit dem Verfahren nach Glaser erstellt werden. Dieses ist die Grundlage für verschiedene nationale und internationale Normen (z. B. [[DIN 4108-3]], [[OENORM B 8110-2]] oder [[SIA 180]] bzw. [[DIN EN ISO 13788]]). Werden detaillierte Feuchtegehalte z. B. einzelner Materialien gewünscht kann ein instationäres (dynamisches) Verfahren nach [[DIN EN 15026]] angewendet werden.
 
==== Berechnung nach Glaser ====
Das [[Glaser-Verfahren]] ist ein vereinfachtes, stationäres Nachweisverfahren für eine feuchteschutztechnische Abschätzung von Bauteilen. Dies erfolgt durch Betrachtung des auftretenden Diffusionstransports bei stationären Zuständen unter pauschalen Randbedingungen. Bei dieser Art von Nachweis handelt es sich um »ein modellhaftes Nachweis- und Bewertungsverfahren als Hilfsmittel für den Fachmann zur Beurteilung des klimabedingten Feuchteschutzes. Es bildet nicht die realen physikalischen Vorgänge in ihrer tatsächlichen zeitlichen Abfolge ab« (aus: [[DIN 4108-3]]). <br />


==== Berechnung nach Glaser, DIN EN ISO 13788 ====
Die Einfachheit des Verfahrens bedeutet zugleich eine starke Einschränkung, da sich z. B. weder Verschattungen noch zusätzliche Bauteilschichten wie Bekiesungen oder Begrünungen berücksichtigen lassen. Weiterhin werden die tatsächlichen Feuchtegehalte, die Kapillarität sowie die Sorptionsfähigkeit von Baustoffen nicht in die Berechnungen einbezogen. <br />
In der [[DIN 4108]]-3 und [[DIN EN ISO 13788]] wird weiterhin auf das Verfahren nach [[Glaser-Verfahren|Glaser]] zurückgegriffen. Dieses berechnet anfallende [[Kondensat]]mengen in Konstruktionen unter Annahme eines Blockwinterklimas und eines Blocksommerklimas:
Dadurch kann das Glaser-Verfahren gerade für die Berechnung von bauphysikalisch anspruchsvollen Holzbaukonstruktionen nicht verwendet werden. Mehr: [[Glaser-Verfahren]]
{|
<br clear="all" />
| colspan="4" | '''Randbedingungen DIN 4108-3: „Glaserverfahren“ (stationär)'''
|-
|width="60px"| || '''Winter''' (Dauer 60 Tage) || width="20px"| || '''Sommer''' (Dauer 90 Tage)
|-
| Innen: || +20 °C / 50 % rel. Luftfeuchte || ||+12 °C / 70 % rel. Luftfeuchte
|-
| Außen: || -10 °C / 80 % rel. Luftfeuchte || || +12 °C / 70 % rel. Luftfeuchte
|}<br clear="all" />


==== Berechnung der gekoppelten Wärme- und Feuchtetransporte, [[DIN EN 15026]] ====
==== Berechnung der gekoppelten Wärme- und Feuchtetransporte ====
Das Verfahren nach Glaser ist eine Näherung für die Beurteilung von Konstruktionen, entspricht aber nicht der Realität. Einerseits unterscheiden sich die Blockklimadaten vom realen Klima, andererseits werden wichtige Transportmechanismen wie [[Sorption]] und [[Kapillarität]] nicht berücksichtigt. <br />
Detaillierte Betrachtungen der Feuchtegehalte innerhalb von Bauteilen können mit instationären Berechnungsverfahren durchgeführt werden. Diese sind u. a. sowohl in der Lage die von außen auf ein Bauteil einwirkenden Klimarandbedingungen (Innen- und Außenklima), als auch Baustoffeigenschaften wie Feuchtegehalt, Sorption und Kapillarität usw. in der Berechnung zu berücksichtigen. <br />
Die [[DIN 4108-3|DIN 4108-3]] verweist deshalb darauf, dass dieses Verfahren nicht für begrünte Dachkonstruktionen als Nachweis der Bauschadensfreiheit geeignet ist, sondern instationäre Simulationsverfahren verwendet werden müssen. <br />
Bekannte Softwarelösungen sind [[Delphin]] vom Institut für Bauklimatik, Dresden und [[WUFI pro]] vom Fraunhofer-Institut für Bauphysik, Holzkirchen. Die Verfahren wurden mehrfach validiert, d. h. dass die Ergebnisse aus den Rechnungen anhand von Freilandversuchen überprüft wurden. Für die Berechnung werden die entsprechenden Klimadaten eines Jahres als Stundenwerte benötigt. Mit Hilfe der meteorologischen Datenbank [[Meteonorm]] lassen sich die erforderlichen Klimadatensätze für nahezu jeden Ort auf der Welt erstellen. <br />
Bekannte Softwarelösungen sind [[Delphin]] vom Institut für Bauklimatik, Dresden und [[WUFI pro]] vom [[Fraunhofer-Institut für Bauphysik]], Holzkirchen. Diese Programme berechnen den gekoppelten Wärme- und Feuchtetransport von mehrschichtigen Bauteilen unter natürlichen Klimabedingungen, inkl. der Berücksichtigung von Temperatur und Feuchte, Sonnenlichteinfluss (direkt und diffus), Wind, Verdunstungskälte wie auch von Sorption und Kapillarität der Baustoffe. Die Programme wurden
Für die Simulationsberechnungen wird das Bauteil mit seiner Schichtenfolge berücksichtigt und ein mehrjähriger Verlauf der Feuchtegehalte für das gesamte Bauteil oder in einzelnen Bauteilschichten analysiert. <br />
mehrfach validiert, d. h. dass die Ergebnisse aus den Rechnungen anhand von Freilandversuchen überprüft wurden. <br />
Das Berechnungsergebnis zeigt z. B., ob sich die Feuchtigkeitsgehalte einzelner Materialien oder an ausgewählten Stellen im Bauteil im zulässigen Rahmen bewegen. Wird der Verlauf des Gesamtfeuchtegehaltes betrachtet kann die maximal mögliche Austrocknung von verschiedenen Bauteilen ermittelt werden. <br />
Für die Berechnung werden die entsprechenden Klimadaten eines Jahres als Stundenwerte benötigt. Es stehen Klimadaten von einigen tausend Messstationen rund um den Erdball zur Verfügung. Eine Software, welche diese für Wufi-Berechnungen verfügbar macht ist z. B. das [[Meteonorm]]. Die Software enthält sowohl gemäßigte als auch extreme Klimabereiche. <br />
Diese wird auch als Bauschadens-Freiheits-Potenzial bezeichnet.
Für die Simulationsberechnungen wird das Bauteil mit seiner Schichtenfolge in das Programm eingegeben und ein mehrjähriger Verlauf analysiert. Es ist dann ersichtlich, ob sich Feuchtigkeit im Bauteil akkumuliert, d. h. der Gesamtfeuchtegehalt der Konstruktion über den betrachteten Zeitraum ansteigt, oder ob das Bauteil trocken bleibt. Auf diese Weise ist aber nicht erkennbar, wie hoch die Trocknungsreserve einer Konstruktion ist.


=== Berechnung des Bauschadensfreiheitspotenzials (BSFP) ===
=== Definition des Bauschadens-Freiheits-Potenzials ===
Um die Sicherheiten eines Bauteils bei unvorhergesehenem Feuchteeintrag (z. B. durch [[Konvektion]] oder [[Flankendiffusion]]) zu ermitteln, wird folgender Ansatz verwendet: <br />
Das [[Bauschadens-Freiheits-Potenzial]] ist eine theoretische Größe und erlaubt es die Leistungsfähigkeit von Konstruktionen hinsichtlich des Austrocknungsvermögens miteinander zu vergleichen. Es gibt an, wie viel Feuchtigkeit theoretisch durch unvermeidbare Restleckagen, Flankendiffusion oder feuchte Baustoffe eindringen könnte. Vergleichsgröße ist die Menge an Feuchtigkeit, die innerhalb eines Jahres aus dem Bauteil heraustrocknen kann. Dadurch können verschiedene Konzepte vergleichend gegenüber gestellt werden. Je größer das Bauschadens-Freiheits-Potenzial, desto größer die Sicherheit vor einem Bauschaden.
Zu Beginn der Berechnung wird eine definierte Feuchtemenge in die Wärmedämmung eingebracht. Die Berechnung zeigt, wie schnell diese wieder austrocknen kann. Die Trocknungsmenge, die pro Jahr unter der Annahme der erhöhten Anfangsfeuchtigkeit aus der Konstruktion entweichen kann, ist das Bauschadensfreiheitspotenzial der Konstruktion. Die Berechnungen erfolgen unter ungünstigen Bedingungen (z. B. Nordseite eines Steildaches), in unterschiedlichen Klimabereichen (z. B. Hochgebirge) und mit unterschiedlichen Dachformen (Steildach, bekiestes oder begrüntes Flachdach). Bauphysikalisch günstigere Konstruktionen bieten entsprechend höhere Sicherheiten.


Weiteres Kriterium für die Funktion einer Konstruktion sind die maximalen Feuchtegehalte, die sich in den Bauteilschichten einstellen. Diese Gebrauchstauglichkeitsuntersuchungen erfolgen ab Abschnitt [[#Ermittlung der Gebrauchstauglichkeit|"Ermittlung der Gebrauchstauglichkeit"]]
==== Berechnung des Bauschadens-Freiheits-Potenzials ====
Um die Sicherheiten eines Bauteils bei unvorhergesehenem Feuchteeintrag zu ermitteln, wird folgender Ansatz verwendet: <br />
Zu Beginn der Berechnung wird der Feuchtegehalt in der Wärmedämmebene definiert auf 20 kg Wasser pro m³ Dämmstoff erhöht. Die Berechnung zeigt, wie schnell diese wieder austrocknen kann. Die Trocknungsmenge, die pro Jahr unter der Annahme der erhöhten Anfangsfeuchtigkeit aus der Konstruktion entweichen kann, ist das Bauschadens-Freiheits-Potenzial der Konstruktion. Die Berechnungen erfolgen unter ungünstigen Bedingungen (z. B. Nordseite eines Steildaches), in unterschiedlichen Klimabereichen (z. B. Hochgebirge) und mit unterschiedlichen Dachformen (Steildach, bekiestes oder begrüntes Flachdach). Bauphysikalisch günstigere Konstruktionen bieten entsprechend höhere Sicherheiten. <br />
Weiteres Kriterium für die Funktion einer Konstruktion sind die maximalen Feuchtegehalte, die sich in den Bauteilschichten einstellen. Diese Gebrauchstauglichkeitsuntersuchungen erfolgen ab Abschnitt 3.3 [[#Ermittlung der Gebrauchstauglichkeit|"Ermittlung der Gebrauchstauglichkeit"]]


==== Definition des Bauschadensfreiheitspotenzials ====
'''Das Bauschadensfreiheitspotenzial (BSFP) gibt an, wie viel [[Baufeuchte|Feuchtigkeit]] unvorhergesehen durch Undichtheiten, [[Flankendiffusion]], [[Einbaufeuchte|feuchte Baustoffe]] in eine Konstruktion eindringen kann, ohne einen [[Bauschaden]] oder einen [[Schimmel]]befall zu verursachen. '''


==== Dachkonstruktion ====
==== Dachkonstruktion ====
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" width="450px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; class="rahmenfarbe1" id="ganz_oben"
|+ id="Ü-id" | '''Bauphysikalische Beurteilung von Dachkonstruktionen'''
|- id="K-id"
| '''11. Aufbau der Dachkonstruktion'''
| '''11. Aufbau der Dachkonstruktion'''
|-
|-
| [[Bild:BPhys GD 2Studie 11 aufbau-dachkonstr.jpg|center|260px|1. Aufbau der Dachkonstruktion]]
| [[Bild:BPhys GD 2Studie 11 aufbau-dachkonstr.jpg|center|360px|1. Aufbau der Dachkonstruktion]]
|- style="font-size:90%;"  
|- style="font-size:90%;"  
|'''Bauteilschichten:'''<br />
|'''Bauteilschichten:'''<br />
* Außenseitig [[diffusionsdicht]] <br />(Bitumendachbahn [[sd-Wert|s<sub>d</sub>-Wert]] = 300 m)  
* Außenseitig [[diffusionsdicht]] <br />(Abdichtungsbahn [[sd-Wert|s<sub>d</sub>-Wert]] = 300 m) <br />
* Vollholzschalung 20 mm  
* Vollholzschalung, 24 mm <br />
* Faserige Dämmung 200 mm  
* Faserdämmung (Mineralwolle) WLG 0,035 W/m·K, 200 mm <br />
* Dampfbremsen mit <br />unterschiedlichen [[sd-Wert|s<sub>d</sub>-Werten]]  
* Dampfbremsen/-sperren mit unterschiedlichen [[sd-Wert|s<sub>d</sub>-Werten]] <br />
* [[Installationsebene]] 25 mm
* [[Installationsebene]], 25 mm <br />
* Gipsbauplatte
* Gipsbauplatte, 12,5 mm <br /> <br />
 
Betrachtete Dachvarianten: <br />
&nbsp;•&nbsp;Steildach mit 40° Neigung zur Nordseite, <br />
&nbsp; &nbsp; Eindeckung rote Dachsteine <br />
&nbsp;•&nbsp;Flachdach mit 5 cm Kiesschicht <br />
&nbsp;•&nbsp;Gründach mit extensiver Begrünung: <br />
&nbsp; &nbsp; 10 cm Pflanzensubstrat
<br /> <br />
Alle Konstruktionen sind unverschattet.
|}
|}
Exemplarisch die im Folgenden als bauphysikalisch kritisch geltende Konstruktion. Standorte und [[Dampfbremse]]n werden  variiert.


;Aufbau der Konstruktion:
;Aufbau der Konstruktion:  
Es handelt sich um ein nordorientiertes Steildach mit 200 mm Dämmung (Mineralwolle). Dieses wird mit roten Dachziegeln belegt. (Siehe Abb. 11)
Es handelt sich um eine Konstruktion mit 200 mm Dämmung (Mineralwolle WLG 035). Auf der Ausßenseite verfügt das Bauteil über eine diffusionsdichte Abdichtungsbahn (siehe Abb. 11).
{|
{|
| width="180"| '''Dampfbremsen:'''  || '''[[sd-Wert|s<sub>d</sub>-Wert]]:'''
| width="180"| '''Dampfbremsen:'''  || '''s<sub>d</sub>-Wert:'''
|-
|-
|  
|  
* [[PE]]-Folie
* Dampfbremse
| 100 m konstant
| 5 m konstant
|-
|-
|  
| valign="top" |
* Dampfbremse  
* Dampfbremse  
| 5 m konstant
| 0,8 – 35 m richtungsabhängig variabel
|-
|-
|  
| valign="top" |
* pro clima [[DB+]]  
* pro clima [[DB+]]  
| 0,6 – 4 m, feuchtevariabel
| 0,6 – 4 m, feuchtevariabel
|-
|-
|  
| valign="top" |
* pro clima [[INTELLO]]  
* pro clima [[INTELLO-Familie|INTELLO]]  
| 0,25 – 10 m, feuchtevariabel  
| 0,25 – >25 m, feuchtevariabel (ETA-18/1146) <br /> Die pro clima INTELLO wird bei den Berechnungen stellvertretend für alle Bahnen aus der [[INTELLO-Familie]] verwendet.
|-
|-
| '''Dachvarianten:''' ||
| '''Dachvarianten:''' ||
|-
|-
|
| colspan="2" |
* Steildach  
* Steildach mit 40° Neigung zur Nordseite, rote Dachsteine
| mit 40° Neigung zur Nordseite, rote Dachsteine
* Flachdach mit 5 cm Kiesschicht oberhalb der Abdichtung
|-
* Gründach mit 10 cm Gründachaufbau oberhalb der Abdichtung
|
* Flachdach  
| mit 5 cm Kiesschicht
|-
|
* Gründach  
| mit 10 cm Gründachaufbau
|-
|-
|'''Standorte:''' ||
|'''Standorte:''' ||
|-
|-
|
| colspan="2" |
* Holzkirchen, Deutschland:
* Holzkirchen, Deutschland, Höhenlage über NN = 680 m ''- (NN = Normal Null)''
|Höhenlage über NN = 680 m ''- (NN = Normal Null)''
* Davos, Schweiz, Höhenlage über NN = 1.560 m  
|-
|
* Davos, Schweiz:
|Höhenlage über NN = 1.560 m  
|-
|-
|'''Berechnung:'''
|'''Berechnung:'''
|-
|-
|
| colspan="2" |  
* Mit [[WUFI pro]]
* Mit [[Delphin|Delphin 5.9.3]]
|-
* Anfangsfeuchtigkeit in der Wärmedämmung: 4.000 g/m² (= 20 kg/m³)
| colspan="2" |
* Anfangsfeuchtigkeit in der Wärmedämmung: 4000 g/m²
|}
|}
Beschattungen (z. B. durch [[Photovoltaik]]-Anlagen, Gebäudesprünge, hohe Bäume oder Topografie) werden bei den Berechnungen nicht berücksichtigt.
Verschattungen (z. B. durch [[Photovoltaik]]-Anlagen, Gebäudesprünge, hohe Bäume oder Topografie) werden bei den Berechnungen nicht berücksichtigt.


==== Einflussfaktoren auf die Höhe des Bauschadensfreiheitspotenzials ====
<br />
Eine wesentliche Größe für die Bauschadens- und [[Schimmel]]freiheit ist die [[Rücktrocknungspotenzial|Rückdiffusion]] im Sommer und damit verbunden die Austrocknung der Konstruktion nach innen. Deren Höhe hängt von der Außentemperatur ab, genauer gesagt von der Temperatur an der Außenseite der [[Wärmedämmung]]. Durch die Sonneneinstrahlung hat die Dach-/Wandoberfläche eine höhere Temperatur als die Luft. Die Zeit, welche die Wärme von außen braucht, bis sie an der Wärmedämmung ankommt,ist entscheidend. Bei einem [[Steildach]] ist dies schneller der Fall als bei einem bekiesten oder begrünten [[Flachdach]]. <br />
Bei einem Steildach hängt die Höhe der Dachoberflächentemperatur ab von der Dachneigung, der Ausrichtung des Daches (Norden/Süden) und der Farbe der Dacheindeckung (heller/dunkler). <br />
Das Bauschadensfreiheitspotenzial wird weiterhin durch die gewählte Dämmschichtdicke beeinflusst. Große Dämmstärken führen i. d. R. zu verringerten Rücktrocknungsmengen, da die Durchwärmung des Bauteils langsamer erfolgt und als Folge die Rücktrocknungszeiträume kürzer werden.


{|
==== Einflussfaktoren auf die Höhe des Bauschadens-Freiheits-Potenzials ====
|'''Ungünstige Faktoren sind:'''
Eine wesentliche Größe für die Bauschadensfreiheit ist die [[Rücktrocknungspotenzial|Rückdiffusion]] im Sommer und damit verbunden die Austrocknung der Konstruktion nach innen. Die Menge der Austrocknung hängt von der Außentemperatur ab, genauer gesagt von der Temperatur an der Außenseite der [[Wärmedämmung]] sowie von der Diffusionsoffenheit der Dampfbrems- und Luftdichtungsbahn im Sommerfall. Durch Sonneneinstrahlung (auch diffus) weisen Bauteiloberflächen eine höhere Temperatur auf als die angrenzende Luft. Die Zeitdauer, welche die Wärme von außen benötigt bis sie an der Wärmedämmung ankommt, ist entscheidend. <br />
|-
Bei einem Steildach ist dies schneller der Fall als bei einer bekiesten oder begrünten Flachdachkonstruktion. <br />
|
Bei einem Steildach hängt die Höhe der Dachoberflächentemperatur ab von der Dachneigung, der Orientierung der Dachflächen (Norden/Süden) und der Farbe der Dacheindeckung bzw. Dachabdichtung (hell/dunkel). <br />
* [[Dachneigung]] nach Norden  
Das Bauschadens-Freiheits-Potenzial wird weiterhin durch die gewählte Dämmschichtdicke beeinflusst. Große Dämmstärken führen im Vergleich zu verringerten Rücktrocknungsmengen, da die Durchwärmung des Bauteils langsamer erfolgt und als Folge die Rücktrocknungszeiträume kürzer werden.
|
 
* Kaltes Klima, z. B. im Gebirge
'''Ungünstige Faktoren sind:'''  
|-
* Dachorientierung nach Norden  
|
* Große Dachneigung (> 25°)
* Hohe [[Dachneigung]] (> 25°)  
* Helle Farbe der Dacheindeckung oder Abdichtungsbahn
|
* Flachdachabdichtung diffusionsdicht
* Große Dämmschichtdicken
* Kaltes Klima, z. B. im Gebirge
|-
* Große Dämmschichtdicken
|
* Zusätzliche Schichten oberhalb der Abdichtung (Begrünungen, Terrassenbeläge usw.)
* Helle Farbe der [[Dacheindeckung]] oder Abdichtungsbahn  
|
* Kies-/Gründachschichten oberhalb der Abdichtung
|
* Diffusionsdichtes [[Unterdach]]
|}
Um den Einfluss der Dampfbremse auf das Bauschadensfreiheitspotenzial zu verdeutlichen, wird in der Berechnung ein diffusionsdichtes [[Unterdach]] angenommen. Zudem können im Winter diffusionsoffene Unterdeckungen durch gefrierendes Tauwasser zu [[Dampfsperre]]n werden.


==== Klimadaten Standort Holzkirchen ====
Um den Einfluss des Diffusionswiderstandes der Dampfbremsen oder -sperren auf das Bauschadens-Freiheits-Potenzial zu ermitteln, wird in den Berechnungen auf der Außenseite eine diffusionsdichte Abdichtungsbahn (s<sub>d</sub>-Wert = 300 m) angenommen. Dieser Ansatz kann während der kalten Wintertemperaturen (bei Minusgraden) dazu verwendet werden, um den Einfluss von Vereisungen und damit diffusionsdichter Unterdeck- und Unterspannbahnen auf den Feuchtegehalt innerhalb der Konstruktion zu ermitteln.
Holzkirchen liegt zwischen München und Salzburg auf einer Seehöhe von 680 m mit einem rauen, kalten Klima. Für die Klimarandbedingungen wurde aus dem [[Wufi]] das Feuchtereferenzjahr ausgewählt, welches ein besonders feuchtes und kaltes Jahr abbildet. Die Diagramme zeigen die Temperaturverläufe über ein Jahr. Die blaue Linie zeigt die Innen-, die roten Balken die Außentemperaturen. (Siehe Abb. 12 - 15)
----


Unter Berücksichtigung der Sonnen und Globalstrahlung ergibt sich, verglichen mit der Lufttemperatur, eine z. T. wesentlich höhere Dachoberflächentemperatur. Wenn die Außentemperatur (rot) die Innentemperatur (blau) überschreitet, findet bei feuchtevariablen Dampfbremsen eine Austrocknung nach innen statt. Selbst bei Nordausrichtung ist dadurch in Holzkirchen an vielen Tagen im Jahr eine [[Rücktrocknungspotenzial|Rückdiffusion]] möglich, bei Südorientierung bereits im Winter an sonnigen Tagen. Im vorliegenden Berechnungsfall wurde der ungünstigste Fall angenommen: Nordausrichtung des Daches mit 40° Neigung.  
==== Klimadaten Standort Holzkirchen ==== 
Holzkirchen liegt südlich von München auf einer Seehöhe von 680 m mit einem kalten, rauen Klima. Für die Klimarandbedingungen wurde aus das Feuchtereferenzjahr des
Fraunhofer Instituts für Bauphysik ausgewählt, welches ein besonders feuchtes und kaltes Jahr abbildet. Die links dargestellten Diagramme zeigen die Temperaturverläufe über ein Jahr. Die blaue Linie zeigt die Innen-, die rote die Außentemperaturen (siehe Abb. 12 bis 15). <br />
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| colspan="4" | '''Temperaturverläufe Holzkirchen, Höhe: 680 m über NN, Südbayern, Deutschland - Dach: rote Ziegel bzw. Kies'''
| colspan="4" | '''Jahrestemperaturverläufe Holzkirchen, Höhe: 680 m über NN, Südbayern, Deutschland - Dach: rote Ziegel bzw. Kies'''
|-
|-
| [[Bild:BPhys GD 2Studie 12_Lufttemperatur.jpg|center|thumb|210px|12. Lufttemperaturen (Feuchtereferenzklima)]]
| 12. Lufttemperaturen <br /> (Feuchtereferenzklima) [[Bild:BPhys GD 2Studie 12_Lufttemperatur.jpg|center|240px|12. Lufttemperaturen (Feuchtereferenzklima)]]
| [[Bild:BPhys GD 2Studie 13_Dachofltemp_N_40.jpg|center|thumb|210px|13. Dachoberflächentemperatur <br /> Nordseite, 40° Dachneigung]]
| 13. Dachoberflächentemperatur <br /> Nordseite, 40° Dachneigung [[Bild:BPhys GD 2Studie 13_Dachofltemp_N_40.jpg|center|240px|13. Dachoberflächentemperatur <br /> Nordseite, 40° Dachneigung]]
| [[Bild:BPhys GD 2Studie 14_Dachofltemp_S_40.jpg|center|thumb|210px|14. Dachoberflächentemperatur <br /> Südseite, 40° Dachneigung]]
| 14. Dachoberflächentemperatur <br /> Südseite, 40° Dachneigung [[Bild:BPhys GD 2Studie 14_Dachofltemp_S_40.jpg|center|240px|14. Dachoberflächentemperatur <br /> Südseite, 40° Dachneigung]]
| [[Bild:BPhys GD 2Studie 15_Dachofltemp_Kiesdach.jpg|center|thumb|210px|15. Dachoberflächentemperatur <br /> Kiesdach]]
| 15. Dachoberflächentemperatur <br /> Kiesdach [[Bild:BPhys GD 2Studie 15_Dachofltemp_Kiesdach.jpg|center|240px|15. Dachoberflächentemperatur <br /> Kiesdach]]
|}
|}
Unter Berücksichtigung der Globalstrahlung (direkte Sonneneinwirkung plus Streulicht) ergibt sich, verglichen mit der Lufttemperatur, eine z. T. wesentlich höhere  Dachoberflächentemperatur. Wenn die Außentemperatur (rot) die Innentemperatur (blau) überschreitet, findet in Konstruktionen mit feuchtevariablen Dampfbremsen eine Austrocknung nach innen statt. Selbst bei nordorientierten Steildächern ist dadurch in Holzkirchen an vielen Tagen im Jahr eine [[Rücktrocknungspotenzial|Rückdiffusion]] möglich, bei Südorientierung bereits im Winter an sonnigen Tagen. Im vorliegenden Berechnungsfall wurde der ungünstigste Fall angenommen: Nordausrichtung der Dachfläche mit 40° Neigung.
<br clear="all" />
<br clear="all" />


==== Bauschadensfreiheitspotenzial Steildach in Holzkirchen, Nordseite, 40° Dachneigung ====
==== Bauschadens-Freiheits-Potenzial Steildach in Holzkirchen, Nordseite, 40° Dachneigung ====
{{{TabH1/2 r}} Berechnung des Bauschadensfreiheitspotenzials <br /> Standort Holzkirchen, Dach
{{{TabH1/2 r}} Berechnung des Bauschadens-Freiheits-Potenzials <br /> Standort Holzkirchen, Dach
|-
|-
| align="center"|Angenommene zusätzl. Feuchtigkeit zu Beginn: 4.000 g/m² <br />
| align="center" width="450px" | Angenommene zusätzl. Feuchtigkeit zu Beginn: <br /> 4.000 g/m² Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
|-  
|-  
| [[Bild:BPhys GD 2Studie 16 BSFP N 40.jpg|center|thumb|300px|16. Bauschadensfreiheitspotenzial <br /> '''[[Steildach]]''', Nordseite, 40° Dachneigung]]
| 16. Bauschadens-Freiheits-Potenzial [[Steildach]], Nordseite, 40° Dachneigung [[Bild:BPhys GD 2Studie 16 BSFP N 40.jpg|center|400px|16. Bauschadens-Freiheits-Potenzial <br /> [[Steildach]], Nordseite, 40° Dachneigung]]
|-
|-
| [[Bild:BPhys GD 2Studie 17 BSFP Kiesdach.jpg|center|thumb|300px|17. Bauschadensfreiheitspotenzial <br /> '''[[Flachdach]]''' mit 5 cm Kies]]
| 17. Bauschadens-Freiheits-Potenzial [[Flachdach]] mit 5 cm Kies [[Bild:BPhys GD 2Studie 17 BSFP Kiesdach.jpg|center|400px|17. Bauschadens-Freiheits-Potenzial <br /> '''[[Flachdach]]''' mit 5 cm Kies]]
|-
|-
| [[Bild:BPhys GD 2Studie 18 BSFP Gruendach.jpg|center|thumb|300px|18. Bauschadensfreiheitspotenzial <br /> '''[[Gründach]]''' mit 10 cm Aufbau]]
| 18. Bauschadens-Freiheits-Potenzial [[Gründach]] mit 10 cm Aufbau [[Bild:BPhys GD 2Studie 18 BSFP Gruendach.jpg|center|400px|18. Bauschadens-Freiheits-Potenzial <br /> '''[[Gründach]]''' mit 10 cm Aufbau]]
|-
|-
| [[Bild:BPhys GD 2Studie 19 BSFP INTELLO und sd5.jpg|center|thumb|300px|19. BSFP mit INTELLO und s<sub>d</sub>-Wert 5 m: <br /> verschiedene Dämmdicken]]
| 19. BSFP mit INTELLO und richtungsabhängig variabler Dampfbremse: verschiedene Dämmdicken [[Bild:BPhys GD 2Studie 19 BSFP INTELLO und sd5.jpg|center|400px|19. BSFP mit INTELLO und richtungsabhängig variabler Dampfbremse: verschiedene Dämmdicken]]
|}
|}
Die Trocknungsgeschwindigkeit der erhöht angenommenen Anfangsfeuchtigkeit beschreibt das Bauschadensfreiheitspotenzial der Konstruktion gegenüber unvorhergesehener Feuchtigkeit ([[Konvektion]], [[Flankendiffusion]] etc.). Die Berechnungsergebnisse zeigen, dass die [[PE]]-Folie ([[sd-Wert|s<sub>d</sub>-Wert]] 100 m) keine Austrocknung der Feuchtigkeit in der 200 mm starken Dämmschicht ermöglicht. Feuchtigkeit, die sich in der [[Konstruktion]] befindet, kann nicht mehr entweichen. Bei einer [[Dampfbremse]] mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m bestehen nur geringe Trocknungsreserven. Die Konstruktion mit der pro clima [[DB+]] führt zu einer wesentlich schnelleren Austrocknung und weist erhebliche Sicherheitsreserven auf von 1800 g/m² x Jahr.
Die aus der Konstruktion innerhalb eines Jahres austrocknende Feuchtigkeitsmenge in g/m² beschreibt das Bauschadens-Freiheits-Potenzial und definiert damit die Höhe des Schutzes bei unvorhergesehen eingedrungener Feuchtigkeit (z. B. durch [[Konvektion]], [[Flankendiffusion]] usw.). Die Berechnungsergebnisse zeigen, dass die [[PE]]-Folie ([[sd-Wert|s<sub>d</sub>-Wert]] 100 m) keine signifikante Austrocknung der Feuchtigkeit aus der 200 mm starken Dämmschicht ermöglicht. In der Wärmedämmebene ausgefallenes Kondensat kann nicht mehr entweichen. Auch mit einer Dampfbremse mit einem konstanten s<sub>d</sub>-Wert von 5 m bestehen im Vergleich nur sehr geringe Trocknungsreserven. <br />
Für die richtungsabhängig variable [[Dampfbremse]] ergibt sich eine Trocknungsreserve von 1.700 g/m²·Jahr. Diese ist geringer als die der Konstruktion mit der pro clima [[DB+]]. Diese
verfügt über eine wesentlich höhere Austrocknung und weist erhebliche Sicherheitsreserven von 2.900 g/m²·Jahr auf.  <br />
Die Hochleistungs-Dampfbremse [[INTELLO]] bietet der Konstruktion das größte Sicherheitspotenzial. Innerhalb eines Jahres kann die Konstruktion gemäß den [[Delphin]]-Berechnungen ca. 3.500 g/m² Wasser austrocknen. (siehe Abb. 16).


Die Hochleistungs-Dampfbremse [[INTELLO]] bietet der Konstruktion das größte Sicherheitspotenzial. Innerhalb eines Jahres kann die Konstruktion gemäß den [[WUFI pro]] -Berechnungen mit ca. 3.400 g/m² Wasser pro Jahr belastet werden, ohne dass ein [[Bauschaden]] eintritt. (Siehe Abb. 16)
==== Bauschadens-Freiheits-Potenzial Flachdächer ====
Für die Berechnung von [[Gründach|Grün]]- und Kiesdächern stehen eine Reihe verschiedener Materialdatensätze für begrünte Dächer sowie einer für bekieste Konstruktionen zur Verfügung. Diese wurden auf der Grundlage von Messungen an verschiedenen Dachkonstruktionen an mehreren Standorten erstellt.
In den Datensätzen wird die zeitliche Veränderung einer begrünten bzw. bekiesten Konstruktion berücksichtigt. So sind z. B. verändernde Effekte aus dem Bewuchs (Verschattung durch Pflanzenbewuchs) im Datensatz enthalten. 
Damit sind zuverlässige Simulationen der hygrothermischen Verhältnisse in und unter Gründächern bzw. Kiesdächern bei beliebigen Nutzungen in Mitteleuropa möglich.


==== Bauschadensfreiheitspotenzial Flachdächer ====
===== Bekiestes Flachdach =====  
Für die Berechnung von [[Gründach|Grün]]- und Kiesdächern stehen aktuell überarbeitete Datensätze vom [[Fraunhofer Gesellschaft|Fraunhofer-Institut für Bauphysik]] (IBP) zur Verfügung. Diese wurden auf der Grundlage von Messungen an verschiedenen begrünten und bekiesten Dachkonstruktionen an mehreren Standorten erstellt.
Das bekieste Flachdach weist geringere Sicherheiten auf als das Steildach, da der Kies über der Abdichtung nur langsam durchwärmt wird. Als Folge stellt sich eine verzögerte Erwärmung
 
der darunter liegenden Bauteilschichten inklusive der Dämmebene ein. Abb. 13 bis 15 zeigen die Temperaturen einer nord- bzw. südorientierten Steildachkonstruktion im Vergleich zu einem bekiesten Flachdach. <br />
Neu ist, dass die zeitliche Veränderungen einer begrünten bzw. bekiesten Konstruktion stärker berücksichtigt wurden. So sind z. B. eine stärkere Berücksichtigung von Effekten aus dem Bewuchs (Verschattung durch Pflanzenbewuchs (Gräser)) bereits im Datensatz enthalten. Das Fraunhofer IBP kennzeichnet diese als den aktuellen Stand der Forschung.
Besonders deutlich wird der Unterschied bei dem nach Süden ausgerichteten Steildach. Aber auch das nordorientierte Steildach weist ca. 8-10 °C höhere Spitzentemperaturen als das bekieste Flachdach auf. Wie beim Steildach besteht beim Kiesdach mit [[PE]]-Folie keine Austrocknung aufgrund des hohen [[sd-Wert|s<sub>d</sub>-Wert]]es von 100 m. Auch die Dampfbremse mit einem konstanten s<sub>d</sub>-Wert von 5 m bietet keine nennenswerten [[Rücktrocknung]]ssicherheiten. <br />
 
Dies ist eine Folge der verringerten Bauteiltemperaturen, welche die Rückdiffusion reduzieren. Bereits bei geringen unvorhergesehenen Feuchtebelastungen ist ein Bauschaden unvermeidbar. Die richtungsabhängig feuchtevariable Dampfbremse bietet eine mögliche Austrocknung von 1.200 g/m²·Jahr.  <br />
===== Bekiestes Flachdach =====
Die Konstruktion mit der pro clima [[DB+]] verfügt über ein höheres Bauschadens-Freiheits-Potenzial von 1.700 g/m²·Jahr. Obwohl die Oberflächentemperatur des Kiesdachs deutlich reduziert ist, bietet die Hochleistungs-Dampfbremse [[INTELLO Familie|INTELLO]] der Konstruktion im Vergleich ein sehr hohes Sicherheitspotenzial. Innerhalb eines Jahres kann das betrachtete Bauteil gemäß den [[Delphin]]-Berechnungen ca. 2.200 g/m² Wasser austrocknen (siehe Abb. 17).
Das bekieste Flachdach weist geringere Sicherheiten auf als das Steildach, da die Bauteilschichten (Kies) über der Wärmedämmung nur langsam durchwärmt
werden. <br />
Als Folge stellt sich eine geringere Durchwärmung der darunter liegenden Bauteilschichten inklusive der Dämmebene ein. Die Abb. 3-5 zeigen die Temperaturen
einer nord- bzw. südgeneigten Steildachkonstruktion im Vergleich zu einem bekiesten Flachdach. Besonders deutlich wird der Unterschied bei dem südgeneigten Steildach, aber auch das nordorientierte Steildach hat ca. 8-10 °C höhere Spitzentemperaturen als das bekieste Flachdach.
 
Wie beim Steildach besteht beim Kiesdach mit der [[PE]]-Folie keine Austrocknung aufgrund des mit 100 m [[sd-Wert|s<sub>d</sub>-Wert]] hohen Diffusionswiderstandes. Auch die Dampfbremse mit dem konstanten s<sub>d</sub>-Wert von 5 m bietet in dieser Kiesdachkonstruktion keine [[Rücktrocknung]]ssicherheiten.<br />
Dies ist eine Folge der verringerten Bauteiltemperaturen, welche die Rückdiffusion reduzieren. Bereits bei geringen unvorhergesehenen Feuchtebelastungen
entsteht ein Bauschaden.
 
Dahingegen verfügt die Konstruktion mit der pro clima [[DB+]] über ein Bauschadensfreiheitspotenzial von 700 g/m² x Jahr. Obwohl die Oberflächentemperturen des Kiesdaches deutlich reduziert sind, bietet die Hochleistungs-Dampfbremse [[INTELLO]] der Konstruktion ein ansehnliches Sicherheitspotenzial. Innerhalb eines Jahres kann das Bauteil gemäß den [[WUFI pro]]-Berechnungen pro Jahr mit ca. 1.500 g/m² Wasser belastet werden, ohne dass ein Bauschaden eintritt. (Siehe Abb. 17)


===== Begrüntes Flachdach =====
===== Begrüntes Flachdach =====
[[Gründach|Begrünte Flachdachkonstruktionen]] verhalten sich aufgrund der dicken Substratschicht und den darin gespeicherten Wassermengen nochmals etwas träger als die Variante mit Kiesschüttung. Die Temperaturen auf der Abdichtungsbahn erreichen im Sommer Maximalwerte von 35-40 °C. Trotzdem verfügt die unbeschattete Konstruktion mit 200 mm Dämmstärke und einer [[INTELLO]] bzw. [[INTELLO PLUS]] über ein Bauschadensfreiheitspotenzial von 700 g/m² x Jahr. Das Bauteil verfügt über ausreichende Sicherheiten bei einem unvorhergesehenen Feuchteeintrag. Hier wird der berücksichtigte Einfluss aus dem Bewuchs (Verschattung) und die dadurch im Datensatz enthaltene Sicherheit deutlich. Für begrünte Flachdächer sind die [[INTELLO]] und [[INTELLO PLUS]] die erste Wahl. Die [[DB+]] bietet für Gründachkonstruktionen ausreichende Bauschadensfreiheitspotenziale bis zu einer Höhenlage von 400 m ü. NN.
Begrünte Flachdachkonstruktionen verhalten sich aufgrund der dicken Substratschicht und den darin gespeicherten Wassermengen nochmals etwas träger als die Variante mit Kiesschüttung.
Die Temperaturen auf der Abdichtungsbahn erreichen im Sommer Maximalwerte von 35-40 °C. Trotzdem verfügt die unbeschattete Konstruktion mit 200 mm Dämmstärke und einer INTELLO über ein Bauschadens-Freiheits-Potenzial von 1.200 g/m²·Jahr (siehe Abb. 18).  <br />
Das Bauteil verfügt über ausreichende Sicherheiten bei unvorhergesehenem Feuchteeintrag. Hier wird der berücksichtigte Einfluss aus dem Bewuchs (Verschattung) und die dadurch im
Datensatz enthaltene Sicherheit deutlich. Die Bauschadens-Freiheits-Potential der [[DB+]] ist zwar nur geringfügig geringer, jedoch ist die INTELLO aufgrund der zügigeren Austrocknung über die Jahre betrachtet für die anspruchsvollen Gründachkonstruktionen die bessere Alternative. <br />
Die richtungsabhängig variable Dampfbremse sowie die Dampfbremse mit einem s<sub>d</sub>-Wert von 5 m liegen unter 1.000 g/m²·Jahr (siehe Abb. 18) und verfügen demnach über deutlich geringere Rücktrocknungsreserven im Vergleich. Für begrünte Flachdächer ist eine Bahn aus der [[INTELLO-Familie]] aufgrund der höheren Reserven die bessere Wahl.


==== Einfluss der Dämmschichtdicke ====
==== Einfluss der Dämmschichtdicke ====
In den letzten Jahren hat sich nicht zuletzt durch die regelmäßig steigenden Anforderungen der [[Energieeinsparverordnung]] die Stärke der eingebauten
In den letzten Jahren hat sich nicht zuletzt durch die regelmäßig steigenden Anforderungen der [[Energieeinsparverordnung|Energieeinspar-Gesetzgebung]] die Stärke der eingebauten Dämmschichten erhöht. Konstruktionen mit Dämmdicken von 300 mm oder mehr, die bei konventionellen Gebäuden in der Vergangenheit nur äußerst selten verwendet wurden, treten in immer größerer Anzahl auf. Hoch wärmegedämmte Konstruktionen haben ein reduziertes Bauschadens-Freiheits-Potenzial. Der Hintergrund ist, dass bei steigender Dämmdicke die Durchwärmung des Bauteils zögerlicher verläuft. Dadurch wird der Vorgang der Verdunstung von unvorhergesehenen Feuchteeinträgen verlangsamt. Da die Außenklimabedingungen jedoch identisch bleiben, sinken die Rücktrocknungsmengen auf ein Jahr bezogen.
Dämmschichten erhöht. Dämmstärken von 300 mm oder mehr, die bei konventionellen Gebäuden in der Vergangenheit nur äußerst selten verwendet wurden, treten in immer größerer Zahl auf. <br />
Hoch wärmegedämmte Konstruktionen haben ein reduziertes Bauschadensfreiheitspotenzial. Der Hintergrund ist, dass bei steigender Dämmdicke die Durchwärmung des Bauteils zögerlicher verläuft. Dadurch wird der Vorgang der Verdunstung von unvorhergesehenen Feuchteeinträgen verlangsamt. Da die Außenklimabedingungen
jedoch identisch bleiben, sinken die Rücktrocknungsmengen auf ein Jahr bezogen.


[[INTELLO]]: <br />
'''INTELLO:''' <br />
Abb. 19 zeigt das Bauschadensfreiheitspotenzial der oben vorgestellten Konstruktion mit der INTELLO mit den Dämmstärken 200, 300 und 400 mm.
Abb. 19 zeigt das Bauschadens-Freiheits-Potenzial der oben vorgestellten Konstruktion mit der [[INTELLO-Familie|INTELLO]] mit den Dämmstärken 200, 300 und 400 mm. <br />
Bei 200 mm Dämmdicke beträgt das Bauschadens-Freiheits-Potenzial ca. 3.500, bei 300 mm ca. 3.000 und bei 400 mm noch 2.600 g/m²·Jahr.


Bei 200 mm Dämmdicke beträgt das Bauschadensfreiheitspotenzial ca. 3400, bei 300 mm ca. 3000 und bei 400 mm noch 2500 g/m² x Jahr.
'''DB+:''' <br />
Auch bei der [[DB+]] hat die Dämmdicke einen Einfluss auf das Bauschadens-Freiheits-Potenzial. Die Konstruktion mit der DB+ verfügt bei 200 mm Dämmung über ein Bauschadens-Freiheits-Potenzial von 2.900 g/m²·Jahr, bei 300 mm von 1.900 g/m²·Jahr und bei 400 mm Dämmschichtdicke über ein Bauschadens-Freiheits-Potenzial von 1.600 g/m²·Jahr (ohne Abb.).


[[DB+]]: <br />
'''Richtungsabhängig variable Dampfbremse:''' <br />
Auch bei der DB+ hat die Dämmdicke einen Einfluss auf das Bauschadensfreiheitspotenzial. Die Konstruktion mit der DB+ verfügt bei 200 mm Dämmung über
Im Vergleich mit der [[INTELLO]] und der [[DB+]] bietet diese Dampfbremse insgesamt ein geringeres Sicherheitspotential. Bei 200 mm liegt es bei 1.800, bei 300 mm bei 1.700 und bei 400 mm bei 1.600 g/m²·Jahr (siehe Abb. 19).
ein Bauschadensfreiheitspotenzial von von 1800 g/m² x Jahr, bei 300 mm von 900 g/m² x Jahr und bei 400 mm Dämmschichtdicke über ein Bauschadensfreiheitspotenzial von 700 g/m² x Jahr.
'''
s<sub>d</sub>-Wert 5 m:''' <br />
Bei 200 mm Dämmdicke hat die Konstruktion mit der Dampfbremse mit dem konstanten s<sub>d</sub>-Wert von 5 m bereits ein sehr geringes Bauschadens-Freiheits-Potenzial. Bei höheren Dämmdicken sinkt dieses nochmals. Jedoch sind die Sicherheiten bereits bei geringen Dämmdicken so gering, dass eine Verwendung bei außen diffusionsdichten Bauteilen sowohl bei geringen als auch bei hohen Dämmdicken nicht empfehlenswert ist (ohne Abb.).


s<sub>d</sub>-Wert 5 m: <br />
'''Für die INTELLO-Familie und die DB+ gilt demnach:''' <br />
Bei 200 mm Dämmstärke hat die Konstruktion mit der Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m bereits ein sehr geringes Bauschadensfreiheitspotenzial.
Auch bei nordorientierten, außen diffusionsdichten Steildachkonstruktionen (DN 40°) mit hohen Dämmdicken und roten Dachziegeln sind Bauteile ausreichend sicher und bieten im Vergleich die größten Bauschadens-Freiheits-Potentiale. Unterstützung bei der feuchtetechnischen Bemessung von Steildächern, Bahnendächern sowie Flachdächern mit zusätzlichen Bauteilschichten oberhalb der Abdichtungsbahn (z. B. Bekiesungen, Begrünungen, Terrassenbelägen) bietet die [[Technik-Hotline|technische Hotline]] von pro clima.
Bei höheren Dämmdicken sinkt dieses nochmals. Jedoch sind die Sicherheiten bereits bei geringen Dämmschichtdicken so gering, dass eine Verwendung bei außen diffusionsdichten Bauteilen sowohl bei geringen als auch bei hohen Dämmdicken nicht empfehlenswert ist. (Siehe Abb. 19)
 
Für die [[INTELLO]] und die [[DB+]] gilt demnach: <br />
Auch bei nordorientierten außen diffusionsdichten Steildachkonstruktionen (40°) mit hohen Dämmstärken und roten Dachziegeln sind Bauteile ausreichend sicher für Höhenlagen bis 1000 m (DB+) bzw. 1600 m (INTELLO).
 
Bekieste oder begrünte Konstruktionen sollten bei hohen Dämmschichtdicken im Einzelfall betrachtet werden.
<br clear="all" />
<br clear="all" />
 
----


==== Klimadaten Standort Davos ====
==== Klimadaten Standort Davos ====
Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 20 - 23)
Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 20 - 23)  
 
Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Innenraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein. In nordgeneigten [[Dach|Dächern]] sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine [[Rücktrocknungspotenzial|Rückdiffusion]] möglich. Bei südgeneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht. <br />
Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.
 
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
| colspan="4" | ''' Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies'''
| colspan="4" | ''' Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies'''
|- valign="top"
|-  
| [[Bild:BPhys GD 2Studie 20 lufttemp.jpg|center|thumb|210px|20. Lufttemperatur <br /> (Davos, kalt)]]
| 20. Lufttemperatur <br /> (Davos, kalt) [[Bild:BPhys GD 2Studie 20 lufttemp.jpg|center|240px|20. Lufttemperatur <br /> (Davos, kalt)]]
| [[Bild:BPhys GD 2Studie 21 Dachofl N40.jpg|center|thumb|210px|21. Dachoberflächentemperatur<br /> Nordseite, 40° Dachneigung]]
| 21. Dachoberflächentemperatur<br /> Nordseite, 40° Dachneigung [[Bild:BPhys GD 2Studie 21 Dachofl N40.jpg|center|240px|21. Dachoberflächentemperatur<br /> Nordseite, 40° Dachneigung]]
| [[Bild:BPhys GD 2Studie 22 Dachofl S40.jpg|center|thumb|210px|22. Dachoberflächentemperatur<br /> Südseite, 40° Dachneigung]]
| 22. Dachoberflächentemperatur<br /> Südseite, 40° Dachneigung [[Bild:BPhys GD 2Studie 22 Dachofl S40.jpg|center|240px|22. Dachoberflächentemperatur<br /> Südseite, 40° Dachneigung]]
| [[Bild:BPhys GD 2Studie 23 Dachofl Kies.jpg|center|thumb|210px|23. Dachoberflächentemperatur<br /> Kiesdach]]
| 23. Dachoberflächentemperatur<br /> Kiesdach [[Bild:BPhys GD 2Studie 23 Dachofl Kies.jpg|center|240px|23. Dachoberflächentemperatur<br /> Kiesdach]]
|}
|}
Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Inneraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein. <br />
In nordorientierten Dächern sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine [[Rücktrocknungspotenzial|Rückdiffusion]] möglich. Bei nach Süden geneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht. Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.
<br clear="all" />
<br clear="all" />


==== Bauschadensfreiheitspotenzial Steildach in Davos, Nordseite, 40° Dachneigung ====
==== Bauschadens-Freiheits-Potenzial Steildach in Davos, Nordseite, 40° Dachneigung ====
{{{TabH1/2 r}} Berechnung des Bauschadensfreiheitspotenzials <br /> Standort Davos, Dach
{{{TabH1/2 r}} Berechnung des Bauschadens-Freiheits-Potenzials <br /> Standort Davos, Dach
|-
|-
| colspan="2" align="center"|Angenommene zusätzl. Feuchtigkeit zu Beginn: 4.000 g/m²  
| align="center" width="450px" |Angenommene zusätzl. Feuchtigkeit zu Beginn: <br /> 4.000 g/m² Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
 
Feuchtegehalt der Konstruktion im Trockenzustand <br /> (= Feuchtigkeitsgehalt der [[Holzschalung]] bei 15 %): 1.700 g/m²
|-  
|-  
|[[Bild:BPhys GD 2Studie 24 BSFP N 40.jpg|center|thumb|350px|24. Bauschadensfreiheitspotenzial <br /> Steildach, Nordseite, 40° Dachneigung]]
| 24. Bauschadens-Freiheits-Potenzial [[Steildach]], Nordseite, 40° Dachneigung [[Bild:BPhys GD 2Studie 24 BSFP N 40.jpg|center|400px|24. Bauschadens-Freiheits-Potenzial <br /> Steildach, Nordseite, 40° Dachneigung]]
|-
|-
|[[Bild:BPhys GD 2Studie 25 BSFP Kiesdach.jpg|center|thumb|350px|25. Bauschadensfreiheitspotenzial <br /> Gründach und Kiesdach]]
| 25. Bauschadens-Freiheits-Potenzial Kiesdach [[Bild:BPhys GD 2Studie 25 BSFP Kiesdach.jpg|center|400px|25. Bauschadens-Freiheits-Potenzial <br /> Kiesdach]]
|}
|}
Für die Berechnung wurde, um die Sonneneinstrahlung zu minimieren, ebenfalls der ungünstigste Fall angenommen, d. h. eine Nordausrichtung des Daches mit 40° Neigung und roter Ziegeldeckung. Die äußerst niedrige Temperatur im Winter führt zu einem hohen [[Tauwasser]]ausfall, so dass sich sogar die Konstruktion mit der [[PE]]-Folie auffeuchtet, auch wenn man annimmt, dass keine unvorhergesehene Feuchtebelastung gegeben ist. Bei einer Dampfbremse mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ist kein Bauschadensfreiheitspotenzial ablesbar. Das Bauschadensfreiheitspotenzial der Konstruktion mit der [[DB+]] ist zu gering - die Austrocknung nicht ausreichend. <br />
Für die Berechnung wurde, um die Sonneneinstrahlung zu minimieren, ebenfalls der ungünstigste Fall angenommen, d. h. eine Nordausrichtung des Daches mit 40° Neigung und roter Ziegeldeckung. Die äußerst niedrige Temperatur im Winter führt zu einem hohen [[Tauwasser]]ausfall, so dass sich sogar die Konstruktion mit der [[PE]]-Folie auffeuchtet, auch wenn man annimmt, dass keine unvorhergesehene Feuchtebelastung gegeben ist. Bei einer Dampfbremse mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ist kein Bauschadens-Freiheits-Potenzial ablesbar. Die Dampfbremse mit dem richtungsabhängig variablen Diffusionswiderstand ermöglicht nur eine vergleichsweise geringes Bauschadens-Freiheits-Potenzial von 1.300 g/m². Das Bauschadens-Freiheits-Potenzial der Konstruktion mit der [[DB+]] liegt da mit ca. 1.800 g/m² Rücktrocknung darüber. <br />
Nur die Hochleistungs-Dampfbremse [[INTELLO]] bietet eine bauphysikalisch einwandfreie Konstruktion und zusätzlich ein Sicherheitspotenzial. Innerhalb eines Jahres kann die Konstruktion gemäß den [[WUFI pro]]-Berechnungen bis ca. 1300 g/m² Wasser pro Jahr belastet werden, ohne dass ein Bauschaden eintritt. (Siehe Abb. 25)
Die Hochleistungs-Dampfbremse [[INTELLO-Familie|INTELLO]] bietet eine bauphysikalisch einwandfreie Konstruktion und ein zusätzliches Sicherheitspotenzial. <br />
Innerhalb eines Jahres kann die Konstruktion gemäß den [[Delphin]] Berechnungsergebnissen 2.400 g/m² Wasser austrocknen (siehe Abb. 24).


==== Bauschadensfreiheitspotenzial Gründach und Flachdach ====
==== Bauschadens-Freiheits-Potenzial Kiesdach und Gründach ====
Für das anspruchsvolle Gebirgsklima von Davos sind die Rücktrocknungsreserven mit den aktuellen Kiesdach- und Gründachdatensätzen nicht ausreichend. <br />
Für das anspruchsvolle Gebirgsklima von Davos sind die Rücktrocknungsreserven mit den aktuellen Kiesdach- und Gründachdatensätzen nicht ausreichend. <br />
Die [[INTELLO]] bietet zwar eine minimale Reserve, jedoch ist diese mit 200 g/m² pro Jahr zu gering bemessen. (Siehe Abb. 25) <br />
Für das Kiesdach bietet die [[INTELLO Familie|INTELLO]] zwar eine minimale Reserve von 800 g/m²·Jahr, diese ist jedoch zu gering bemessen (siehe Abb. 25). <br />
Für diese Bauteile müssen in Gebirgslagen die Traghölzer in Abhängigkeit von einer objektbezogenen Berechnung teilweise oder vollständig überdämmt werden. Bitte sprechen Sie die technische Hotline von pro clima an.
Das Bauschadens-Freiheits-Potential mit der richtungsabhängig variablen Dampfbremse liegt mit 500 g/m²·Jahr nochmals darunter. Die [[DB+]] bzw. die Dampfbremse mit dem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m bieten für dieses Bauteil keine signifikanten Sicherheiten. <br />
Bei der begrünten Dachkonstruktion wiederum sind die Bauschadens-Freiheits-Potentiale für den Standort Davos für alle Konstruktionen geringer.
Für diese Bauteile müssen in Gebirgslagen die Traghölzer in Abhängigkeit von einer objektbezogenen Berechnung teilweise oder vollständig überdämmt werden. Bitte sprechen Sie die [[Technik-Hotline|technische Hotline]] von pro clima an.


==== Schlussfolgerungen Bauschadensfreiheitspotenzial ====
==== Schlussfolgerungen Bauschadens-Freiheits-Potenzial ====
Mit den pro clima Dampfbrems- und Luftdichtungsbahnen [[INTELLO]]/[[INTELLO PLUS]] und [[DB+]] können für die mit einer Dämmschichtdicke/Dämmdicke von 200 mm berechneten Steildachkonstruktionen für Gebäudehöhenlagen bis 1000 m ü. NN sehr hohe Bauschadensfreiheitspotenziale realisiert werden. Auch bei zusätzlicher [[Feuchtigkeit]] durch unvorhergesehene Einflüsse bleiben die Konstruktionen bauschadensfrei. [[Flankendiffusion]] bei einem Ziegelmauerwerk, wie von Ruhe<ref name="Qu_04" /> , Klopfer<ref name="Qu_05" /><ref name="Qu_06" /> und Künzel<ref name="Qu_07" /> beschrieben, können [[INTELLO]], [[INTELLO PLUS]] und [[DB+]] kompensieren, sollten aber bei großen Höhenlagen durch eine entsprechende Detailplanung vermieden werden. Die pro clima [[DB+]] hat sich seit über 20 Jahren in kritischen Konstruktionen mit ihrer Bauschadensfreiheit bewährt.  
Mit den pro clima Dampfbrems- und Luftdichtungsbahnen der [[INTELLO Familie|INTELLO-Familie]] und der [[DB+]] können für die mit einer Dämmschichtdicke von 200 mm berechneten Steildachkonstruktionen für Gebäudehöhenlagen bis 700 m ü. NN sehr hohe Bauschadens-Freiheits-Potenziale realisiert werden. Auch bei zusätzlicher [[Feuchtigkeit]] durch unvorhergesehene Einflüsse bleiben die Konstruktionen bauschadenfrei. <br />
[[Flankendiffusion]] bei einem Ziegelmauerwerk, wie von Ruhe<ref name="Qu_04" />, Klopfer<ref name="Qu_05" /><ref name="Qu_06" /> und Künzel<ref name="Qu_07" /> beschrieben, können die [[INTELLO Familie|INTELLO]]-Bahnen und die [[DB+]] kompensieren, sollten aber bei großen Höhenlagen durch eine entsprechende Detailplanung vermieden werden. Die pro clima INTELLO und DB+ haben sich in in der langjährigen Anwendung (INTELLO > 20 Jahre, DB+ > 30 Jahre) in vielen Mio. m² in kritischen Konstruktionen durch hohe Bauschadens-Freiheits-Potenziale bewährt.


Auch beim Einsatz in bekiesten Dachkonstruktionen gemäß Abb. 11 sind hohe Sicherheiten für Höhenlagen wie in Holzkirchen vorhanden, welche die Bauschadensfreiheit der Bauteile fördern. <br />
Der Einsatz der feuchtevariablen Dampfbremsen vor pro clima sorgt in bekiesten Dachkonstruktionen gemäß Abb. 11 für hohe Sicherheiten in Holzkirchen. Diese fördern die [[Bauschadens-Freiheits-Potenzial|Bauschadensfreiheit]] der Bauteile. <br />
Gründachkonstruktionen können in diesen Lagen mit der [[INTELLO]] und [[INTELLO PLUS]] für sichere Bauteile sorgen. Mit der [[DB+]] liegt die maximale Höhenlage bei 400 m. <br />
Die Bahnen der [[INTELLO Familie|INTELLO-Familie]] können für dieses Klima auch in Gründachkonstruktionen für sichere Bauteile sorgen. Die Dicke der Dämmschicht nimmt Einfluss auf die Bauschadensfreiheit.
In Gebirgslagen haben außen diffusionsdichte Steildächer mit [[INTELLO]] ein ausreichendes Bauschadensfreiheitspotenzial. Auch hier hat die Dicke der Dämmschicht einen Einfluss auf die Bauschadensfreiheit. Gemäß den Berechnungsbeispielen sind für Steildächer die Sicherheiten für die gebräuchlichen
Gemäß den Berechnungsbeispielen sind für Steildächer die Rücktrocknungssicherheiten für die gebräuchlichen Dämmdicken bis 400 mm ausreichend hoch.
Dämmdicken bis 400 mm ausreichend hoch. Bei Grün- und Kiesdächern kann es in Abhängigkeit der gewünschten Dämmdicke erforderlich sein, die Gesamtdämmung in einen Teil zwischen den Traghölzern und einen Teil oberhalb der Tragkonstruktion anzuordnen. Für diese Konstruktionen kann die technische Hotline von pro clima objektbezogene Bauteilfreigaben erstellen.
In Gebirgslagen bis 1.600 m ü. NN verfügen außen diffusionsdichte Steildächer mit einer der [[INTELLO Familie|INTELLO]]-Bahnen ein ausreichendes Bauschadens-Freiheits-Potenzial.
 
Bei nicht hinterlüfteten Flachdächern mit Dämmung zwischen den Traghölzern ist es empfehlenswert, die Gesamtdämmung in einen Teil zwischen den Traghölzern und einen Teil oberhalb der Tragkonstruktion aufzuteilen. Für diese Konstruktionen kann die [[Technik-Hotline|technische Hotline]] von pro clima objektbezogene Bauteilbeurteilungen erstellen. Richtungsabhängig variable Dampfbremsen verfügen im Vergleich aller Konstruktionen mit der einer Bahn aus der INTELLO-Familie bzw. der DB+ über geringere Bauschadens-Freiheits-Potenziale. Dies liegt darin begründet, dass sie im feuchten Bereich einen erhöhten Diffusionswiderstand aufweisen, der nach [[DIN 4108-3]] als diffusionshemmend (dampfbremsend) bezeichnet wird.  
Nach Möglichkeit sollten Flachdachkonstruktionen ohne zusätzliche Bauteilschichten außen geplant werden. Besonders hohe Sicherheiten haben unverschattete Bauteile mit schwarzen Bahnen (a ≥ 80 %). <br clear="all" />
Dieser behindert die Austrocknung unvorhergesehen eingedrungener Feuchtigkeitsmengen. <br />
Bezogen auf das Bauschadens-Freiheits-Potenzial liegen die möglichen Rücktrocknungsreserven pro Jahr bezogen auf die betrachteten Konstruktionen jeweils ca. 40 % unterhalb denen mit den pro clima Hochleistungs-Dampfbremsen mit dem INTELLO-Funktionsfilm.
<br clear="all" />


=== Ermittlung der Gebrauchstauglichkeit ===
=== Ermittlung der Gebrauchstauglichkeit ===
{{{TabH1/2 r}} Gebrauchstauglichkeit  
{{{TabH1/2 r}} Ermittlung der Gebrauchstauglichkeit für Bauteile nach Abb. 11
|-
|-
|[[Bild:BPhys GD 2Studie 26 Gebrtglk 40-400.jpg|center|thumb|350px|26. Gebrauchstauglichkeit von Steildachkonstruktionen <br /> <small>(40°/bis 400 mm Dämmung/Holzkirchen)</small>]]
|align="center" width="450px" | 26. Gebrauchstauglichkeit Steildach (40°/ Mineralwolle 035 (INTELLO 400 mm; DB+ 200 mm) / Holzkirchen) [[Bild:BPhys GD 2Studie 26 Gebrtglk 40-400.jpg|center|400px|26. Gebrauchstauglichkeit Steildach (40°/ Mineralwolle 035 (INTELLO 400 mm; DB+ 200 mm) / Holzkirchen)</small>]]
|-
|-
|[[Bild:BPhys GD 2Studie 27 Gebrtglk Kies 300.jpg|center|thumb|350px|27. Gebrauchstauglichkeit Kiesdächer <br /> <small>(bis 300 mm Dämmung/Holzkirchen)</small>]]
| 27. Gebrauchstauglichkeit Kiesdächer (Mineralwolle 035 (INTELLO 300 mm; DB+ 200 mm) / Holzkirchen) [[Bild:BPhys GD 2Studie 27 Gebrtglk Kies 300.jpg|center|400px|27. Gebrauchstauglichkeit Kiesdächer (Mineralwolle 035 (INTELLO 300 mm; DB+ 200 mm) / Holzkirchen)</small>]]
|-
|-
|[[Bild:BPhys GD 2Studie 28 Gebrtglk Gruen 200.jpg|center|thumb|350px|28. Gebrauchstauglichkeit Gründächer <br /> <small>(bis 200 mm Dämmung/Holzkirchen)</small>]]
| 28. Gebrauchstauglichkeit Gründächer (Mineralwolle 035 (INTELLO 200 mm; DB+ 180 mm) / Holzkirchen) [[Bild:BPhys GD 2Studie 28 Gebrtglk Gruen 200.jpg|center|400px|28. Gebrauchstauglichkeit Gründächer (Mineralwolle 035 (INTELLO 200 mm; DB+ 180 mm) / Holzkirchen) </small>]]
|}
|}
Neben dem Bauschadensfreiheitspotenzial ist es weiterhin entscheidend, welche Feuchtigkeitsgehalte sich im Bauteil im Gebrauchszustand einstellen.
Neben dem Bauschadens-Freiheits-Potenzial ist es weiterhin entscheidend, welche Feuchtigkeitsgehalte sich im Bauteil im Gebrauchszustand einstellen. Bei einer feuchtetechnischen Bemessung wird zunächst ermittelt, welche Schichten im Bauteil einer kritischen Betrachtung unterzogen werden müssen. Im Regelfall sind diese Schichten außen angeordnete Holzschalungen oder Holzwerkstoffplatten (OSB- oder 3-Schicht-Platten). Sind diese identifiziert werden instationäre Berechnungen durchgeführt und das Bauteil im Bemessungsprozess erforderlichenfalls so lange durch eine wachsende Zusatzdämmung oberhalb der Tragkonstruktion ergänzt bis sich die Feuchtegehalte in der oder den kritischen Schichten unterhalb von zulässigen Werten einstellen.
Die Gebrauchstauglichkeit einer Konstruktion ist neben der Schichtenfolge von der Lage des geplanten Bauwerkes abhängig. So ist eine Konstruktion im Voralpenland (Holzkirchen) widrigeren Klimabedingungen ausgesetzt als in der norddeutschen Tiefebene. Die Berechnungen zur Gebrauchstauglichkeit werden hier mit WUFI pro durchgeführt.
 
==== Verfahren zur Bemessung ====
Für eine feuchtetechnische Bemessung ist es sinnvoll, Feuchteeinträge durch unvermeidbare Restleckagen (Konvektion) zu berücksichtigen.
Dazu bietet WUFI pro die Möglichkeit mithilfe des Luftinfiltrationsmodells den Feuchteeintrag infolge Konvektion in die Wärmedämmebene zu simulieren. Der Maßstab ist der hüllflächenbezogene Luftwechsel q<sub>50</sub>, der sich nicht wie der n<sub>50</sub>-Wert auf das Volumen, sondern auf die Außenhülle eines Gebäudes bezieht. Der q<sub>50</sub>- und der [[Luftwechselrate|n<sub>50</sub>-Wert]] sind bis zu einem A/V-Verhältnis (Hüllfläche zu Volumen des betrachteten Gebäudes) von 0,9 1/m in etwa zahlengleich. Bei kleineren A/V-Verhältnissen sinkt der q<sub>50</sub>-Wert im Vergleich zum [[Luftwechselrate|n<sub>50</sub>-Wert]] (z. B. A/V = 0,7 1/m: q<sub>50</sub>-Wert = 2,3 m³/m²·h bei n<sub>50</sub> = 3 1/h) (vgl. <ref name="Qu_09" />).
 
Das '''Luftinfiltrationsmodell''' unterscheidet standardmäßig drei Luftdichtigkeitsklassen (A, B, C), welche einem q<sub>50</sub>-Wert von 1 m³/m²·h (Klasse A), 3 m³/m²·h (Klasse B) und 5 m³/m²·h (Klasse C) entsprechen. Klasse A kann bei vorelementierten Bauteilen bzw. bei geprüfter Luftdichtheit mit Leckageortung, Klasse B bei geprüfter Luftdichtheit und Klasse C bei Konstruktionen mit ungeprüfter Luftdichtheit angenommen werden, um die unvorhergesehene Feuchtelast durch Leckagen zu simulieren. <br />
Für eine maximal sichere Konstruktion sollte bei jedem Bauteil eine [[Luftdichtheitsprüfung]] mit Leckageortung durchgeführt werden. Dann kann die Luftdichtigkeitsklasse A für den Nachweis
verwendet werden. Die folgenden Untersuchungen und die abgeleiteten Gebrauchstauglichkeiten beziehen sich auf Wärmedämmungen aus Mineral- oder Steinwolle WLG 035. <br />
Die Randbedingungen der Berechnung und die Bewertung der Ergebnisse erfolgt nach den Empfehlungen des WTA-Merkblattes 6-8<ref name="Qu_10" /> für die konstruktiven Aspekte (Abschnitt 6.4b). <br />
Aus Gründen der Bauteilsicherheit kann es bereits in der Planungsphase sinnvoll sein, eine Zusatzdämmung oberhalb der ersten Abdichtungsbahn anzuordnen. Auch wenn diese aus bauphysikalischer Sicht nicht erforderlich ist, bietet sie u.a. den Vorteil, dass Feuchtigkeit z. B. durch eine undichte äußere Abdichtung nicht in die Ebene des Holztragwerkes gelangen kann.
Dieses bleibt somit geschützt. Grundsätzlich ist eine regelmäßig Begehung (Wartung) aller Konstruktionen empfehlenswert.


==== Nachweisverfahren ====
==== Gebrauchstauglichkeit außen diffusionsdichtes Steildach ====
Für eine feuchtetechnische Bemessung ist es sinnvoll, Feuchteeinträge durch Konvektion zu berücksichtigen. Dazu bietet WUFI pro die Möglichkeit mithilfe des Luftinfiltrationsmodells des [[Fraunhofer Gesellschaft|Fraunhofer-Instituts für Bauphysik]]. Dieses simuliert den Feuchteeintrag infolge [[Konvektion]] in die Wärmedämmebene. Der Maßstab ist der hüllflächenbezogene [[Luftwechselrate|Luftwechsel]] q<sub>50</sub>, der sich nicht wie der [[Luftwechselrate|n<sub>50</sub>-Wert]] auf das Volumen, sondern auf die Außenhülle eines Gebäudes bezieht. <br />
Für die beispielhafte Ermittlung der Gebrauchstauglichkeit in Holzkirchen wurde die Steildachkonstruktion aus Abb. 11 mit roten engobierten Dachziegeln mit pro clima [[INTELLO Familie|INTELLO]] und mit pro clima [[DB+]] betrachtet. <br />
Das Luftinfiltrationsmodell unterscheidet standardmäßig drei Luftdichtigkeitsklassen (A, B, C), welche einem q<sub>50</sub>-Wert von 1 m³/m²h (Klasse A), 3 m³/m²h (Klasse B) und 5 m³/m²h (Klasse C) entsprechen. <br />
Dazu wurde die Konstruktion mit der INTELLO mit einer Dämmschichtdicke von 400 mm Mineralwolle berechnet. Das Bauteil mit der DB+ verfügt über eine Dämmschichtdicke von 200 mm Mineralwolle. Die Wufi pro Berechnungen erfolgten unter Ansatz der 3 Luftdichtigkeitsklassen und einer Höhe der gedämmten Gebäudehülle von 5 m. <br />
Klasse A kann bei vorelementierten Bauteilen bzw. bei geprüfter Luftdichtheit mit Leckageortung, Klasse B bei geprüfter Luftdichtheit und Klasse C bei Konstruktionen mit ungeprüfter Luftdichtheit verwendet werden, um die unvorhergesehene Feuchtelast durch Leckagen zu simulieren. Für eine maximal sichere
Die maßgebend kritische Schicht in diesen Bauteilen ist die Fichtenschalung unterhalb der Abdichtung. Abb. 26 zeigt die Feuchtegehalte in der 24 mm starken Schalung über einen Zeitraum von 10 Jahren. Auf der sicheren Seite liegend ist es entscheidend, dass in der Fichtenschalung die Feuchtegehalte unterhalb von 20 % liegen (bei Holzwerkstoffplatten liegt die Grenze bei 18 %). Dann ist das Bauteil im Gebrauchszustand funktionsfähig. <br />
Konstruktion sollte an jedem Bauteil eine [[Luftdichtheitsprüfung]] mit Leckageortung durchgeführt werden. Dann kann die Luftdichtigkeitsklasse A für den Nachweis verwendet werden. Die folgenden Untersuchungen und die abgeleiteten Gebrauchstauglichkeiten beziehen sich auf Wärmedämmungen aus Mineral- oder Steinwolle WLG 035.
Mit der [[INTELLO Familie|INTELLO]] weist die Fichtenschalung der Konstruktion bei Berechnungen mit allen 3 Luftdichtigkeitsklassen keine erhöhten Materialfeuchtigkeiten auf – die Gebrauchstauglichkeit ist damit für alle Luftdichtheitsklassen bestätigt. Darüber hinaus sind noch Reserven für weitere unvorhergesehene Feuchtebelastungen vorhanden. Die Verwendung einer [[DB+]] hat in der gleichen Konstruktion höhere rel. Holzfeuchtigkeiten in der Fichtenschalung zur Folge. Bei geprüfter Luftdichtheit mit Leckageortung (LDK A) kann die DB+ in Holzkirchen bis zu einer Dämmschichtdicke von 200 mm Mineralwolle als Luftdichtungs- und Dampfbremsebene eingesetzt werden. Bei den Luftdichtigkeitsklassen B und C werden 20 % Holzfeuchte in der Schalung planmäßig überschritten. Die Färbung der äußeren Ziegeldeckung hat einen erheblichen Einfluss auf die Bauteilerwärmung von außen. Für die Konstruktion mit der DB+ können mattschwarze Dachziegel eine Erhöhung der Mineralwolldämmschicht, bzw. Luftdichtigkeitsklasse B ermöglichen. Dieses muss im Einzelfall gesondert nachgewiesen werden.


==== Gebrauchstauglichkeit von Steildachkonstruktionen ====
==== Gebrauchstauglichkeit bekiestes Flachdach ====
Für die Ermittlung der Gebrauchstauglichkeit wurde die Steildachkonstruktion aus Abb. 11 in Holzkirchen bei einer Dämmschichtdicke von 400 mm mit den 3 Luftdichtigkeitsklassen mit dem Klima von Holzkirchen berechnet. Variiert wurden außerdem die Dampfbrems- und Luftdichtungsebenen - es kamen zum Einsatz die pro clima [[INTELLO]] und eine Dampfbremse mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m. <br />
Die bekieste Dachkonstruktion wurde wie bei den Steildachkonstruktionen sowohl mit der [[INTELLO Familie|INTELLO]] als auch mit der [[DB+]] berechnet. Die Konstruktion mit der INTELLO weist eine Dämmstärke der Mineralwolle von 300 mm, die mit der DB+ von 200 mm auf. Der Feuchtegehalt der Fichtenschalung in diesem Bauteil unterschreitet beim Einsatz der INTELLO den maximal zulässigen Wert von 20 %, so dass für diese Konstruktionen die Gebrauchstauglichkeit bestätigt ist (siehe Abb. 27). <br />
Abb. 26 zeigt die Feuchtegehalte in der 20 mm starken Fichtenschalung unterhalb der Bitumenbahn über einen Zeitraum von 10 Jahren. Nach aktuell vorherrschender Lehrmeinung ist entscheidend, dass in der unter der Abdichtung vorhandenen Fichtenschalung die Feuchtegehalte unterhalb von 20 % (OSB-Platten 18 %) liegen, dann gilt die Bauteilsicherheit als ausreichend. <br />
Die Konstruktion mit der DB+ lässt sich für diesen Fall nur für die Luftdichtigkeitsklasse A nachweisen. Die Luftdichtigkeitsklassen B und C führen für den Standort Holzkirchen zu rel. Feuchtegehalten von über 20 % in der äußeren Fichtenschalung. Konstruktionen mit der DB+ lassen sich mit höheren Dämmstärken oder abweichender Luftdichtheitsklasse für das Klima in Holzkirchen nur mit zusätzlichen Aufdachdämmungen realisieren.
Mit der [[INTELLO]] hat die Konstruktion bei der Berechnung mit allen 3 Luftdichtigkeitsklassen keine erhöhten [[Materialfeuchtigkeit]]en - die Gebrauchstauglichkeit ist bestätigt. Darüber hinaus sind noch weitere Sicherheiten vor unvorhergesehenen Feuchtebelastungen vorhanden. Die Dampfbremse mit dem [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m hat in der gleichen Konstruktion deutlich höhere rel. Holzfeuchtigkeiten in der Fichtenschalung zur Folge. Mit der Luftdichtigkeitsklasse C werden 20 % [[Holzfeuchte]] in der Schalung überschritten. Bereits geringfügige, weitere unvorhergesehene Feuchtelasten können schnell zu Feuchtegehalten über 20 % führen. Damit ist ein Bauschaden deutlich wahrscheinlicher.


==== Gebrauchstauglichkeit von Kiesdachkonstruktionen ====
==== Gebrauchstauglichkeit begrüntes Flachdach ====
Die bekieste Dachkonstruktion wurde analog zur Konstruktion aus Abb. 11 mit einer Dämmdicke von 300 mm für das Klima in Holzkirchen berechnet. Der [[Feuchtegehalt]] der Fichtenschalung in diesem Bauteil unterschreitet beim Einsatz der [[INTELLO]] die oben angegebenen 20 %, so dass bei dieser Konstruktion die Gebrauchstauglichkeit bestätigt ist (siehe Abb. 27). <br />
Gründachkonstruktionen können mit [[INTELLO Familie|INTELLO]] für das Klima in Holzkirchen bei einer Dämmdicke von 200 mm Mineralwolle WLG 035 gemäß Abb. 11 bemessen werden (siehe Abb. 28). Dazu ist es erforderlich, dass die Luftdichtheit überprüft und eine Leckageortung durchgeführt wird (Luftdichtigkeitsklasse A), damit Feuchteeinträge durch Konvektion vermieden werden. Die anderen Luftdichtheitsklassen führen in der Bemessung zu höheren konvektiven Feuchteeinträgen. In der Folge steigt die Feuchtigkeit in der Schalung auf über 20 %. Um dies zu vermeiden kann eine zusätzliche Aufdachdämmung vorgesehen werden. <br />
Kiesdächer mit Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m bestehen diese Gebrauchstauglichkeitsprüfung nicht. Die Feuchtegehalte der Fichtenschalung liegen bei allen Luftdichtigkeitsklassen deutlich oberhalb von 20 %. Diese Kombinationen sind nicht empfehlenswert. <br />
Der Einsatz einer DB+ ohne Zusatzdämmung oberhalb der ersten äußeren Abdichtungsbahn ist bei den betrachteten Gründächern nicht empfehlenswert.
Größere Dämmstärken können es erforderlich machen, dass ein Teil der Dämmung oberhalb der Tragkonstruktion angeordnet und feuchtetechnisch von der Dämmung zwischen der Tragkonstruktion getrennt werden muss. Sind höhere Dämmstärken geplant, sprechen Sie bitte die technische Hotline von pro clima an.


==== Gebrauchstauglichkeit von Gründachkonstruktionen ====
Gründachkonstruktionen können mit der [[INTELLO]] und [[INTELLO PLUS]] für das Klima in Holzkirchen bei einer Dämmdicke von 200 mm gemäß Abb. 11 bestätigt werden. Dazu muss die Luftdichtungsebene sorgfältig verlegt und verklebt werden - im Anschluss muss eine Überprüfung mittels Unterdrucktest und Leckageortung erfolgen, um konvektive Feuchteeinträge zu vermeiden. <br />
Soll das Gebäude in einer größeren Höhenlage oder mit einer größeren Dämmdicke errichtet werden, kann es erforderlich sein, einen Teil der Dämmebene oberhalb  der Tragkonstruktion anzuordnen. Bitte wenden Sie sich in diesem Fall an die technische Hotline von pro clima. <br />
Der Einsatz einer Dampfbremse mit einem konstanten [[sd-Wert|s<sub>d</sub>-Wert]] von 5 m ist bei den betrachteten Gründächern nicht empfehlenswert. (Siehe Abb. 28)
==== Schlussfolgerungen Gebrauchstauglichkeit ====
==== Schlussfolgerungen Gebrauchstauglichkeit ====
Die Gebrauchstauglichkeit von außen diffusionsdichten Steildächern (40° Dachneigung), bekiesten oder begrünten Flachdachkonstruktionen wurde für den Standort Holzkirchen bis zu den in den Berechnungen angegebenen Dämmschichtdicken mit Mineralwolle WLG&nbsp;035 und Fichtenschalungen bestätigt. <br />
Die Gebrauchstauglichkeit von außen diffusionsdichten Steildächern (40° Dachneigung), bekiesten oder begrünten Flachdachkonstruktionen wurde für den Standort Holzkirchen bis zu den in den jeweils angegebenen Dämmschichtdicken mit Mineralwolle WLG&nbsp;035 und Fichtenschalung rechnerisch nachgewiesen.<br />
Abweichende Konstruktionen können bei der technischen Hotline von pro&nbsp;clima angefragt werden. Dampfbremsen mit konstanten [[sd-Wert|s<sub>d</sub>-Wert]]en (hier 5 m) führen im Vergleich beim Steildach zu deutlich erhöhten Materialfeuchten. Bei den betrachteten Kies- und Gründächern mit Fichtenschalungen wird die 20 %-Grenze z.&nbsp;T. deutlich überschritten, so dass ein Bauschaden unter den angenommenen Randbedingungen wahrscheinlich ist.  
Abweichende Konstruktionen (höhere Dämmschichtdicken, Holzwerkstoffplatten statt Schalungen, sorptive Dämmstoffe statt Mineralwolle) und andere Lagen (Städte/Orte, Verschattungen) können aus bauphysikalischer Sicht die Anordnung einer zusätzlichen Aufdachdämmung mit zweiter Abdichtungsebene erfordern. Grundsätzlich wirkt sich diese bei allen vollgedämmten Flachdächern positiv
auf die Bauteilsicherheit aus, da die doppelte Abdichtung das Tragwerk vor Feuchtigkeitseintritt von außen schützt, sollte eine Leckage in der oberen Abdichtung entstehen. Bei allen Dächern (z. B. Bahnendächer, bekiesten und begrünten Konstruktionen) ist zudem die jährliche Wartung (Inspektion) empfehlenswert, um die Funktion der Dachkonstruktion inklusive aller Abflüsse sicherzustellen. <br />
Grundsätzlich ist es sinnvoll die Gebrauchstauglichkeit von Konstruktionen mit außen diffusionsdichten Bauteilschichten durch einen Bauphysiker überprüfen zu lassen. Bitte wenden Sie sich zur Überprüfung und Bemessung von Bauteilen an die [[Technik-Hotline|technische Hotline]] von pro clima.


Alle Gebrauchtauglichkeitsberechnungen setzen voraus, dass die Konstruktionen unverschattet sind. <br />
 
In allen Bauteilen ist es entscheidend, dass die [[Luftdichtheit]] mittels [[Luftdichtheitsprüfung|Unterdrucktest und Leckageortung]] überprüft wird, um Feuchteeintrag durch [[Konvektion]] zu vermeiden.
----


=== Flankendiffusion ===
=== Flankendiffusion ===
{|align="right" width="260" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"  
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1" id="ganz_oben"
| '''29. Konstruktionsaufbau'''
|+ id="Ü-id" | '''2-dimensionale Berechnung der Wärme- und Feuchteströme mit WUFI 2D'''
|- id="K-id"
| '''29. Konstruktionsaufbau: Einbindende Wand'''
|-
|-
|[[Bild:BPhys_GD_2Studie_26_komstruktionsaufbau.jpg|center|200px|]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys_GD_2Studie_26_komstruktionsaufbau.jpg|center|400px|]] <br />
|- style="font-size:90%;"  
|-
| Einbindende Wand
| '''30. Feuchteerhöhung mit einer [[PE]]-Folie <br /> &nbsp; &nbsp; &nbsp; ⇒ Auffeuchtung = Bauschaden'''
|}
Für die Ermittlung des Einflusses des Feuchteeintrages über Bauteilflanken wird der Anschluss einer einbindenden Außenwand an eine Wärmedämmkonstruktion betrachtet. Die Konstruktion verfügt auf der Außenseite im [[Unterdach]]bereich über eine diffusionsdichte Bitumendachbahn. (Siehe Abb. 29)
 
Mauerwerk hat einen geringeren [[Diffusionswiderstand]] als die Dampfbrems- und Luftdichtungsebene der angrenzenden Holzbaukonstruktion. Dadurch ist es möglich, dass die Diffusion von Feuchtigkeit über diese Flanke in die Wärmedämmkonstruktion erfolgt. Für dieses Beispiel wird eine Neubausituation gewählt. Das Mauerwerk und die Putzschicht verfügen über einen dann üblichen Feuchtegehalt vom 30 kg/m³. Der faserförmige Wärmedämmstoff ist trocken eingebaut, die rel. Holzfeuchtigkeit der Dachschalung liegt bei 15 %. <br />
Als Dampfbrems- und Luftdichtungsebene wird bei einer Konstruktion eine diffusionshemmende [[PE]]-Folie ([[sd-Wert|s<sub>d</sub>-Wert]] 100 m) eingesetzt, bei einer zweiten Konstruktion die feuchtevariable pro clima [[INTELLO]] ([[sd-Wert|s<sub>d</sub>-Wert]] 0,25 bis über 10 m).
<br clear="all" />
 
==== Ergebnisse der 2-dimensionalen Simulationsberechnung ====
{|align="right" width="260" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
|class="hintergrundfarbe2"| '''30. Feuchteerhöhung mit einer <br /> [[PE]]-Folie >>> <br /> Auffeuchtung = Bauschaden'''
|-
|-
|class="hintergrundfarbe2"| '''Feuchtereduzierung mit der <br /> [[INTELLO]] >>> <br /> Austrocknung = [[Bauschadensfreiheit]]'''
| &nbsp; &nbsp; &nbsp; '''Feuchtereduzierung mit der [[INTELLO]] <br /> &nbsp; &nbsp; &nbsp; ⇒ Austrocknung = [[Bauschadensfreiheit]]'''
|-
|-
|[[Bild:BPhys_GD_2Studie_27_Flankendiffusion.jpg|center|260px|]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys_GD_2Studie_27_Flankendiffusion.jpg|center|400px|]] <br />
|-
|-
|style="background:#CD071E; border: 2px solid #CD071E; color: #FFF;" |'''Ansteigender Feuchtegehalt im <br /> Bauteil mit [[PE]]-Folie <br /> s<sub>d</sub>-Wert = 100 m konstant'''
| height="60px" align="center" style="background:#CD071E; border: 2px solid #CD071E; color: #FFF;" |'''Ansteigender Feuchtegehalt im Bauteil mit <br /> PE-Folie s<sub>d</sub>-Wert = 100 m konstant'''
|-
|-
|style="background:#CCD200; border: 2px solid #CCD200; color: #FFF;" |'''Abnehmender Feuchtegehalt im <br /> Bauteil mit pro clima [[INTELLO]] <br /> s<sub>d</sub>-Wert = <br /> 0,25 bis > 10 m [[Feuchtevariabilität|feuchtevariabel]]'''
| height="60px" align="center" style="background:#CCD200; border: 2px solid #CCD200; color: #FFF;" |'''Abnehmender Feuchtegehalt im Bauteil mit <br /> pro clima INTELLO s<sub>d</sub>-Wert = 0,25 bis > 25 m feuchtevariabel'''
|}
|}
Wird eine derartige Konstruktion mit dem 2-dimensionalen Berechnungsverfahren für Wärme- und Feuchteströme, welches in [[WUFI 2D]] implementiert ist, berechnet, kommt es zu folgendem Ergebnis: (Siehe Abb. 30) <br />
Für die Ermittlung des Einflusses des Feuchteeintrages über Bauteilflanken wird der Anschluss einer einbindenden Innenwand an eine Wärmedämmkonstruktion betrachtet. Die Konstruktion verfügt auf der Außenseite über eine diffusionsdichte Bitumendachbahn (siehe Abb. 29). <br />
Nach einem jahreszeitlich bedingten Anstieg des Feuchtegehaltes in beiden Konstruktionen befinden sich beide auf einem annähernd gleich hohen Niveau.
Mauerwerk hat einen geringeren Diffusionswiderstand als die Dampfbrems- und Luftdichtungsebene der angrenzenden Holzbaukonstruktion. Dadurch findet über die Flanke eine stärkere Diffusion von Feuchtigkeit in die Wärmedämmkonstruktion statt, als in den angrenzenden Bereichen mit Dampfbremse.  <br />
Bei der Variante mit der [[PE]]-Folie als Luftdichtungs- und Dampfbremsebene ist über den betrachteten Zeitraum von 4 Jahren in jedem Jahr eine deutliche Steigerung des Gesamtwassergehaltes zu beobachten (roter Graph). In dieser Konstruktion kommt es zu einer Akkumulation von Feuchtigkeit in den verwendeten Baustoffen, da keine Rücktrocknung durch die PE-Folie in Richtung Innenraum möglich ist. Die Folge: [[Schimmel]]bildung auf dem Holz bzw. beginnende Verrottung. <br />
Für dieses Beispiel wird eine Neubausituation gewählt. Das Mauerwerk und die Putzschicht verfügen über einen dann üblichen Feuchtegehalt vom 30 kg/m³. Der faserförmige Wärmedämmstoff ist trocken eingebaut. Die rel. Holzfeuchtigkeit der Dachschalung liegt bei 15 %. <br />
Bei der Konstruktion mit der Hochleistungs-Dampfbremse [[INTELLO]] kann die enthaltene Feuchtigkeit nach innen entweichen. Das Bauteil ist vor Feuchtigkeitsansammlung geschützt – diese wird zügig in den Innenraum abgegeben (grüner Graph). Dadurch sinkt der Feuchtegehalt stetig über den Betrachtungszeitraum von 4 Jahren.  
Als Dampfbrems- und Luftdichtungsebene wird bei einer Variante eine diffusionshemmende PE-Folie (s<sub>d</sub>-Wert 100 m) eingesetzt, bei einer zweiten die feuchtevariable pro clima INTELLO (s<sub>d</sub>-Wert 0,25 bis über 25 m).


Die Konstruktionen mit [[INTELLO]] und [[DB+]] verfügen über eine hohes Bauschadensfreiheitspotenzial.
==== Ergebnisse der 2-dimensionalen Simulationsberechnung ====
Wird eine derartige Konstruktion mit dem 2-dimensionalen Berechnungsverfahren für Wärme- und Feuchteströme, welches in [[WUFI 2D]] implementiert ist, berechnet, kommt es zu folgendem Ergebnis (siehe Abb. 30): <br />
Nach einem jahreszeitlich bedingten Anstieg des Feuchtegehaltes in beiden Konstruktionen befinden sich beide auf einem annähernd gleich hohen Niveau. <br />
Bei der Variante mit [[PE]]-Folie als Luftdichtungs- und Dampfbremsebene ist über den betrachteten Zeitraum von 4 Jahren in jedem Jahr eine deutliche Steigerung des Gesamtwassergehaltes zu beobachten (roter Graph). In dieser Konstruktion kommt es zu einer Akkumulation von Feuchtigkeit in den verwendeten Baustoffen, da keine Rücktrocknung durch die PE-Folie in Richtung Innenraum möglich ist. Die Folge: [[Schimmel]]bildung auf dem Holz bzw. beginnende Holzzerstörung. <br />
Bei der Konstruktion mit der Hochleistungs-Dampfbremse [[INTELLO]] kann die enthaltene Feuchtigkeit nach innen entweichen. Das Bauteil ist vor Feuchtigkeitsansammlungen geschützt – diese wird zügig in den Innenraum abgegeben (grüner Graph). Dadurch sinkt der Feuchtegehalt stetig über den Betrachtungszeitraum.  <br />
Die Konstruktionen mit INTELLO und DB+ verfügen über ein hohes Bauschadens-Freiheits-Potenzial.


==== Schlussfolgerung bei Flankendiffusion ====
==== Schlussfolgerung bei Flankendiffusion ====
Feuchteeinträge durch [[Flankendiffusion]] bei einer in die Wärmedämmkonstruktion einbindenden Innenwand, wie von Ruhe<ref name="Qu_05" /> , Klopfer<ref name="Qu_06" /><ref name="Qu_07" /> und Künzel<ref name="Qu_08" /> beschrieben, können durch [[INTELLO]] und [[DB+]] wieder aus dem Bauteil entweichen. <br />
Feuchteeinträge durch [[Flankendiffusion]] bei einer in die Wärmedämmkonstruktion einbindenden Innenwand, wie von Ruhe<ref name="Qu_05" /> , Klopfer<ref name="Qu_06" /><ref name="Qu_07" /> und Künzel<ref name="Qu_08" /> beschrieben, können durch [[INTELLO Familie|INTELLO]] und [[DB+]] wieder aus dem Bauteil entweichen. <br /> Bei Konstruktionen mit geringem Bauschadens-Freiheits-Potenzial sollten Flankendiffusionsvorgänge konstruktiv vermieden werden.
Bei Konstruktionen mit geringem Bauschadensfreiheitspotenzial sollen Flankendiffusionsvorgänge konstruktiv vermieden werden.
<br clear="all" />
<br clear="all" />




==== Wandkonstruktionen ====
==== Wandkonstruktionen ====
{{{TabH1/2 r}} Temperaturverläufe Holzkirchen und Davos <br />Wand, Putzfassade hell
{{{TabH1/2 r}} Temperaturverläufe Wand, Putzfassade hell
|-
|-
! colspan="2"| Holzkirchen
| colspan="2" align="center" width="466px" | '''Holzkirchen'''
|-
|-
| [[Bild:BPhys GD 2Studie 31 Wandtemp N Holzk.jpg|center|thumb|220px|31. Wandtemperatur Nordseite]]
| 31. Wandtemperatur Nordseite [[Bild:BPhys GD 2Studie 31 Wandtemp N Holzk.jpg|center|220px|31. Wandtemperatur Nordseite]]
| [[Bild:BPhys GD 2Studie 32 Wandtemp S Holzk.jpg|center|thumb|220px|32. Wandtemperatur Südseite]]
| 32. Wandtemperatur Südseite [[Bild:BPhys GD 2Studie 32 Wandtemp S Holzk.jpg|center|220px|32. Wandtemperatur Südseite]]
|-
|-
! colspan="2"| Davos
colspan="2" align="center" | '''Davos'''
|-
|-
| [[Bild:BPhys GD 2Studie 33 Wandtemp N Davos.jpg|center|thumb|220px|33. Wandtemperatur Nordseite]]
| 33. Wandtemperatur Nordseite [[Bild:BPhys GD 2Studie 33 Wandtemp N Davos.jpg|center|220px|33. Wandtemperatur Nordseite]]
| [[Bild:BPhys GD 2Studie 34 Wandtemp S Davos.jpg|center|thumb|220px|34. Wandtemperatur Südseite]]
| 34. Wandtemperatur Südseite [[Bild:BPhys GD 2Studie 34 Wandtemp S Davos.jpg|center|220px|34. Wandtemperatur Südseite]]
|}
|}
Wandkonstruktionen haben durch ihre senkrechte Ausrichtung eine geringere Sonnenlichtabsorption als Dächer. Daher ist das [[Rücktrocknungspotenzial]] geringer. Im Regelfall sind [[Wand|Wände]] im Gegensatz zu [[Dach|Dächern]] außenseitig nicht diffusionsdicht. Es werden keine Bitumendachbahnen verwendet. Eine hohe Anforderung an Wasserdichtigkeit, wie z. B. bei [[Flachdach|Flachdächer]]n und [[Gründach|Gründächer]]n, im Wandbereich existiert nicht. Temperaturen in der Außenwand hängen im Wesentlichen von der Farbe der Fassade ab. Auf hellen Fassaden werden durch die Sonneneinstrahlung niedrigere Temperaturen erreicht als auf dunkleren Fassaden. Die dargestellten Temperaturprofile auf der Außenwand entstehen bei normal hellen Putzfassaden. (Siehe Abb. 31 - 34)
Wandkonstruktionen erfahren durch ihre senkrechte Ausrichtung eine geringere Erwärmung durch die Sonne als Dächer. Daher ist das [[Rücktrocknungspotenzial]] geringer. Im Regelfall sind Wände im Gegensatz zu Dächern außenseitig nicht diffusionsdicht. Es werden keine Bitumenbahnen verwendet, da im Gegensatz z. B. zu [[Flachdach|Flachdächer]]n und [[Gründach|Gründächer]]n keine hohen Anforderungen an die Wasserdichtheit bestehen. <br />
Die Temperaturen in der Außenwand hängen im Wesentlichen von der Farbe der Fassade ab. Auf hellen Fassaden werden durch die Sonneneinstrahlung niedrigere Temperaturen erreicht als auf dunkleren Fassaden. Die dargestellten Temperaturprofile auf der Außenwand entstehen bei normal hellen Putzfassaden (siehe Abb. 31 bis 34). <br />
Die Hochleistungs-Dampfbremse [[INTELLO Familie|INTELLO]] bietet auch bei Wandkonstruktionen ein erhebliches Bauschadens-Freiheits-Potenzial.
Berechnungen mit [[Delphin]] mit dem Klima von Holzkirchen zeigen für eine nordorientierte Außenwand mit diffusionsdichter Außenbekleidung bei Verwendung von Bahnen mit dem INTELLO Funktionsfilm immer noch ein ausreichendes Sicherheitspotenzial. <br />


Die Hochleistungs-Dampfbremse [[INTELLO]] bietet auch bei Wandkonstruktionen ein erhebliches '''Bauschadensfreiheitspotenzial'''. Berechnungen mit [[WUFI pro]] mit dem Klima von Holzkirchen zeigen für eine nach Norden ausgerichtete Außenwand mit diffusiondichter Außenbekleidung in heller Farbe mit der [[INTELLO]] und [[INTELLO PLUS]] immer noch ein erhebliches Sicherheitspotenzial.
Damit sind die Bahnen aus der [[INTELLO Familie|INTELLO-Familie]] auch bei Holzwerkstoffplatten wie OSB- oder Spanplatten auf der Außenseite die ideale Lösung für ein hohes Bauschadens-Freiheits-Potenzial. Die Gefahr von [[Schimmel]]bildung wird deutlich verringert. <br />


Damit ist die INTELLO und die INTELLO PLUS auch bei außen vorhandenen [[Holzwerkstoffplatte]]n wie [[OSB]]- oder [[Spanplatte]]n die ideale Lösung für ein hohes Bauschadensfreiheitspotenzial. Die Gefahr von [[Schimmel]]bildung wird deutlich verringert.
Feuchteschutz ist eine Bemessungsaufgabe. Bitte wenden Sie sich dazu an einen Bauphysiker. pro clima bietet im Rahmen der [[Technik-Hotline|technischen Hotline]] die Beurteilung von Bauteilen an.
 
Auch in kälteren Klimaregionen bis zu Hochgebirgsstandorten wie Davos sind Wandkonstruktionen mit außenseitig der [[Dämmung]] befindlichen Bauteilschichten bis zu einem [[sd-Wert|s<sub>d</sub>-Wert]] von 3 m mit der Hochleistungs-Dampfbremse [[INTELLO]] sicher. <br />
Für [[DB+]] dürfen für das Klima Holzkirchen die außenseitig der Dämmung befindlichen Bauteile einen [[sd-Wert|s<sub>d</sub>-Wert]] von max. 6 m, für Davos max. 0,10 m haben.
<br clear="all" />
<br clear="all" />


== Konstruktionsempfehlungen ==
== Konstruktionsempfehlungen ==
=== Konstruktionen ===
=== Konstruktionen ===
{|align="right" width="260" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
{|align="right" width="480px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1" id="ganz_oben"  
|'''Voraussetzung für die Wirkung <br />[[Feuchtevariabilität|feuchtevariabler]] Dampfbremsen'''
|+ id="Ü-id" | '''Voraussetzung für die Wirkung feuchtevariabler Dampfbremsen'''
|- id="K-id"
| '''35. Innenseitig dürfen sich nur diffusionsoffene Bauteilschichten befinden, um eine Austrocknung von Feuchtigkeit durch die Rückdiffusion zum Innenraum nicht zu behindern.'''
|-
|-
|[[Bild:BPhys GD 2Studie 35.0 wintersommer.jpg|left|260px|]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2Studie 35.0 wintersommer.jpg|center|400px|]] <br />
|- style="font-size:90%;"
|-
|Innenseitig dürfen sich nur diffusionsoffene Bauteilschichten befinden, um eine Austrocknung von Feuchtigkeit durch die Rückdiffusion zum Innenraum nicht zu behindern.
| '''36. Schutz der Wärmedämmkonstruktion im Neubau und in der Bauphase'''
|-
| [[Bild:BPhys GD 2Studie 32 Diagr Hydrosafe intello db+.png|center|400px|]]
|-
| Der [[sd-Wert|s<sub>d</sub>-Wert]] der Bahnen stellt sich auf die unterschiedlichen Umgebungsfeuchten ein. <br /> Ein Hydrosafe-Wert zwischen 1,5 und 2,5 m schützt das Bauteil vor baubedingt erhöhter rel. Luftfeuchtigkeit. <br />  Gleichzeitig sichert er ein hohes Bauschadens-Freiheits-Potenzial von vollgedämmten Holzbaukonstruktionen.
|}
|}
Die bauphysikalischen Untersuchungen mit realen Klimadaten zeigen das enorm große [[Bauschadensfreiheitspotenzial]] für die Konstruktionen bei Verwendung der Hochleistungs-Dampfbremse pro clima [[INTELLO]], [[INTELLO PLUS]] und [[INTESANA]] mit dem besonders großen, in allen Klimabereichen wirksamenfeuchtevariablen Diffusionswiderstand und der seit 20 Jahren bewährten feuchtevariablen Dampfbremse pro clima [[DB+]]. <br />
Die bauphysikalischen Untersuchungen mit realen Klimadaten zeigen das enorm große Bauschadens-Freiheits-Potenzial für die Konstruktionen bei Verwendung der Hochleistungs-Dampfbremsen der pro clima [[INTELLO Familie]] mit dem besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand und der seit mehr als 25 Jahren bewährten feuchtevariablen Dampfbremse pro clima [[DB+]]. <br />
Mit den feuchtevariablen pro clima Dampfbremsen und Luftdichtungsbahnen erreichen die Konstruktionen auch bei erhöhten Feuchtebelastungen eine hohe Sicherheit gegen Bauschäden. Dazu dürfen Konstruktionen z. B. nicht durch Bäume, Gebäudesprünge bzw. Nachbargebäude, [[PV-Anlage]]n oder die Topografie beschattet werden.
Mit den feuchtevariablen pro clima Dampfbremsen und Luftdichtungsbahnen erreichen die Konstruktionen auch bei erhöhten Feuchtebelastungen eine hohe Sicherheit vor Bauschäden.
Bei der Feuchteschutzbemessung können neben den Auswirkungen außen diffusionsdichter Materialien zusätzliche Bauteilschichten oberhalb der Holzbaukonstruktionen, wie z. B. Begrünungen oder Bekiesungen, sowie Verschattungen durch Gebäude, Topografie oder [[PV-Anlage]]n usw. berücksichtigt werden. <br />
Bitte wenden Sie sich für eine Bemessung an einen Bauphysiker oder die [[Technik-Hotline|technische Hotline]] von pro clima.


=== Innenseitige Bekleidung ===
=== Innenseitige Bekleidung ===
Voraussetzung für die hohen Sicherheitsreserven ist die ungehinderte Austrocknung in den Innenraum. Innenseitig der feuchtevariablen Dampfbremse angeordnete Bekleidungen mit diffusionshemmender Wirkung, wie [[Holzwerkstoff]]e (z. B. [[OSB]]- oder [[Mehrschichtplatte]]n),reduzieren die [[Rücktrocknung]]smenge an [[Baufeuchte|Feuchtigkeit]] nach innen und verringern dadurch das Bauschadensfreiheitspotenzial. Vorteilhaft sind Materialien mit offener Struktur,z. B. Profilbrettschalungen, [[Holzwolle-Leichtbauplatte]]n mit Putz und Gipsbauplatten.
Voraussetzung für die hohen Sicherheitsreserven ist die ungehinderte Austrocknung in den Innenraum. Innenseitig der feuchtevariablen Dampfbremse angeordnete Bekleidungen mit diffusionshemmender Wirkung, wie Holzwerkstoffe (z. B. [[OSB]]- oder [[Mehrschichtplatte]]n), reduzieren die [[Rücktrocknung]]smenge an [[Baufeuchte|Feuchtigkeit]] nach innen und verringern dadurch das Bauschadens-Freiheits-Potenzial. <br />
Vorteilhaft sind diffusionsoffene Materialien, z. B. Profilbrettschalungen, [[Holzwolle-Leichtbauplatte]]n mit Putz und Gipsbauplatten.


Konstruktionen mit diffusionsdichten Bauteilschichten auf der Außenseite sollten ausschließlich mit diffusionsoffenen Innenbekleidungen kombiniert werden. Dann erhalten die Bauteile eine maximale Sicherheit vor einem Bauschaden.  
Konstruktionen mit diffusionsdichten Bauteilschichten auf der Außenseite sollten ausschließlich mit diffusionsoffenen Innenbekleidungen kombiniert werden. Dann erhalten die Bauteile maximale Sicherheit vor Bauschäden.


=== Permanent feuchte Räume ===
=== Permanent feuchte Räume ===
Feuchtevariable Dampfbremsen können nicht in dauerhaft feuchten Klimabedingungen, wie z. B. Schwimmbädern, Spas, Gärtnereien oder Großküchen, verwendet werden.
Feuchtevariable Dampfbremsen können nicht in dauerhaft feuchten Klimabedingungen, wie z. B. Schwimmbädern, Spas, Gärtnereien oder Großküchen, verwendet werden.


=== Wohn- und neubaubedingte Feuchtigkeit - Die 60/2-Regel ===
=== Neubauten: Trocknungsphase (60/2-Regel). ===
Durch Einhalten der 60/2-Regel werden Wärmedämmkonstruktionen in Neubauten, welche prinzipbedingt über eine erhöhte [[Luftfeuchtigkeit|Raumluftfeuchtigkeit]] verfügen, wirksam geschützt. Die pro clima [[DB+]] und [[INTELLO]] erfüllen beide diese Anforderung und fördern dadurch das hohe Bauschadensfreiheitspotenzial der Bauteile. <br clear="all" />
Durch Einhalten der 60/2-Regel werden Wärmedämmkonstruktionen in Neubauten, welche prinzipbedingt über eine erhöhte [[Luftfeuchtigkeit|Raumluftfeuchtigkeit]] verfügen, wirksam geschützt.
Die Membranen der [[INTELLO Familie|INTELLO-Familie]] und [[DB+]] erfüllen diese Anforderung und fördern dadurch das hohe Bauschadens-Freiheits-Potenzial der Bauteile.


=== Feuchträume in Wohnungen ===
=== Feuchträume in Wohnungen ===
{|align="right" width="260px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px;" class="rahmenfarbe1"
Während der Bauphase mit baubedingt erhöhten Raumluftfeuchten ist es ganz besonders wichtig, dass feuchtevariable Dampfbremsen einen ausreichend hohen Hydrosafe-Wert aufweisen. Nass- und Feuchträume in Wohngebäuden haben eine temporär erhöhte rel. Feuchtigkeit von 70 %. <br />
| '''35. Schutz der Wärmedämmkonstruktion <br /> im Neubau und in der Bauphase'''
Die feuchtevariablen Dampfbremsen mit dem INTELLO-Funktionsfilm und die DB+ bieten durch die Einhaltung der 60/2-Regel – bei 70 % Raumluftfeuchtigkeit und 50 % Feuchtigkeit in der Dämmebene
|-
(60 % mittlerer Feuchtigkeit) mit einem s<sub>d</sub>-Wert größer 2 m – auch für diese Räume optimalen Schutz. Damit ist die Konstruktion auch bei der bau- und wohnbedingten Neubaufeuchtigkeit ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingte [[Schimmel]]bildung geschützt (siehe Abb. 36).
|[[Bild:BPhys GD 2Studie 32 Diagr Diffusion Regeln.png|left|260px|]]
|- style="font-size:90%;"
|Der [[sd-Wert|s<sub>d</sub>-Wert]] der Bahnen stellt sich auf die unterschiedlichen Umgebungsfeuchten ein. Das Einhalten der 60/2 und 70/1,5-Regel sichert ein hohes Bauschadensfreiheitspotenzial der Wärmedämmkonstruktion.
|}
Nass- und Feuchträume in Wohngebäuden haben eine temporär erhöhte [[Luftfeuchtigkeit|rel. Feuchtigkeit]] von 70 %. Die feuchtevariablen Dampfbremsen proclima [[DB+]] und [[INTELLO]] bieten durch die Einhaltung der 60/2-Regel – bei 70 % [[Luftfeuchtigkeit|Raumluftfeuchtigkeit]] und 50 % Feuchtigkeit in der Dämmebene (60 % mittlerer Feuchtigkeit), einen [[sd-Wert|s<sub>d</sub>-Wert]] größer 2 m – auch für diese Räume einen optimalen Schutz. Damit ist die Konstruktion auch bei der bau- und wohnbedingten Neubaufeuchtigkeit ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingt vor [[Schimmel]]bildung geschützt. (Siehe Abb. 35)
 
=== Erhöhte Luftfeuchtigkeit in der Bauphase - Die 70/1,5-Regel ===
Die pro clima [[DB+]] und die [[INTELLO]] erfüllen beide die 70/1,5-Regel und bieten für das Bauteil in der Bauphase gegen die Feuchtebelastungen einen hohen Schutz. Die [[sd-Wert|s<sub>d</sub>-Werte]] sollten auch bei diesem erhöhten Feuchtigkeitsdruck oberhalb von 1,5 m liegen. <br />
[[INTELLO]] hat bei 70 % '''mittlerer''' rel. Luftfeuchtigkeit (90 % Raumluftfeuchtigkeit und 50 % Luftfeuchtigkeit in der Dämmung) einen [[sd-Wert|s<sub>d</sub>-Wert]] von ca. 2 m. (Siehe Abb. 35)
 
Dadurch haben Konstruktionen mit den feuchtevariablen Dampfbremsbahnen auch während der Bauphase einen guten Schutz gegen [[Schimmel]]bildung.  


Übermäßige [[Luftfeuchtigkeit]] während der Bauphase über einen zu langen Zeitraum kann grundsätzlich zu Auffeuchtungen in der Konstruktion führen. Feuchtigkeit soll zügig und konsequent durch stetiges Dauerlüften abgelüftet werden. Bautrockner helfen, die Feuchtelast zu verringern. Dauerhaft hohe relative Luftfeuchtigkeiten in der Bauphase werden dadurch vermieden.<br clear="all" />
=== Bauphase: Hydrosafe- Wert (70/1,5-Regel) ===
Der INTELLO-Funktionsfilm und die DB+ verfügen über einen Hydrosafe-Wert von über 2,0 m und bieten für das Bauteil in der Bauphase gegen die Feuchtebelastungen hohen Schutz (siehe Abb. 36). <br />
Dadurch verfügen Konstruktionen mit den feuchtevariablen Dampfbremsbahnen auch während der Bauphase über einen guten Schutz vor Schimmelbildung. <br />
Baufeuchte muss zügig und konsequent durch stetiges Dauerlüften abgeführt werden. Bautrockner helfen die Feuchtelast zu verringern. <br />
Die Reduzierung der Feuchtegehalte der feuchte eingebauten Materialien (Mauerwerk, Putz, Estrich, Beton usw.) ist nicht zuletzt deshalb wichtig, da dadurch Neubauschimmel auf Oberflächen verhindert werden kann.


=== Außen diffusionsoffen oder diffusionsdicht ? ===
=== Unterdach / Unterdeckung ===
Optimal ist die Wahl diffusionsoffener Werkstoffe bei der [[Unterdeckung]] (z. B. Holzfaser[[unterdeckplatte]]n oder [[SOLITEX]] [[Unterdeckbahn|Unterdeck-]] oder [[Unterspannbahn]]en mit porenfreier Membran), welche eine hohe Austrocknung nach außen ermöglichen. <br />
Optimal ist die Wahl diffusionsoffener Werkstoffe für die [[Unterdeckung]] (z. B. Holzfaser[[unterdeckplatte]]n oder [[SOLITEX]] [[Unterdeckbahn|Unterdeck-]] oder [[Unterspannbahn]]en mit porenfreier Membran), welche eine hohe Austrocknung nach außen ermöglichen. <br />
Konstruktionen mit diffusionsdichten Außenbauteilen ([[Unterdach]]), z. B. Bitumenbahnen, [[Flachdach|Flachdächer]] und [[Gründach|Gründächer]], sowie Dächer mit Blecheindeckungen, verringern die bauphysikalischen Sicherheiten des Bauteils. [[Vollholzschalung]]en bieten höhere Sicherheiten als [[Holzwerkstoffplatte]]n (z. B. [[OSB]]), da Holz einen feuchtevariablen Diffusionswiderstand hat und kapillar leitend ist. [[INTELLO]] bietet durch die große Feuchtevariabilität ein sehr hohes Sicherheitspotenzial, auch bei [[Holzwerkstoff]]en. Bei der pro clima [[DB+]] soll bei diffusionsdichtem [[Unterdach]] auf [[Holzwerkstoffplatte]]n verzichtet werden.
Konstruktionen mit außenseitig diffusionsdichtem Aufbau, z. B. Bitumenbahnen, [[Flachdach|Flachdächer]] und [[Gründach|Gründächer]] sowie Dächer mit Blecheindeckungen, verringern die bauphysikalischen Sicherheiten des Bauteils. <br />
[[Vollholzschalung]]en bieten höhere Sicherheiten als [[Holzwerkstoffplatte]]n (z. B. [[OSB]]), da Holz einen feuchtevariablen Diffusionswiderstand hat und kapillar leitend ist. <br />
Die INTELLO-Familie bietet durch die große Feuchtevariabilität ein sehr hohes Sicherheitspotenzial, auch bei [[Holzwerkstoff]]en.


=== Steildachkonstruktionen ===
=== Steildachkonstruktionen ===
{{{TabH1/1 r}}
In Verbindung mit außen diffusionsoffenen Konstruktionen bestehen derartig hohe Trocknungsreserven, dass es bei Verwendung der Dampfbremsen der [[INTELLO Familie|INTELLO-Familie]] sowie der [[DB+]] keine Begrenzung der Höhenlage des Standorts gibt. Auch in Höhenlagen von über 3.000 m sind die Konstruktionen sicher. Bei Steildachkonstruktionen mit außen diffusionsdichten Bauteilschichten wenden Sie sich bitte an den Bauphysiker oder die [[Technik-Hotline|technische Hotline]] von pro clima. <br clear="all" /> {{Anker|Flachdach-_und_Gründachkonstruktionen}}
| colspan="3" | '''36. Steildachkonstruktionen bis 400 mm Dämmung'''<sup>1)</sup>
|-
! width="340"| Konstruktionen
! width="140" | [[DB+]]
! width="140" | [[INTELLO]]
|-
| height="30" | bei außen [[diffusionsoffen]]en Konstruktionen  || colspan="2" align="center"| '''unbegrenzte Höhenlage'''
|- valign="middle"
| bei außen [[diffusionsdicht]]en Konstruktionen, ohne&nbsp;[[Hinterlüftung]], <br /> geprüfte&nbsp;[[Luftdichtheit]], keine&nbsp;Beschattungen, <br /> innenseitig keine bremsenden Schichten
| align="center" | '''bis 1.000&nbsp;m&nbsp;ü.&nbsp;NN''' <sup>2)</sup>
| align="center" | '''bis 1.600&nbsp;m&nbsp;ü.&nbsp;NN''' <sup>3)</sup>
|}
In Verbindung mit außen diffusionsoffenen Konstruktionen bestehen derartig hohe Trocknungsreserven, dass es bei Verwendung der Dampfbremsen pro clima [[DB+]] und [[INTELLO]]/[[INTELLO PLUS]] und [[INTESANA]] keine Begrenzung der Höhenlage des Standorts gibt. Auch in Höhenlagen von über 3.000 m sind die Konstruktionen sicher. Für außen diffusionsdichte [[Steildach]]konstruktionen (z. B.  mit Bitumenbahnen) gelten die Begrenzungen in Abb. 36.
<br clear="all" />
 
{{Anker|Flachdach-_und_Gründachkonstruktionen}}


=== Flachdach- und Gründachkonstruktionen ===  
=== Flachdach- und Gründachkonstruktionen ===  
{{{TabH1/1 r}}
Flachdächer haben außenseitig immer eine Abdichtungsbahn zum Schutz vor Wasser. Diese weisen wenigstens den Diffusionswiderstand einer starken Dampfbremse auf und können aber auch absolut dampfdicht sein (s<sub>d</sub>-Wert > 1.500 m) wenn es sich um einer Bitumenbahn mit einer Aluminiumeinlage handelt. In jedem Fall reduzieren Sie die mögliche Austrocknung nach außen auf ein Minimum. <br />  
| colspan="3" | '''37. Kiesdächer bis 300 mm Dämmung'''<sup>1)</sup> <br /> '''&nbsp; &nbsp; &nbsp;&nbsp;Gründächer bis 200 mm Dämmung'''<sup>1)</sup>
Belüftete Konstruktionen sind bei Beachtung von Belüftungshöhen und -längen möglich, sowie durch gewährleisten einer Mindestquerschnittsöffnung an den Zu- und Abluftöffnungen (siehe z. B. [[DIN 4108-3]] und [[DIN 68800-2]]). Entscheidend ist jedoch auch, dass sich die beiden Öffnungen »sehen« können, damit die Luftdurchströmung möglichst ungehindert erfolgen kann. Belüftungen durch ein Labyrinth sind in der Regel funktionslos und dadurch bauteilschädlich, da sie Sicherheiten vortäuschen die nicht vorhanden sind. <br />  
|-  
Belüftungen sorgen allerdings für höhere Bauteilquerschnitte, die erheblichen Einfluss auf die Architektur eines Gebäude nehmen können. Belüftungsquerschnitte müssen detailliert geplant werden
! width="340"| Konstruktionen
und es muss sicher gestellt werden, dass diese funktionieren, da unbelüftete oder mangelhaft belüftete Querschnitte oberhalb gedämmter Flachdachkonstruktionen zu Bauschäden führen können. <br />  
! width="140" | [[DB+]]
Unbelüftete Flachdächer können effizient und sicher mit den INTELLO-Bahnen ausgeführt werden. Diese können auch mit zusätzlichen Bauteilschichten wie Kies, Gründachsubstrat oder Terrassenbelägen oberhalb der Abdichtung geplant und ausgeführt werden. <br />
! width="140" | [[INTELLO]]
Hier bieten die INTELLO Hochleistungs-Dampfbremsen durch den feuchtevariablen Diffusionswiderstand hohe Sicherheiten vor Bauschäden bei unvorhergesehenen Feuchtebelastungen. Feuchtigkeit kann in besonders hohem Maße wieder aus Bauteilen austrocknen, ohne das es zu einer schädlichen Auffeuchtung kommt. <br />
|-
Die Feuchteschutzbemessung muss durch einen Bauphysiker oder durch die [[Technik-Hotline|technische Hotline]] von pro clima erfolgen.
| Flachdach mit max. 5 cm Kiesbelag ohne&nbsp;Hinterlüftung, <br /> geprüfte&nbsp;Luftdichtheit, keine&nbsp;Beschattungen, <br /> innenseitig keine bremsenden Schichten
| align="center" | '''bis 800 m ü. NN''' <sup>2)</sup>
| align="center" | '''bis 1.000 m ü. NN''' <sup>3)</sup>
|- valign="middle"
| Gründach mit max. 10 cm Substrat, ohne&nbsp;Hinterlüftung, <br /> geprüfte&nbsp;Luftdichtheit, keine&nbsp;Beschattungen, <br /> innenseitig keine bremsenden Schichten
| align="center"  | '''bis 400 m ü. NN''' <sup>2)</sup>
| align="center"  | '''bis 1.000 m ü. NN''' <sup>3)</sup>
|}
 
Flach- und Gründächer haben außenseitig immer eine diffusionsdichte Außenhaut, welche als Wasserdichtung und Wurzelschutz dient. Sie können in der Regel nicht wirksam hinterlüftet werden, da aufgrund der fehlenden Dachneigung kein Luftauftrieb gegeben ist. Je höher das Flachdach mit Kies oder Substrat (Gründach) belegt ist, um so geringer ist die Erwärmung der Dämmschicht durch die Sonneneinstrahlung. <br />
Die Rückdiffusion in den Innenraum und die Sicherheitsreserven verringern sich. Auch hier bietet die Hochleistungs-Dampfbremse [[INTELLO]] der Konstruktion durch den feuchtevariablen Diffusionswiderstand eine hohe Sicherheit gegen Bauschäden, z. B. bei unvorhergesehenen Feuchtebelastungen.<br />
Aus den Simulationsberechnungen mit realen Klimadaten ergeben sich die Anwendungsgrenzen in Abb. 37. <br />
Flach- und Gründächer gehören zu den bauphysikalisch anspruchsvollsten und kritischsten Wärmedämmkonstruktionen im Baubereich. <br />
[[INTELLO]] bietet diesen Konstruktionen aufgrund der extrem großen [[Feuchtevariabilität]] des Diffusionswiderstandes die sicherste Lösung. Eventuell eingedrungene oder in der Konstruktion enthaltene Feuchtigkeit kann in besonders hohem Maße wieder austrocknen, ohne dass es zu einer schädlichen Wiederbefeuchtung kommt. Sollen Flach- und Gründächer über höchste Sicherheit verfügen, sollte [[INTELLO]] als Dampfbremse verwendet werden. Bei von nebenstehender Tabelle abweichenden Randbedingungen kann es ggf. erforderlich sein, eine Dämmung oberhalb der Tragkonstruktion anzuordnen. Die beiden Dämmebenen müssen dann feuchtetechnisch voneinander getrennt werden. Bitte wenden Sie sich in diesem Fall an die technische Hotline.


=== Steildachkonstruktionen im Hochgebirge ===
=== Steildachkonstruktionen im Hochgebirge ===
Außen diffusionsdichte Steildachkonstruktionen können bis in 1.600 m Höhe mit [[INTELLO]] sicher ausgestattet werden und haben ein hohes [[Bauschadensfreiheitspotenzial]]. <br /> Bauvorhaben, die über 1.600 m über NN liegen, sind selten, kommen aber auch vor, z. B. in Skigebieten. Für die Berechnung des [[Bauschadensfreiheitspotenzial]]s stehen uns Klimadaten bis zu einer Höhe von 2.962 m (Zugspitze) zur Verfügung. Bitte kontaktieren Sie dafür die technische Hotline von pro clima.
Außen diffusionsdichte Steildachkonstruktionen können im Hochgebirge mit dem INTELLO-Funktionsfilm sicher geplant und ausgeführt werden und haben ein hohes Bauschadens-Freiheits-Potenzial.
----
Entscheidend ist für außen diffusionsdichte Steildachkonstruktionen die Bemessung des Feuchteschutzes durch den Bauphysiker oder die [[Technik-Hotline|technische Hotline]] von pro clima.
# Bei höheren Dämmstärken kann eine diffusionstechnisch getrennte Zusatzdämmung oberhalb der Tragkonstruktion den Einsatz ermöglichen. Bitte kontaktieren Sie die TECHNIK-HOTLINE.
# keine [[Holzwerkstoffplatte]]n außen
# Bei Dachkonstruktionen oberhalb dieser Höhenlage kann eine diffusionstechnisch getrennte Zusatzdämmung oberhalb der Tragkonstruktion den Einsatz ermöglichen. Bitte kontaktieren Sie die TECHNIK-HOTLINE.
----
<br clear="all" />
 
===Wände===
{{{TabH1/1 r}}
| colspan="3" | '''38. Wände'''
|-
! width="340"| Konstruktionen
! width="140" | [[DB+]]
! width="140" | [[INTELLO]]
|- valign="middle" 
| valign="top" | '''[[Wand|Wände]]''' <br /> außen diffusionsoffene Konstruktionen
| align="center" | [[sd-Wert|s<sub>d</sub>-Wert]] außen <br /> max. 0,1 m: <br /> '''unbegrenzte Höhenlage'''
| align="center" |'''unbegrenzte Höhenlage''' 
|- valign="middle" 
| valign="top" rowspan="2"| '''Wände''' <br /> innenseitig keine bremsenden Schichten
| align="center" rowspan="2"| s<sub>d</sub>-Wert außen <br /> max. 6 m: <br /> '''bis 700 m ü. NN'''
| align="center" | s<sub>d</sub>-Wert außen <br /> max. 3 m: <br /> '''bis 1.600 m ü. NN'''
|- valign="middle"
| align="center"|außen diffusionsdicht, ohne Hinterlüftung: <br /> '''bis 700 m ü. NN'''
|}
Durch die geringere Sonneneinstrahlung haben Wandkonstruktionen ein geringeres Rückdiffusionspotenzial und dadurch bedingt niedrigere Sicherheitsreserven. Für Wände gelten außenseitig der Dämmung Diffusionswiderstände entsprechend Abb. 38.


=== Wände ===
Wände in Holzrahmenbauweise mit diffusionsoffenen Schichten außen (siehe pro clima [[SOLITEX FRONTA Familie]], [[Holzfaserplatte]]n oder [[MDF]]-Platten) hinter belüfteten Fassaden können mit [[DB+]] und den Bahnen der [[INTELLO Familie|INTELLO-Familie]] in jeder Höhenlage ausgeführt werden. <br />
Für Holzrahmenbau-Wandkonstruktionen mit [[WDVS|WDV-Systemen]] aus Schaumdämmstoffen oder für Innendämmungen von Konstruktionen aus Mauerwerk oder Beton können die feuchtevariablen Dampfbremsen ebenfalls eingesetzt werden. Für die feuchtetechnische Bewertung muss muss ein Bauphysiker beauftragt werden. Die technische Hotline von pro clima kann hier ebenfalls Unterstützung bieten.


{{Hinweis_TechnikHotline_flach}}<br clear="all" />


{{Hinweis_TechnikHotline_flach}}<br clear="all" />
=== Qualitätssicherung ===
Die Luftdichtheit der Konstruktionen wird idealerweise direkt nach Fertigstellung der Luftdichtungsebene baubegleitend überprüft. <br />
Wird eine Leckageortung durchgeführt können Fehlstellen leicht aufgefunden und nachgearbeitet werden. Damit werden Bauteile besonders sicher. <br />
Die Überprüfung kann z. B. mit einer [[Blower-Door]] schon während der Bauphase bei provisorisch abgedichteten Gebäuden (Türen, Fenster usw.) erfolgen. <br />
Die Schlussmessung mit Bestimmung des n<sub>50</sub>-Werte erfolgt dann nach Fertigstellung des Gebäudes ebenfalls mit der BlowerDoor. Eine möglichst gute Luftdichtheit ist die Voraussetzung für ein behagliches Klima, geringe Energieverlusten sowie einer hohen Sicherheit vor Schäden infolge Durchfeuchtung durch Konvektion.


== Fazit ==
== Fazit ==
{{Textrahmen01|
{{Textrahmen01|
Konstruktionen mit [[DB+]] und [[INTELLO]] bzw. [[INTELLO PLUS]] und [[INTESANA]] haben, in Abhängigkeit von der Lage und der Konstruktion, enorm große Sicherheitsreserven und beugen mit intelligentem Feuchtemanagement Bauschäden und [[Schimmel]]bildung vor. Selbst bei unvorhergesehenen oder in der Baupraxis nicht zu vermeidenden Feuchtebelastungen haben die Konstruktionen dank der hohen Trocknungsreserven durch die feuchtevariablen Diffusionswiderstände ein sehr hohes Bauschadensfreiheitspotenzial. Die Hochleistungs-Dampfbremsen [[INTELLO]] [[INTELLO PLUS]] und [[INTESANA]] haben eine besonders große, in allen Klimabereichen wirksame Variabilität des [[Diffusionswiderstand]]es und bietet damit für Wärmedämmkonstruktionen eine bisher unerreichte Sicherheit– ob bei außen diffusionsoffenen oder auch bei bauphysikalisch anspruchsvollen Konstruktionen wie [[Flachdach|Flachdächer]]n, [[Gründach|Gründächer]]n, Metalleindeckungen sowie Dächern mit diffusionsdichten Vordeckungen gemäß den Vorgaben.  
Konstruktionen mit [[DB+]] und den Membranen der [[INTELLO Familie|INTELLO-Familie]] weisen in Abhängigkeit von Lage und Konstruktion enorm große Sicherheitsreserven auf und beugen mit intelligentem Feuchtemanagement Bauschäden und [[Schimmel]]bildung vor. Selbst bei unvorhergesehenen bzw. in der Baupraxis nicht zu vermeidenden Feuchtbelastungen, verfügen die Konstruktionen dank der hohen Trocknungsreserven durch die feuchtevariablen Diffusionswiderstände über ein sehr hohes Bauschadens-Freiheits-Potenzial. <br />
Die INTELLO Hochleistungs-Dampfbremsen haben eine besonders große, in allen Klimabereichen wirksame Variabilität des Diffusionswiderstandes und bieten damit für Wärmedämmkonstruktionen eine bisher unerreichte Sicherheit. Das gilt bei außen diffusionsoffenen oder auch bei bauphysikalisch anspruchsvollen Konstruktionen wie Flachdächer, Gründächer, Metalleindeckungen sowie Dächer mit diffusionsdichten Vordeckungen gemäß den Vorgaben. <br />
 
* Die Leistungsfähigkeit des INTELLO-Funktionsfilms zeigt sich auch bei extremen Klimabedingungen, wie z. B. im Hochgebirge. <br />
* Die bewährte pro clima DB+ bietet bis zu mittleren Höhenlagen (z. B. in Holzkirchen) hohe Sicherheiten für Steildachkonstruktionen. <br />
* Entsprechend den Vorgaben der [[DIN 68800-2]], kann mit feuchtevariablen Dampfbremsen auf chemischen Holzschutz verzichtet werden. <br />
* Zusätzliche Sicherheit bietet pro clima mit einer leistungsstarken, transparenten und fairen Systemgewährleistung.


* Die Leistungsfähigkeit von [[INTELLO]] und [[INTELLO PLUS]] zeigt sich auch bei extremen Klimabedingungen, wie im Hochgebirge.
'''Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein ohne dass ein Bauschaden entsteht.'''
* Die [[DB+]] bietet bis in mittlere Höhenlagen (z. B. in Holzkirchen) hohe Sicherheiten für die Steildachkonstruktionen.
* Entsprechend den Voraussetzungen der [[DIN 68800|DIN 68800-2]] kann mit feuchtevariablen Dampfbremsen auf chemischen Holzschutz verzichtet werden.  


;Ergebnis
Die intelligente Funktionsweise von allen Bahnen der INTELLO-Familie und der DB+ unterstützt diese Sicherheitsregel und ermöglicht die Realisation von besonders sicheren Konstruktionen.
'''Je höher die Trocknungsreserve einer Konstruktion ist, <br />'''
'''umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.'''
}}
}}


== Einzelnachweise ==
== Einzelnachweise ==
<references>
<references>
<ref name="Qu_01"> Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig </ref>  
<ref name="Qu_01">Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig </ref>  
<ref name="Qu_02">TenWolde, A. et al.: ”''Air pressures in wood frame  walls, proceedings thermal VII.''” Ashrae Publication Atlanta,  1999</ref>
<ref name="Qu_02">TenWolde, A. et al.: ”''Air pressures in wood frame  walls, proceedings thermal VII.''” Ashrae Publication Atlanta,  1999</ref>
<ref name="Qu_03">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref>
<ref name="Qu_03">[[IBP]] Mitteilungen 355: „''Dampfdiffusionsberechnung nach Glaser – quo vadis?''“</ref>
Zeile 737: Zeile 738:
<ref name="Qu_07">Klopfer, Heinz; ARCONIS: ''Wissen zum Planen und Bauen und zum Baumarkt:  Flankenübertragung bei der Wasserdampfdiffusion''; Heft 1/1997, Seite 8–10</ref>
<ref name="Qu_07">Klopfer, Heinz; ARCONIS: ''Wissen zum Planen und Bauen und zum Baumarkt:  Flankenübertragung bei der Wasserdampfdiffusion''; Heft 1/1997, Seite 8–10</ref>
<ref name="Qu_08">H.M. Künzel; ''Tauwasserschäden im Dach aufgrund von Diffusion durch angrenzendes Mauerwerk''; wksb 41/1996; Heft 37, Seite 34 – 36</ref>
<ref name="Qu_08">H.M. Künzel; ''Tauwasserschäden im Dach aufgrund von Diffusion durch angrenzendes Mauerwerk''; wksb 41/1996; Heft 37, Seite 34 – 36</ref>
<ref name="Qu_09">Robert Borsch-Laaks: ''Bauphysik für Fortgeschrittene – Bemessungsregeln für Flachdächer''; Holzbau – die neue quadriga; Verlag Kastner; Wolnzach; 05/2011</ref>
<ref name="Qu_10">WTA-Merkblatt 6-8: ''Feuchtetechnische Bewertung von Holzbauteilen – Vereinfachte Nachweise und Simulation''; Fraunhofer IRB-Verlag; 08/2016</ref>
</references>
</references>


== Download dieser Studie ==
== Download dieser Studie ==
{|align="left" style="border-style:solid; border-width:1px; margin: 0px 15px 0px 0px;" class="rahmenfarbe1"
{|align="left" style="border-style:solid; border-width:1px; margin: 0px 15px 0px 0px;" class="rahmenfarbe1"
|[[Bild:Pc_00_WISSEN_2012_03.2_Studie.png|right|70px|verweis=http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf]]
|[[Bild:Pc_00_WISSEN_2012_03.2_Studie.png|right|80px|verweis=http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf]]
|}
|}
:Umfang: 24 Seiten
: PDF, 20 Seiten, DIN A4: '''[http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf  Download]'''<br clear="all" />
:Format: DIN A4
:Datei: PDF ca. 2 MB
:'''[http://de.proclima.com/media/downloads/Bauphysik-Studie.pdf  Download]'''<br clear="all" />


{{NAV Bphys gd1}}
{{NAV Bphys gd1}}


[[Kategorie:Bauphysik]][[Kategorie:Qualitätssicherung]][[Kategorie:Glossar]]
[[Kategorie:Bauphysik]][[Kategorie:Qualitätssicherung]][[Kategorie:Glossar]]

Aktuelle Version vom 30. Oktober 2024, 16:03 Uhr

Studie von MOLL bauökologische Produkte GmbH initiiert:


Berechnungen des Bauschadens-Freiheits-Potenzials von Wärmedämmungen in Holz- und Stahlbaukonstruktionen

Feuchtevariable Dampfbremsen der pro clima INTELLO-Familie mit intelligentem Feuchtemanagement

– Dach, Wand, Decke –

Deutschland, Österreich, Schweiz


Computergestützte Simulationsberechnung des gekoppelten Wärme- und Feuchtetransports von Dach- und Wandkonstruktionen unter Berücksichtigung der natürlichen Klimabedingungen und innerbaustofflichen Flüssigkeitstransporte.


Bauschadensfreiheit von Wärmedämmungen in Holzbaukonstruktionen

Eine Frage der Trocknungsreserven und des intelligenten Feuchtemanagements

Übersicht und Einleitung

Diese Studie beschreibt die Berechnung des Bauschadens-Freiheits-Potenzials verschiedener Dach- und Wandkonstruktionen, wie Bauschäden in Wärmedämmkonstruktionen entstehen und wie sich Konstruktionen sicher gegen Bauschäden schützen lassen.
Bauschäden entstehen, wenn die Feuchtigkeitseinträge in eine Konstruktion höher sind als die mögliche Austrocknung aus dem Bauteil heraus. Um Bauschäden zu vermeiden, konzentriert man sich üblicherweise auf die Reduzierung der Feuchtigkeitsbelastung von Bauteilen. Diese lassen sich allerdings nicht vollständig gegen Feuchteeinflüsse schützen.
Die vorhersehbaren Feuchtebelastungen durch Diffusion sind so gut wie nie Ursache für Bauschäden. In der Regel sind es die unvorhergesehenen Feuchtebelastungen, die nicht völlig ausgeschlossen werden können. Um Bauschäden und Schimmel zu vermeiden, sollte daher das Trocknungsvermögen von Feuchtigkeit aus der Konstruktion heraus im Vordergrund stehen. Es werden Konstruktionen hinsichtlich Ihrer möglichen Austrocknungspotenziale vergleichend betrachtet.

Kondensation - Taupunkt - Tauwassermenge

Feuchtephysik der Luft
Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit.
• Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.
• Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur
⇒ es fällt früher Tauwasser aus.
1. Feuchtephysik der Luft bei 50 % rel. Luftfeuchtigkeit
BPhys GD 2Studie 01-Luftfeuchte.jpg
2. Feuchtephysik der Luft bei 65 % rel. Luftfeuchtigkeit
BPhys GD 2Studie 02-Luftfeuchte.jpg
Bei einem Innenklima von 20 °C / 50 % rel. Luftfeuchte wird der Taupunkt bei 8,7 °C erreicht.
Bei -5 °C fällt Kondensat von 5,35 g/m³ Luft aus.
Bei erhöhter Raumluftfeuchtigkeit von 65 % wird der Taupunkt schon bei 13,2 °C erreicht.
Bei -5 °C fällt Kondensat von 7,95 g/m³ Luft aus.

Die Wärmedämmung der Gebäudehülle trennt im winterlichen Klima die warme Innenraumluft mit ihrem hohen Feuchtegehalt von der kalten Außenluft mit geringer absoluter Feuchtigkeit. Dringt warme Innenraumluft in das Bauteil ein, kühlt sie sich auf ihrem Weg durch die Konstruktion ab. Aus dem in der Luft enthaltenen Wasserdampf kann dann flüssiges Wasser auskondensieren. Ursächlich für den Ausfall von Wasser ist das physikalische Verhalten der Luft:
Warme Luft kann mehr Wasser aufnehmen als kalte Luft (siehe auch: Luftfeuchtigkeit). Bei höherer rel. Raumluftfeuchtigkeit (z. B. Neubauten mit 65 %) erhöht sich die Taupunkttemperatur und als unmittelbare Folge die Tauwassermenge (siehe Abb. 1 und 2).
Tauwasser kann im Bauteil anfallen, wenn die Taupunkttemperatur unterschritten wird und enthaltener Wasserdampf durch diffusionsdichtere Bauteilschichten auf der Außenseite nicht aus dem Bauteil heraustrocknen kann. Das heißt: Bauphysikalisch ungünstig sind Bauteilschichten, die auf der Außenseite der Wärmedämmung diffusionsdichter sind als die Bauteilschichten auf der Innenseite. Sehr problematisch ist es, wenn feuchtwarme Luft durch konvektive Ströme, d. h. infolge von Undichtheiten in der Luftdichtungsebene, in das Bauteil gelangen kann.
Als diffusionsoffen gelten nach DIN 4108-3 Baustoffe, deren äquivalente Luftschichtdicke (sd-Wert) niedriger als 0,50 m ist. Der sd-Wert wird definiert als Produkt der Dampfdiffusionswiderstandszahl (μ-Wert) als Materialkonstante und der Dicke des Bauteils in Meter:

[m]


Ein niedriger sd-Wert kann erreicht werden durch einen niedrigen μ-Wert bei einer größeren Schichtdicke (z. B. Holzfaserdämmplatten) oder durch einen höheren μ-Wert bei einer sehr geringen Schichtdicke (z. B. Unterdeckbahnen).
Maßgeblich ist also zunächst der μ-Wert und erst dann die Dicke der Baustoffschicht. Das heißt, dass bei einem hohen μ-Wert ein Tauwasserausfall im Vergleich früher auftreten kann als bei einem niedrigen μ-Wert. Im Bereich von diffusionsoffenen Unterdeckbahnen besteht wegen der insbesondere während der kalten Jahreszeiten fehlenden Temperatur- und Feuchtedifferenz nur ein geringes Dampfdruckgefälle. Das erklärt, warum es auch in Kombination mit diffusionsoffenen Unterdeckbahnen zu Bauschäden kommen kann, wenn der Feuchtestrom bedingt durch unvorhergesehene Feuchteeinträge im Bauteil erhöht ist. Unterdeck- und Unterspannbahnen mit monolithischer porenfreier Membran, z. B. aus der pro clima SOLITEX-Familie, bieten in diesem Fall große Vorteile, da die Diffusion aufgrund der speziellen Polymerkombination nicht passiv durch Poren, sondern aktiv entlang der Molekülketten erfolgt.
Die Bahnen ermöglichen dadurch einen extrem schnellen aktiven Feuchtetransport aus dem Bauteil heraus und schützen die Konstruktion optimal vor hoher Tauwasserbildung und Schimmelpilzbefall. Fällt Tauwasser auf der Innenseite der Unterdeckung aus, kann es bei winterlich kalten Temperaturen zu einer Reif- oder Eisbildung auf der Innenoberfläche der Bahnen kommen. Eis ist für Wasserdampf undurchlässig und führt zur Bildung einer Dampfsperre auf der Außenseite des Bauteils. Die Folge ist, dass die Austrocknung nach außen aus dem Bauteil heraus stark reduziert, wenn nicht sogar ganz gestoppt wird.
Konstruktionen die auf der kalten Außenseite mit diffusionshemmenden oder diffusionsdichten Schichten versehen sind, gelten als bauphysikalisch kritischer als außen diffusionsoffene Konstruktionen. Unterdeckbahnen mit aktivem Feuchtetransport reduzieren die Gefahr von Bauschäden im Vergleich deutlich.

Bei Flachdachkonstruktionen lassen sich stark diffusionshemmende Bahnenmaterialien auf der Außenseite nicht vermeiden. Der Hintergrund ist, dass die Wasserdichtheit der Bahnen im Vordergrund steht und insbesondere bei begrünten oder bekiesten Dachkonstruktionen mit langfristig hohen Feuchtegehalten der Schichten oberhalb der Abdichtung zu rechnen ist.
Diffusionsoffene oder leicht dampfbremsende Materialien würden zu einem hohen Feuchteeintrag von außen in das Bauteil hinein führen. Zu den diffusionsdichten Konstruktionen gehören z. B. auch unbelüftete Steildächer mit Bitumenbahnen oder Dächer mit unbelüfteten Blecheindeckungen. An der diffusionsdichten Schicht staut sich die Feuchtigkeit in der Konstruktion und es kommt zu einem Kondensatausfall.

Feuchtebelastungen der Konstruktion

Eine Feuchtebelastung innerhalb einer Wärmedämmkonstruktion kann verschiedene Ursachen haben. Zum Beispiel kann durch eine undichte Flachdachabdichtung Wasser von außen in ein Bauteil eindringen. Diese Feuchtigkeitsmengen können so groß sein, dass Wasser in den bewohnten Bereich tropft. Geringe Leckagen in Abdichtungen können dagegen in der Konstruktion zu einer allmählichen Auffeuchtung führen. Als Folge treten oft Schimmelbefall der enthaltenen Materialien bis hin zum Entstehen holzzerstörender Pilze auf. Feuchtigkeit kann aber auch von der beheizten Innenseite in eine Konstruktion eindringen durch:

a) Vorhersehbare Feuchtebelastung
  • Diffusionsvorgänge
b) Unvorhergesehene Feuchtebelastungen

Im Einzelnen:

Feuchtebelastung durch Diffusion

Feuchtephysik der Luft
Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit.
• Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.
• Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur
⇒ es fällt früher Tauwasser aus.

Je höher der innenseitige sd-Wert ist, desto geringer ist die Gefahr eines Bauschadens - so dachte man früher. Es hieß, dass die Verwendung von Dampfsperren mit hohen Diffusionswiderständen Bauschäden verhindern würde.
Dass die Realität anders ist, wurde bereits vor über 25 Jahren bei der Markteinführung der ersten feuchtevariablen Dampfbremse DB+ mit einem sd-Wert von 2,30 m durch bauphysikalische Berechnungen belegt.

Aktuell entsprechen diese sogenannten Dicht-Dicht-Bauteile bei Flachdachkonstruktionen (innen Dampfsperre sd > 100 m – außen dampfdichte Abdichtung) nach Aussagen von anerkannten Bauphysikern aus Wissenschaft und Praxis nicht mehr den »Regeln der Technik«. Ein Konsenspapier, das als Ergebnis des 2. Internationalen Holz[Bau]Physik-Kongresses im Februar 2011 veröffentlicht wurde, trifft zu unbelüfteten Flachdachkonstruktionen in Holzbauweise die folgende Aussage: Dampfsperren »unter binden die sommerliche Umkehrdiffusion, die zur Trocknung des winterlichen Feuchteeintrags aus Dampftransport per Luftströmung (Konvektion) durch unvermeidliche Restleckagen erforderlich ist«. [1]

Insofern dürfen derartige Bauteile entweder nur funktionsfähig belüftet ausgeführt werden oder wenn nachgewiesen wird, dass die Bauteile über ein ausreichendes Rücktrocknungspotenzial verfügen. Dies kann z. B. durch die Wahl einer geeigneten Dampfbrems- und Luftdichtungsbahn auf der Innenseite des Bauteils erreicht werden.

Untersuchungen an Außenwänden in Nordamerika zeigten bereits im Jahre 1999 [2], dass der Feuchtigkeitseintrag durch eine Dampfsperre infolge Konvektion selbst bei fachgerechter Verlegung eine Tauwassermenge von ca. 250 g/m² während der kalten Jahreszeit (Tauperiode) beträgt. Das entspricht einer Feuchtigkeitsmenge, die durch eine Dampfbremse mit einem sd-Wert von 3,3 m während eines Winters diffundiert [3].

Fazit:

Auch in Konstruktionen mit Dampfsperren, deren rechnerische sd-Werte 50 m, 100 m oder mehr betragen, werden letztendlich erhebliche Mengen an Feuchtigkeit eingetragen. Dampfsperren lassen aber keine Rücktrocknung zu. Dadurch entstehen Feuchtefallen.




Feuchtebelastung durch Konvektion

Feuchteeintrag in die Konstruktion durch Undichtheiten in der Dampfsperre
3. Feuchtigkeitsmenge durch Konvektion
BPhys GD 1 05 Konvekt Fuge Feuchte1-01-3.jpg




Feuchtetransport
durch Dampfsperre:
durch 1 mm Fuge:
0,5 g/(m²·24 h)
800 g/(m·24 h)
Erhöhung Faktor: 1.600

Randbedingungen
Dampfbremse sd-Wert: 30 m
Innentemperatur:
Außentemperatur:
+20 °C
    0 °C
Druckdifferenz: 20 Pa (entspricht Windstärke 2-3)
Messung: Institut für Bauphysik, Stuttgart [4]

Durch Konvektion, also Luftströmung, werden wesentlich größere Feuchtemengen in die Konstruktion transportiert als durch Diffusion. Die konvektiv eingebrachte Feuchtemenge kann leicht das 1000-fache der durch Diffusion eingetragenen Menge übersteigen (siehe Abb. 3).

Durch Leckagen in Konstruktionen mit äußeren diffusionsdichten Bauteilschichten eingedrungene Feuchtigkeit kann schnell zu einem Bauschaden führen. Konvektive Feuchteeinträge können wegen ihrer hohen Feuchtelast aber auch für außen diffusionsoffene Bauteile gefährlich werden, v. a. wenn bereits Tauwasser ausgefallen und es im winterlich kalten Klima zur Bildung von Eisschichten z. B. an der Unterdeckung gekommen ist.



Konstruktiv bedingte Feuchtigkeit - Flankendiffusion

Verschiedene Bauschäden wurden in der Literatur dokumentiert, die sich allein mit Diffusions- und Konvektionsvorgängen durch Dampfsperren nicht erklären ließen.
Ruhe [5] und Klopfer [6] haben 1995 bzw. 1997 bei einem Bauschaden auf das Problem der Flankendiffusion hingewiesen [7].

4. Bauschaden: Feuchteeintrag trotz luftdichtem Anschluss und Verwendung einer Dampfsperre 5. Ursache des Feuchteeintrags: Feuchtetransport über die Flanke, hier das Mauerwerk
BPhys GD 2Studie 09b Dachschn.Flankendiffusion-01.jpg
BPhys GD 1 09 Dachschn.Flankendiffusion-01-2.jpg
Luftdichte Konstruktion mit Dampfsperrfolie (PE) und luftdichter Putzschicht, außen Bitumendachbahn. Feuchteeintrag durch Flankendiffusion über das angrenzende Mauerwerk.

Die Konstruktion:
Steildach: außen Bitumenbahn auf Holzschalung, innen Dampfsperre aus Polyethylen (PE), der Zwischenraum ist vollständig mit Mineralwolle ausgedämmt. Trotz perfekter Luftdichtheit tropfte im Sommer Wasser aus den Anschlüssen der Bahn auf die unteren angrenzenden Bauteile. Zunächst wurde angenommen, dass die Ursache erhöhte Einbaufeuchtigkeit sei. Da das Abtropfen von Jahr zu Jahr zunahm, war dies ausgeschlossen.
Nach 5 Jahren wurde das Dach geöffnet. Die Holzschalung war bereits erheblich durch holzzerstörende Pilze geschädigt. Diskutiert wurde der Feuchteeintrag durch Flankendiffusion. Dabei dringt Feuchtigkeit über die Flanke des angrenzenden Mauerwerks (hier porosierter Ziegel) ins Dach ein. Der Feuchtestrom umgeht dadurch die Dampfsperrfolie (siehe Abb. 4 und 5).
Unter Bauphysikern wurde der Sachverhalt zu Beginn kontrovers diskutiert bis Künzel [8] 1997 die Flankendiffusion mit Hilfe von Berechnungen des zweidimensionalen Wärme- und Feuchtetransports mit WUFI 2D rechnerisch nachwies. In der Simulation erhöhten sich die rel. Feuchtegehalte der Schalung über dem Ziegelmauerwerk bereits nach einem Jahr auf ca. 20 %, nach 3 Jahren stieg sie auf 40 % und nach 5 Jahren auf 50 %.



Hohe Einbaufeuchte von Baustoffen

BPhys GD 1 10 Dachschn.Baust. Feuchte-01-2.jpg
Unvorhergesehen: Feuchtigkeit aus Baustoffen

Werden Baustoffe mit einem höheren Feuchtegehalt als im Gebrauchszustand eingesetzt, ist die Konstruktion darauf angewiesen, dass diese Feuchtigkeit austrocknen kann. In der Regel werden heute technisch vorgetrocknete Hölzer (Konstruktionsvollholz) eingesetzt. Diese verfügen definitionsgemäß über eine rel. Materialfeuchte von bis zu 18 %. Kommt es zur weiteren Feuchteaufnahme z. B. durch Freibewitterung kann dieser Wert deutlich überschritten werden.

Beispiel:
Ein Dach mit Sparren 8/18 oder 6/24 und einem Sparrenabstand e = 0,70 m hat pro m² Dachfläche 1,5 lfm Sparren.
Bei 10 % Feuchtigkeit enthält diese Dachfläche ca. 1,1 l Wasser aus dem Sparrenanteil.

Bei erhöhter Feuchte bedeutet das:
Die aktuelle DIN 68800-2 fordert, dass Hölzer, die während der Bauphase über eine rel. Feuchte von 20 % aufgefeuchtet werden, innerhalb von höchstens 3 Monaten eine Holzfeuchte von weniger als 20 % erreichen müssen. Wenn die rel. Holzfeuchte 30 % beträgt, müssen zur Einhaltung der Norm 1,1 l Wasser/m² Dachfläche austrocknen können.

Dieses Rechenbeispiel gilt auch für eine Holzschalung von 24 mm Stärke.
Der Feuchtegehalt bei 10 % Holzfeuchte beträgt ca. 1,2 l Wasser pro m². Bei 30 % rel. Anfangsfeuchtigkeit, nach einem Regentag keine Seltenheit, müssen 1,2 l Wasser pro m² Dachfläche austrocknen, damit 20 % rel. Holzfeuchte erreicht werden.

Für Sparren + Holzschalung zusammen ergeben sich somit: ~ 2,3 l pro m² Dachfläche.
Weitere Konstruktionshölzer, wie Auswechslungen, aber teilweise auch Pfetten, Zangen, etc., müssten, anteilig ihrer Lage im gedämmten Aufbau, hinzugerechnet werden.

Die Gesamtmenge an Feuchtigkeit wird häufig unterschätzt.

Beim Mauerwerksbau kann durch die Neubaufeuchtigkeit eine erhebliche Feuchtigkeitsmenge zusätzlich ins Holz gelangen. Wird dann auf der Innenseite einer voll gedämmten Konstruktion eine diffusionsdichte Dampfsperrfolie aus Polyethylen eingebaut und außen mit einer Bitumendachbahn als Vordeckung kombiniert, ist ein Bauschaden unausweichlich.

Mehr siehe: Einbaufeuchte



Zusammenfassung der Feuchtebelastungen

Die vielfältigen Möglichkeiten des Feuchteeintrags zeigen, dass im Baualltag die Feuchtebelastung einer Konstruktion nie ganz auszuschließen ist. Wenn es darum geht schaden- und schimmelfrei zu bauen, ist die Erhöhung des Trocknungsvermögens eine wesentlich effektivere und sicherere Lösung, als sich darauf zu konzentrieren, möglichst wenig Feuchtigkeit in die Konstruktion gelangen zu lassen.


Intelligentes Feuchtemanagement Sicherheitsformel:

Trocknungsvermögen > Feuchtebelastung = Bauschadensfreiheit

• Nur wenn das Trocknungsvermögen kleiner ist als die Feuchtebelastung, kann ein Bauschaden entstehen.
• »Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein und trotzdem bleibt die Konstruktion bauschadensfrei.« 
• Konstruktionen, die außen diffusionsoffen sind, haben eine größere Trocknungsreserve als außenseitig diffusionsdichte Konstruktionen.


„Intelligente“ Dampfbremsen

Austrocknung der Konstruktion nach innen

Feuchtesituation in der Konstruktion

Der Diffusionsstrom geht immer von der warmen zur kalten Seite. Daraus folgt:
• Im Winter: Erhöhte Feuchtigkeit auf der Außenseite.
• Im Sommer: Erhöhte Feuchtigkeit auf der Innenseite.


Eine zusätzliche entscheidende Trocknungsmöglichkeit bietet sich für das Bauteil durch Aktivierung der inneren Rücktrocknungsfläche:
Immer wenn die Temperatur außenseitig der Dämmung höher ist als innerhalb des Gebäudes, kehrt sich der Diffusionsstrom um – im Bauteil enthaltene Feuchtigkeit drängt dann zur Gebäudeinnenseite. Dieser Effekt setzt bereits bei sonnigen Tagen im Frühjahr ein und wirkt bis in den Herbst hinein – er erfolgt verstärkt in den Sommermonaten. Würde statt einer Dampfbrems- und Luftdichtungsbahn eine diffusionsoffene Luftdichtungsbahn verbaut werden, könnte die eventuell in der Konstruktion befindliche Feuchtigkeit nach innen austrocknen.
Eine diffusionsoffene Bahn würde aber im Winter zu viel Feuchtigkeit in die Konstruktion gelangen lassen – die großen Feuchtemengen würden unweigerlich zu einem Bauschaden führen. Bei Verwendung von Dampfsperren scheint die Konstruktion auf den ersten Blick gegen Feuchtigkeit geschützt. Erfolgt allerdings ein Eintrag von Feuchtigkeit durch Konvektion, Flankendiffusion oder erhöhte Baustofffeuchtigkeit, ist eine Rücktrocknung im Sommer nach innen nicht möglich. Da diese Bauweise Feuchtefallen begünstigt, wurde ihnen der Status der anerkannten Regeln auf dem 2. Holz[Bau]Physik-Kongress im Februar 2011 aberkannt [1].

Ideal ist daher eine Dampfbremse mit einem hohen Diffusionswiderstand im Winter und einem sehr niedrigen Diffusionswiderstand im Sommer. Seit Jahren haben sich diese »intelligenten« Dampfbremsen mit feuchtevariablem sd-Wert bewährt. Sie verändern ihren Diffusionswiderstand entsprechend der mittleren umgebenden relativen Luftfeuchtigkeit. So sind sie im winterlichen Klima diffusionsdichter und schützen die Konstruktion vor Feuchtigkeitseintrag.
Im sommerlichen Klima sind sie diffusionsoffener und ermöglichen dadurch die Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, in den Innenraum.

6. Das Funktionsprinzip feuchtevariabler Bahnen

BPhys GD 2Studie 06 Intello Dachschn-Erkl Sommer-Winter .jpg

Darstellung der rel. Luftfeuchtigkeiten an der Dampfbremse, abhängig von der Jahreszeit.
 
Umgebende Feuchtigkeit der Dampfbremse

  •  im Winter: geringe Luftfeuchtigkeit
     ➝ die feuchtevariable Dampfbremse ist diffusionsdichter
  •  im Sommer: hohe Luftfeuchtigkeit
     ➝ die feuchtevariable Dampfbremse ist diffusionsoffener
7. Die Diffusionsströme feuchtevariabler pro clima Dampfbremsen
Diffusionsstrom
WDD-Wert in g/m² pro Woche
im Winter im Sommer
Diffusionsrichtung nach außen
Richtung Unterdeckung
nach innen
Richtung Dampfbremse
DB+ 28 175
INTELLO Familie 7 560

Idealerweise kann im Sommer der sd-Wert 0,50 m deutlich unterschreiten – erst unterhalb dieses Wertes gilt ein Material als diffusionsoffen (vgl. DIN 4108-3 [10]). Liegt der mögliche sd-Wert im Sommerfall oberhalb von 0,50 m ist die Austrocknung aus dem Bauteil deutlich reduziert.

Wirkungsweise des feuchtevariablen Diffusionswiderstandes

Die Richtung des Diffusionsstroms wird durch das Gefälle des Wasserdampfteildrucks bestimmt. Dieser ist abhängig von der Temperatur und dem Feuchtegehalt der Luft inner- bzw. außerhalb eines Gebäudes. Werden vereinfacht nur die das Bauteil umgebenden Temperaturen betrachtet, so diffundiert Feuchtigkeit von der warmen zur kalten Seite - im Winter von innen nach außen und im Sommer von außen nach innen. Messungen der Feuchtegehalte in Dachkonstruktionen haben gezeigt, dass im winterlichen Klima durch den Transport der Feuchtigkeit im Sparrenfeld nach außen die Dampfbremse in einer mittleren Umgebungsfeuchtigkeit von ca. 40 % liegt. Im sommerlichen Klima kommt es bei warmen Außentemperaturen zu erhöhten relativen Luftfeuchtigkeiten an der Dampfbremse, bei unvorhergesehenen Feuchteeinträgen z. T. sogar zu Sommerkondensat (siehe Abb. 6).
Diese Klimabedingungen steuern die Funktion von feuchtevariablen Dampfbremsen – dadurch sind sie im Winterfall diffusionsdichter und im Sommerfall diffusionsoffener.

Seit 1991 hat sich die pro clima DB+ in Millionen verlegten m² bewährt. Ihr Diffusionswiderstand kann sd-Werte zwischen 0,4 m und 4 m annehmen. Im Jahr 2004 hat die Firma MOLL bauökologische Produkte GmbH die Hochleistungs-Dampfbremse pro clima INTELLO eingeführt. INTELLO hat – wie auch alle anderen Bahnen aus der INTELLO-Familie – einen besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand von 0,25 m bis über 25 m (siehe Abb. 9).
Laut ETA-18/1146 können die INTELLO und INTELLO PLUS sd-Werte bis 55 m erreichen. Somit wird im oben beschriebenen Winterfall das Bauteil sehr gut vor bauteilschädigendem Feuchteeintrag durch Diffusion geschützt.

Nachweis der Dauerhaftigkeit

Die europäische Normung für Dampfbremsen (DIN EN 13984) kennt aktuell kein Nachweisverfahren zur Überprüfung des Verlaufs und der Dauerhaftigkeit von feuchtevariablen Eigenschaften. Dementsprechend können nach der EN nur Dampfbremsen mit konstanten Diffusionswiderständen überprüft werden. Aus diesem Grund wurde die Alterungsbeständigkeit der Feuchtevariabilität von INTELLO und INTELLO PLUS nach einem durch einen unabhängigen Sachverständigenausschuss des Deutschen Instituts für Bautechnik (DIBt) festgelegten Verfahren nachgewiesen. Dabei wurden die beiden Dampfbremsbahnen im Vergleich zur DIN EN 13984 unter deutlich verschärften Beanspruchungen (erhöhte Temperatur und verdoppelter Alterungszeitraum) beschleunigt gealtert.
Bei der Auswertung wurden zudem die zulässigen Abweichungen der gealterten von den ungealterten Diffusionswiderständen gegenüber der europäischen Norm deutlich verschärft.
Durch die Europäisch Technische Bewertung (ETA-18/1146) verfügen INTELLO und INTELLO PLUS über den nach DIN 68800-2 für Dampfbremsen mit feuchtevariablem Diffusionswiderstand geforderten Nachweis der Alterungsbeständigkeit.


Hoher Diffusionswiderstand im Winter

Der Diffusionswiderstand der Dampfbremsen mit dem INTELLO Funktionsfilm ist so eingestellt, dass die Bahn im winterlichen Klima einen sd-Wert von mehr als 25 m erreichen kann. Das bewirkt, dass während der kalten Jahreszeit wenn der Feuchtigkeitsdruck auf die Konstruktion am größten ist, die Dampfbremse fast keine Feuchtigkeit in das Bauteil gelangen lässt.

Die Funktion des feuchtevariablen Diffusionswiderstandes ist unabhängig von der Gebäudehöhenlage. Auch bei langen kalten Wintern bleibt die Eigenschaft erhalten.
Bei Konstruktionen mit diffusionsdichten Abdichtungsbahnen auf der Außenseite, können die Bahnen den Feuchtehaushalt regulieren und die Bauteile wirksam vor Feuchtigkeit schützen.
Der hohe sd-Wert ist auch bei außen planmäßig diffusionsoffenen Dächern von Vorteil, wenn es z. B. durch Reif- und Eisbildung an einer eigentlich diffusionsoffenen Unterdeckbahn zur Bildung einer Dampfsperre kommt (siehe Abb. 9).

sd-Wert-Verhalten von Dampfbremsen
Je größer die Variabilität des Diffusionswiderstandes zwischen Winter und Sommer ist, umso mehr Sicherheit bietet die Dampfbremse.
8. sd-Wert-Verhalten von PE-Folie
BPhys GD 2Studie 08 Diagr Diffusionsverlauf PE-Folie 8.jpg
PE-Folie: keine Feuchtevariabilität
9. sd-Wert-Verhalten von pro clima Dampfbremsbahnen
BPhys GD 2Studie 09 Diagr Diffusionsverlauf DB INT neu.jpg
DB+: Mittlere Feuchtevariabilität
INTELLO Familie: Hohe Feuchtevariabilität
10. Nutzung und Bauphase (Austrocknung und Hydrosafe-Wert)
BPhys GD 2Studie 32 Diagr Hydrosafe intello db+.png
Für hohen Bauteilschutz während der Bauphase wird ein Hydrosafe-Wert zwischen 1,5 und 2,5 m empfohlen.

Niedriger Diffusionswiderstand im Sommer

Der Diffusionswiderstand im sommerlichen Klima kann auf einen sd-Wert von unter 0,25 m sinken. Dies bewirkt eine schnelle Austrocknung von Feuchtigkeit, die sich evtl. in der Konstruktion befindet, nach innen. Je nach Höhe des Dampfdruckgefälles entspricht das einer Austrocknungskapazität von 5 – 12 g/m² Wasser pro Stunde, entsprechend ca. 80 g/m² Wasser pro Tag bzw. 560 g/m² Wasser pro Woche (siehe Abb. 7).
Dieses hohe Austrocknungsvermögen bewirkt, dass ein Bauteilgefach schon im Frühjahr schnell austrocknet. Entscheidend ist, dass Dampfbremsen mit variablem Diffusionswiderstand im feuchten Bereich (Sommerfall) einen sd-Wert deutlich kleiner als 0,5 m aufweisen. Ansonsten sind die Sicherheiten bei unvorhergesehenen Feuchteeinträgen zu gering.

Ausgewogenes Diffusionsprofil

In Zeiten besserer Luftdichtungen und damit verbundenen erhöhten Luftfeuchtigkeiten in Neubauten in Mauerwerksbauweise kommt dem Diffusionswiderstand bei höherer rel. Luftfeuchtigkeit (LF) eine wichtige Bedeutung zu.

Neubauten: Trocknungsphase (60/2-Regel)

In Neubauten und in Feuchträumen (Bäder, Küchen) von Wohnhäusern oder Häusern mit wohnähnlicher Nutzung herrscht bau- und wohnbedingt eine erhöhte Raumluftfeuchte von ca. 70 %. Der Diffusionswiderstand einer Dampfbremse sollte so eingestellt sein, dass bei dieser Feuchtigkeit ein sd-Wert von mindestens 2 m erreicht wird, um die Konstruktion ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingt vor Schimmelbildung zu schützen.
Alle Bahnen der INTELLO Familie haben bei 60 % mittlerer Feuchtigkeit (70 % Raumluftfeuchtigkeit und 50 % Feuchtigkeit an der Wärmedämmung) einen sd-Wert von über 6 m, die DB+ von ca. 2,5 m (siehe Abb. 10).

Bauphase: Hydrosafe-Wert (70/1,5-Regel)

In der Bauphase, wenn Wände verputzt oder Estrich gelegt wurde, herrscht im Gebäude eine sehr hohe Raumluftfeuchte von zum Teil über 90 %.
Der Schutz von gedämmten Holzbau-Konstruktionen während der Bauphase vor baubedingt erhöhter Innenraumfeuchte (Baufeuchte) wird durch den Hydrosafe-Wert beschrieben. Dieser gibt an, welche äquivalente Luftschichtdicke (sd-Wert) eine auf der Innenseite verlegte feuchtevariable Dampfbrems- und Luftdichtungsbahn mindestens aufweisen muss, damit Dämmung und Konstruktion in allen Phasen ausreichend vor Feuchtigkeit geschützt sind. Als ausreichend sicher wird ein Hydrosafe-Wert von mindestens 1,5 m bei einer mittleren rel. Luftfeuchtigkeit von 70 % beschrieben (siehe DIN 68800-2).

Die Bahnen aus der INTELLO-Familie erreichen bei 70 % mittlerer Feuchte (90 % Raumluftfeuchtigkeit und 50 % in der Dämmebene) einen sd-Wert von über 2 m (DB+ 2 m) und bieten den Bauteilen auch während baubedingt erhöhten rel. Luftfeuchtigkeiten einen ausreichenden Schutz.
Übermäßige Raumluftfeuchte in der Bauphase über einen langen Zeitraum schädigt alle Materialien bzw. Bauteile im Gebäude, führt zu deren Feuchteanreicherung und sollte konsequent zügig und stetig durch Fensterlüftung entweichen können. Ggf. können Bautrockner erforderlich sein (siehe Abb. 10).

Höchste Sicherheit

Das »intelligente« Verhalten der feuchtevariablen Dampfbremsen von pro clima macht Wärmedämmkonstruktionen je nach Bauart und Lage sehr sicher. Auch bei unvorhergesehenem Feuchtigkeitseintrag in die Konstruktion, z. B. durch widrige Klimabedingungen, unvermeidbare Restleckagen, Flankendiffusion oder erhöhte Einbaufeuchtigkeit von Bauholz oder Dämmstoff können Bauteile von der Schutzfunktion profitieren. Die feuchtevariablen pro clima Dampfbremsen fördern aktiv das Austrocknen von Feuchtigkeit aus dem Bauteil heraus, welche unvorhergesehen in dieses eingedrungen ist.


Ermittlung des Sicherheitspotenzials einer Dachkonstruktion

Rechnerischer Nachweis von Bauteilen

Zur Berechnung von Feuchtebelastungen innerhalb von Bauteilen stehen stationäre und dynamische Rechenverfahren zur Verfügung. Stationäre Nachweise von Bauteilen können mit dem Verfahren nach Glaser erstellt werden. Dieses ist die Grundlage für verschiedene nationale und internationale Normen (z. B. DIN 4108-3, OENORM B 8110-2 oder SIA 180 bzw. DIN EN ISO 13788). Werden detaillierte Feuchtegehalte z. B. einzelner Materialien gewünscht kann ein instationäres (dynamisches) Verfahren nach DIN EN 15026 angewendet werden.

Berechnung nach Glaser

Das Glaser-Verfahren ist ein vereinfachtes, stationäres Nachweisverfahren für eine feuchteschutztechnische Abschätzung von Bauteilen. Dies erfolgt durch Betrachtung des auftretenden Diffusionstransports bei stationären Zuständen unter pauschalen Randbedingungen. Bei dieser Art von Nachweis handelt es sich um »ein modellhaftes Nachweis- und Bewertungsverfahren als Hilfsmittel für den Fachmann zur Beurteilung des klimabedingten Feuchteschutzes. Es bildet nicht die realen physikalischen Vorgänge in ihrer tatsächlichen zeitlichen Abfolge ab« (aus: DIN 4108-3).

Die Einfachheit des Verfahrens bedeutet zugleich eine starke Einschränkung, da sich z. B. weder Verschattungen noch zusätzliche Bauteilschichten wie Bekiesungen oder Begrünungen berücksichtigen lassen. Weiterhin werden die tatsächlichen Feuchtegehalte, die Kapillarität sowie die Sorptionsfähigkeit von Baustoffen nicht in die Berechnungen einbezogen.
Dadurch kann das Glaser-Verfahren gerade für die Berechnung von bauphysikalisch anspruchsvollen Holzbaukonstruktionen nicht verwendet werden. Mehr: Glaser-Verfahren

Berechnung der gekoppelten Wärme- und Feuchtetransporte

Detaillierte Betrachtungen der Feuchtegehalte innerhalb von Bauteilen können mit instationären Berechnungsverfahren durchgeführt werden. Diese sind u. a. sowohl in der Lage die von außen auf ein Bauteil einwirkenden Klimarandbedingungen (Innen- und Außenklima), als auch Baustoffeigenschaften wie Feuchtegehalt, Sorption und Kapillarität usw. in der Berechnung zu berücksichtigen.
Bekannte Softwarelösungen sind Delphin vom Institut für Bauklimatik, Dresden und WUFI pro vom Fraunhofer-Institut für Bauphysik, Holzkirchen. Die Verfahren wurden mehrfach validiert, d. h. dass die Ergebnisse aus den Rechnungen anhand von Freilandversuchen überprüft wurden. Für die Berechnung werden die entsprechenden Klimadaten eines Jahres als Stundenwerte benötigt. Mit Hilfe der meteorologischen Datenbank Meteonorm lassen sich die erforderlichen Klimadatensätze für nahezu jeden Ort auf der Welt erstellen.
Für die Simulationsberechnungen wird das Bauteil mit seiner Schichtenfolge berücksichtigt und ein mehrjähriger Verlauf der Feuchtegehalte für das gesamte Bauteil oder in einzelnen Bauteilschichten analysiert.
Das Berechnungsergebnis zeigt z. B., ob sich die Feuchtigkeitsgehalte einzelner Materialien oder an ausgewählten Stellen im Bauteil im zulässigen Rahmen bewegen. Wird der Verlauf des Gesamtfeuchtegehaltes betrachtet kann die maximal mögliche Austrocknung von verschiedenen Bauteilen ermittelt werden.
Diese wird auch als Bauschadens-Freiheits-Potenzial bezeichnet.

Definition des Bauschadens-Freiheits-Potenzials

Das Bauschadens-Freiheits-Potenzial ist eine theoretische Größe und erlaubt es die Leistungsfähigkeit von Konstruktionen hinsichtlich des Austrocknungsvermögens miteinander zu vergleichen. Es gibt an, wie viel Feuchtigkeit theoretisch durch unvermeidbare Restleckagen, Flankendiffusion oder feuchte Baustoffe eindringen könnte. Vergleichsgröße ist die Menge an Feuchtigkeit, die innerhalb eines Jahres aus dem Bauteil heraustrocknen kann. Dadurch können verschiedene Konzepte vergleichend gegenüber gestellt werden. Je größer das Bauschadens-Freiheits-Potenzial, desto größer die Sicherheit vor einem Bauschaden.

Berechnung des Bauschadens-Freiheits-Potenzials

Um die Sicherheiten eines Bauteils bei unvorhergesehenem Feuchteeintrag zu ermitteln, wird folgender Ansatz verwendet:
Zu Beginn der Berechnung wird der Feuchtegehalt in der Wärmedämmebene definiert auf 20 kg Wasser pro m³ Dämmstoff erhöht. Die Berechnung zeigt, wie schnell diese wieder austrocknen kann. Die Trocknungsmenge, die pro Jahr unter der Annahme der erhöhten Anfangsfeuchtigkeit aus der Konstruktion entweichen kann, ist das Bauschadens-Freiheits-Potenzial der Konstruktion. Die Berechnungen erfolgen unter ungünstigen Bedingungen (z. B. Nordseite eines Steildaches), in unterschiedlichen Klimabereichen (z. B. Hochgebirge) und mit unterschiedlichen Dachformen (Steildach, bekiestes oder begrüntes Flachdach). Bauphysikalisch günstigere Konstruktionen bieten entsprechend höhere Sicherheiten.
Weiteres Kriterium für die Funktion einer Konstruktion sind die maximalen Feuchtegehalte, die sich in den Bauteilschichten einstellen. Diese Gebrauchstauglichkeitsuntersuchungen erfolgen ab Abschnitt 3.3 "Ermittlung der Gebrauchstauglichkeit"


Dachkonstruktion

Bauphysikalische Beurteilung von Dachkonstruktionen
11. Aufbau der Dachkonstruktion
1. Aufbau der Dachkonstruktion
Bauteilschichten:

Betrachtete Dachvarianten:
 • Steildach mit 40° Neigung zur Nordseite,
    Eindeckung rote Dachsteine
 • Flachdach mit 5 cm Kiesschicht
 • Gründach mit extensiver Begrünung:
    10 cm Pflanzensubstrat

Alle Konstruktionen sind unverschattet.

Aufbau der Konstruktion

Es handelt sich um eine Konstruktion mit 200 mm Dämmung (Mineralwolle WLG 035). Auf der Ausßenseite verfügt das Bauteil über eine diffusionsdichte Abdichtungsbahn (siehe Abb. 11).

Dampfbremsen: sd-Wert:
  • Dampfbremse
5 m konstant
  • Dampfbremse
0,8 – 35 m richtungsabhängig variabel
0,6 – 4 m, feuchtevariabel
0,25 – >25 m, feuchtevariabel (ETA-18/1146)
Die pro clima INTELLO wird bei den Berechnungen stellvertretend für alle Bahnen aus der INTELLO-Familie verwendet.
Dachvarianten:
  • Steildach mit 40° Neigung zur Nordseite, rote Dachsteine
  • Flachdach mit 5 cm Kiesschicht oberhalb der Abdichtung
  • Gründach mit 10 cm Gründachaufbau oberhalb der Abdichtung
Standorte:
  • Holzkirchen, Deutschland, Höhenlage über NN = 680 m - (NN = Normal Null)
  • Davos, Schweiz, Höhenlage über NN = 1.560 m
Berechnung:
  • Mit Delphin 5.9.3
  • Anfangsfeuchtigkeit in der Wärmedämmung: 4.000 g/m² (= 20 kg/m³)

Verschattungen (z. B. durch Photovoltaik-Anlagen, Gebäudesprünge, hohe Bäume oder Topografie) werden bei den Berechnungen nicht berücksichtigt.


Einflussfaktoren auf die Höhe des Bauschadens-Freiheits-Potenzials

Eine wesentliche Größe für die Bauschadensfreiheit ist die Rückdiffusion im Sommer und damit verbunden die Austrocknung der Konstruktion nach innen. Die Menge der Austrocknung hängt von der Außentemperatur ab, genauer gesagt von der Temperatur an der Außenseite der Wärmedämmung sowie von der Diffusionsoffenheit der Dampfbrems- und Luftdichtungsbahn im Sommerfall. Durch Sonneneinstrahlung (auch diffus) weisen Bauteiloberflächen eine höhere Temperatur auf als die angrenzende Luft. Die Zeitdauer, welche die Wärme von außen benötigt bis sie an der Wärmedämmung ankommt, ist entscheidend.
Bei einem Steildach ist dies schneller der Fall als bei einer bekiesten oder begrünten Flachdachkonstruktion.
Bei einem Steildach hängt die Höhe der Dachoberflächentemperatur ab von der Dachneigung, der Orientierung der Dachflächen (Norden/Süden) und der Farbe der Dacheindeckung bzw. Dachabdichtung (hell/dunkel).
Das Bauschadens-Freiheits-Potenzial wird weiterhin durch die gewählte Dämmschichtdicke beeinflusst. Große Dämmstärken führen im Vergleich zu verringerten Rücktrocknungsmengen, da die Durchwärmung des Bauteils langsamer erfolgt und als Folge die Rücktrocknungszeiträume kürzer werden.

Ungünstige Faktoren sind:

  • Dachorientierung nach Norden
  • Große Dachneigung (> 25°)
  • Helle Farbe der Dacheindeckung oder Abdichtungsbahn
  • Flachdachabdichtung diffusionsdicht
  • Kaltes Klima, z. B. im Gebirge
  • Große Dämmschichtdicken
  • Zusätzliche Schichten oberhalb der Abdichtung (Begrünungen, Terrassenbeläge usw.)

Um den Einfluss des Diffusionswiderstandes der Dampfbremsen oder -sperren auf das Bauschadens-Freiheits-Potenzial zu ermitteln, wird in den Berechnungen auf der Außenseite eine diffusionsdichte Abdichtungsbahn (sd-Wert = 300 m) angenommen. Dieser Ansatz kann während der kalten Wintertemperaturen (bei Minusgraden) dazu verwendet werden, um den Einfluss von Vereisungen und damit diffusionsdichter Unterdeck- und Unterspannbahnen auf den Feuchtegehalt innerhalb der Konstruktion zu ermitteln.


Klimadaten Standort Holzkirchen

Holzkirchen liegt südlich von München auf einer Seehöhe von 680 m mit einem kalten, rauen Klima. Für die Klimarandbedingungen wurde aus das Feuchtereferenzjahr des Fraunhofer Instituts für Bauphysik ausgewählt, welches ein besonders feuchtes und kaltes Jahr abbildet. Die links dargestellten Diagramme zeigen die Temperaturverläufe über ein Jahr. Die blaue Linie zeigt die Innen-, die rote die Außentemperaturen (siehe Abb. 12 bis 15).

Jahrestemperaturverläufe Holzkirchen, Höhe: 680 m über NN, Südbayern, Deutschland - Dach: rote Ziegel bzw. Kies
12. Lufttemperaturen
(Feuchtereferenzklima)
12. Lufttemperaturen (Feuchtereferenzklima)
13. Dachoberflächentemperatur
Nordseite, 40° Dachneigung
13. Dachoberflächentemperatur Nordseite, 40° Dachneigung
14. Dachoberflächentemperatur
Südseite, 40° Dachneigung
14. Dachoberflächentemperatur Südseite, 40° Dachneigung
15. Dachoberflächentemperatur
Kiesdach
15. Dachoberflächentemperatur Kiesdach

Unter Berücksichtigung der Globalstrahlung (direkte Sonneneinwirkung plus Streulicht) ergibt sich, verglichen mit der Lufttemperatur, eine z. T. wesentlich höhere Dachoberflächentemperatur. Wenn die Außentemperatur (rot) die Innentemperatur (blau) überschreitet, findet in Konstruktionen mit feuchtevariablen Dampfbremsen eine Austrocknung nach innen statt. Selbst bei nordorientierten Steildächern ist dadurch in Holzkirchen an vielen Tagen im Jahr eine Rückdiffusion möglich, bei Südorientierung bereits im Winter an sonnigen Tagen. Im vorliegenden Berechnungsfall wurde der ungünstigste Fall angenommen: Nordausrichtung der Dachfläche mit 40° Neigung.

Bauschadens-Freiheits-Potenzial Steildach in Holzkirchen, Nordseite, 40° Dachneigung

Berechnung des Bauschadens-Freiheits-Potenzials
Standort Holzkirchen, Dach
Angenommene zusätzl. Feuchtigkeit zu Beginn:
4.000 g/m² Feuchtegehalt der Konstruktion im Trockenzustand
(= Feuchtigkeitsgehalt der Holzschalung bei 15 %): 1.700 g/m²
16. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
16. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
17. Bauschadens-Freiheits-Potenzial Flachdach mit 5 cm Kies
17. Bauschadens-Freiheits-Potenzial Flachdach mit 5 cm Kies
18. Bauschadens-Freiheits-Potenzial Gründach mit 10 cm Aufbau
18. Bauschadens-Freiheits-Potenzial Gründach mit 10 cm Aufbau
19. BSFP mit INTELLO und richtungsabhängig variabler Dampfbremse: verschiedene Dämmdicken
19. BSFP mit INTELLO und richtungsabhängig variabler Dampfbremse: verschiedene Dämmdicken

Die aus der Konstruktion innerhalb eines Jahres austrocknende Feuchtigkeitsmenge in g/m² beschreibt das Bauschadens-Freiheits-Potenzial und definiert damit die Höhe des Schutzes bei unvorhergesehen eingedrungener Feuchtigkeit (z. B. durch Konvektion, Flankendiffusion usw.). Die Berechnungsergebnisse zeigen, dass die PE-Folie (sd-Wert 100 m) keine signifikante Austrocknung der Feuchtigkeit aus der 200 mm starken Dämmschicht ermöglicht. In der Wärmedämmebene ausgefallenes Kondensat kann nicht mehr entweichen. Auch mit einer Dampfbremse mit einem konstanten sd-Wert von 5 m bestehen im Vergleich nur sehr geringe Trocknungsreserven.
Für die richtungsabhängig variable Dampfbremse ergibt sich eine Trocknungsreserve von 1.700 g/m²·Jahr. Diese ist geringer als die der Konstruktion mit der pro clima DB+. Diese verfügt über eine wesentlich höhere Austrocknung und weist erhebliche Sicherheitsreserven von 2.900 g/m²·Jahr auf.
Die Hochleistungs-Dampfbremse INTELLO bietet der Konstruktion das größte Sicherheitspotenzial. Innerhalb eines Jahres kann die Konstruktion gemäß den Delphin-Berechnungen ca. 3.500 g/m² Wasser austrocknen. (siehe Abb. 16).

Bauschadens-Freiheits-Potenzial Flachdächer

Für die Berechnung von Grün- und Kiesdächern stehen eine Reihe verschiedener Materialdatensätze für begrünte Dächer sowie einer für bekieste Konstruktionen zur Verfügung. Diese wurden auf der Grundlage von Messungen an verschiedenen Dachkonstruktionen an mehreren Standorten erstellt. In den Datensätzen wird die zeitliche Veränderung einer begrünten bzw. bekiesten Konstruktion berücksichtigt. So sind z. B. verändernde Effekte aus dem Bewuchs (Verschattung durch Pflanzenbewuchs) im Datensatz enthalten. Damit sind zuverlässige Simulationen der hygrothermischen Verhältnisse in und unter Gründächern bzw. Kiesdächern bei beliebigen Nutzungen in Mitteleuropa möglich.

Bekiestes Flachdach

Das bekieste Flachdach weist geringere Sicherheiten auf als das Steildach, da der Kies über der Abdichtung nur langsam durchwärmt wird. Als Folge stellt sich eine verzögerte Erwärmung der darunter liegenden Bauteilschichten inklusive der Dämmebene ein. Abb. 13 bis 15 zeigen die Temperaturen einer nord- bzw. südorientierten Steildachkonstruktion im Vergleich zu einem bekiesten Flachdach.
Besonders deutlich wird der Unterschied bei dem nach Süden ausgerichteten Steildach. Aber auch das nordorientierte Steildach weist ca. 8-10 °C höhere Spitzentemperaturen als das bekieste Flachdach auf. Wie beim Steildach besteht beim Kiesdach mit PE-Folie keine Austrocknung aufgrund des hohen sd-Wertes von 100 m. Auch die Dampfbremse mit einem konstanten sd-Wert von 5 m bietet keine nennenswerten Rücktrocknungssicherheiten.
Dies ist eine Folge der verringerten Bauteiltemperaturen, welche die Rückdiffusion reduzieren. Bereits bei geringen unvorhergesehenen Feuchtebelastungen ist ein Bauschaden unvermeidbar. Die richtungsabhängig feuchtevariable Dampfbremse bietet eine mögliche Austrocknung von 1.200 g/m²·Jahr.
Die Konstruktion mit der pro clima DB+ verfügt über ein höheres Bauschadens-Freiheits-Potenzial von 1.700 g/m²·Jahr. Obwohl die Oberflächentemperatur des Kiesdachs deutlich reduziert ist, bietet die Hochleistungs-Dampfbremse INTELLO der Konstruktion im Vergleich ein sehr hohes Sicherheitspotenzial. Innerhalb eines Jahres kann das betrachtete Bauteil gemäß den Delphin-Berechnungen ca. 2.200 g/m² Wasser austrocknen (siehe Abb. 17).

Begrüntes Flachdach

Begrünte Flachdachkonstruktionen verhalten sich aufgrund der dicken Substratschicht und den darin gespeicherten Wassermengen nochmals etwas träger als die Variante mit Kiesschüttung. Die Temperaturen auf der Abdichtungsbahn erreichen im Sommer Maximalwerte von 35-40 °C. Trotzdem verfügt die unbeschattete Konstruktion mit 200 mm Dämmstärke und einer INTELLO über ein Bauschadens-Freiheits-Potenzial von 1.200 g/m²·Jahr (siehe Abb. 18).
Das Bauteil verfügt über ausreichende Sicherheiten bei unvorhergesehenem Feuchteeintrag. Hier wird der berücksichtigte Einfluss aus dem Bewuchs (Verschattung) und die dadurch im Datensatz enthaltene Sicherheit deutlich. Die Bauschadens-Freiheits-Potential der DB+ ist zwar nur geringfügig geringer, jedoch ist die INTELLO aufgrund der zügigeren Austrocknung über die Jahre betrachtet für die anspruchsvollen Gründachkonstruktionen die bessere Alternative.
Die richtungsabhängig variable Dampfbremse sowie die Dampfbremse mit einem sd-Wert von 5 m liegen unter 1.000 g/m²·Jahr (siehe Abb. 18) und verfügen demnach über deutlich geringere Rücktrocknungsreserven im Vergleich. Für begrünte Flachdächer ist eine Bahn aus der INTELLO-Familie aufgrund der höheren Reserven die bessere Wahl.

Einfluss der Dämmschichtdicke

In den letzten Jahren hat sich nicht zuletzt durch die regelmäßig steigenden Anforderungen der Energieeinspar-Gesetzgebung die Stärke der eingebauten Dämmschichten erhöht. Konstruktionen mit Dämmdicken von 300 mm oder mehr, die bei konventionellen Gebäuden in der Vergangenheit nur äußerst selten verwendet wurden, treten in immer größerer Anzahl auf. Hoch wärmegedämmte Konstruktionen haben ein reduziertes Bauschadens-Freiheits-Potenzial. Der Hintergrund ist, dass bei steigender Dämmdicke die Durchwärmung des Bauteils zögerlicher verläuft. Dadurch wird der Vorgang der Verdunstung von unvorhergesehenen Feuchteeinträgen verlangsamt. Da die Außenklimabedingungen jedoch identisch bleiben, sinken die Rücktrocknungsmengen auf ein Jahr bezogen.

INTELLO:
Abb. 19 zeigt das Bauschadens-Freiheits-Potenzial der oben vorgestellten Konstruktion mit der INTELLO mit den Dämmstärken 200, 300 und 400 mm.
Bei 200 mm Dämmdicke beträgt das Bauschadens-Freiheits-Potenzial ca. 3.500, bei 300 mm ca. 3.000 und bei 400 mm noch 2.600 g/m²·Jahr.

DB+:
Auch bei der DB+ hat die Dämmdicke einen Einfluss auf das Bauschadens-Freiheits-Potenzial. Die Konstruktion mit der DB+ verfügt bei 200 mm Dämmung über ein Bauschadens-Freiheits-Potenzial von 2.900 g/m²·Jahr, bei 300 mm von 1.900 g/m²·Jahr und bei 400 mm Dämmschichtdicke über ein Bauschadens-Freiheits-Potenzial von 1.600 g/m²·Jahr (ohne Abb.).

Richtungsabhängig variable Dampfbremse:
Im Vergleich mit der INTELLO und der DB+ bietet diese Dampfbremse insgesamt ein geringeres Sicherheitspotential. Bei 200 mm liegt es bei 1.800, bei 300 mm bei 1.700 und bei 400 mm bei 1.600 g/m²·Jahr (siehe Abb. 19). sd-Wert 5 m:
Bei 200 mm Dämmdicke hat die Konstruktion mit der Dampfbremse mit dem konstanten sd-Wert von 5 m bereits ein sehr geringes Bauschadens-Freiheits-Potenzial. Bei höheren Dämmdicken sinkt dieses nochmals. Jedoch sind die Sicherheiten bereits bei geringen Dämmdicken so gering, dass eine Verwendung bei außen diffusionsdichten Bauteilen sowohl bei geringen als auch bei hohen Dämmdicken nicht empfehlenswert ist (ohne Abb.).

Für die INTELLO-Familie und die DB+ gilt demnach:
Auch bei nordorientierten, außen diffusionsdichten Steildachkonstruktionen (DN 40°) mit hohen Dämmdicken und roten Dachziegeln sind Bauteile ausreichend sicher und bieten im Vergleich die größten Bauschadens-Freiheits-Potentiale. Unterstützung bei der feuchtetechnischen Bemessung von Steildächern, Bahnendächern sowie Flachdächern mit zusätzlichen Bauteilschichten oberhalb der Abdichtungsbahn (z. B. Bekiesungen, Begrünungen, Terrassenbelägen) bietet die technische Hotline von pro clima.


Klimadaten Standort Davos

Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 20 - 23)

Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies
20. Lufttemperatur
(Davos, kalt)
20. Lufttemperatur (Davos, kalt)
21. Dachoberflächentemperatur
Nordseite, 40° Dachneigung
21. Dachoberflächentemperatur Nordseite, 40° Dachneigung
22. Dachoberflächentemperatur
Südseite, 40° Dachneigung
22. Dachoberflächentemperatur Südseite, 40° Dachneigung
23. Dachoberflächentemperatur
Kiesdach
23. Dachoberflächentemperatur Kiesdach

Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Inneraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein.
In nordorientierten Dächern sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine Rückdiffusion möglich. Bei nach Süden geneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht. Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.

Bauschadens-Freiheits-Potenzial Steildach in Davos, Nordseite, 40° Dachneigung

Berechnung des Bauschadens-Freiheits-Potenzials
Standort Davos, Dach
Angenommene zusätzl. Feuchtigkeit zu Beginn:
4.000 g/m² Feuchtegehalt der Konstruktion im Trockenzustand
(= Feuchtigkeitsgehalt der Holzschalung bei 15 %): 1.700 g/m²
24. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
24. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
25. Bauschadens-Freiheits-Potenzial Kiesdach
25. Bauschadens-Freiheits-Potenzial Kiesdach

Für die Berechnung wurde, um die Sonneneinstrahlung zu minimieren, ebenfalls der ungünstigste Fall angenommen, d. h. eine Nordausrichtung des Daches mit 40° Neigung und roter Ziegeldeckung. Die äußerst niedrige Temperatur im Winter führt zu einem hohen Tauwasserausfall, so dass sich sogar die Konstruktion mit der PE-Folie auffeuchtet, auch wenn man annimmt, dass keine unvorhergesehene Feuchtebelastung gegeben ist. Bei einer Dampfbremse mit einem konstanten sd-Wert von 5 m ist kein Bauschadens-Freiheits-Potenzial ablesbar. Die Dampfbremse mit dem richtungsabhängig variablen Diffusionswiderstand ermöglicht nur eine vergleichsweise geringes Bauschadens-Freiheits-Potenzial von 1.300 g/m². Das Bauschadens-Freiheits-Potenzial der Konstruktion mit der DB+ liegt da mit ca. 1.800 g/m² Rücktrocknung darüber.
Die Hochleistungs-Dampfbremse INTELLO bietet eine bauphysikalisch einwandfreie Konstruktion und ein zusätzliches Sicherheitspotenzial.
Innerhalb eines Jahres kann die Konstruktion gemäß den Delphin Berechnungsergebnissen 2.400 g/m² Wasser austrocknen (siehe Abb. 24).

Bauschadens-Freiheits-Potenzial Kiesdach und Gründach

Für das anspruchsvolle Gebirgsklima von Davos sind die Rücktrocknungsreserven mit den aktuellen Kiesdach- und Gründachdatensätzen nicht ausreichend.
Für das Kiesdach bietet die INTELLO zwar eine minimale Reserve von 800 g/m²·Jahr, diese ist jedoch zu gering bemessen (siehe Abb. 25).
Das Bauschadens-Freiheits-Potential mit der richtungsabhängig variablen Dampfbremse liegt mit 500 g/m²·Jahr nochmals darunter. Die DB+ bzw. die Dampfbremse mit dem konstanten sd-Wert von 5 m bieten für dieses Bauteil keine signifikanten Sicherheiten.
Bei der begrünten Dachkonstruktion wiederum sind die Bauschadens-Freiheits-Potentiale für den Standort Davos für alle Konstruktionen geringer. Für diese Bauteile müssen in Gebirgslagen die Traghölzer in Abhängigkeit von einer objektbezogenen Berechnung teilweise oder vollständig überdämmt werden. Bitte sprechen Sie die technische Hotline von pro clima an.

Schlussfolgerungen Bauschadens-Freiheits-Potenzial

Mit den pro clima Dampfbrems- und Luftdichtungsbahnen der INTELLO-Familie und der DB+ können für die mit einer Dämmschichtdicke von 200 mm berechneten Steildachkonstruktionen für Gebäudehöhenlagen bis 700 m ü. NN sehr hohe Bauschadens-Freiheits-Potenziale realisiert werden. Auch bei zusätzlicher Feuchtigkeit durch unvorhergesehene Einflüsse bleiben die Konstruktionen bauschadenfrei.
Flankendiffusion bei einem Ziegelmauerwerk, wie von Ruhe[4], Klopfer[5][6] und Künzel[7] beschrieben, können die INTELLO-Bahnen und die DB+ kompensieren, sollten aber bei großen Höhenlagen durch eine entsprechende Detailplanung vermieden werden. Die pro clima INTELLO und DB+ haben sich in in der langjährigen Anwendung (INTELLO > 20 Jahre, DB+ > 30 Jahre) in vielen Mio. m² in kritischen Konstruktionen durch hohe Bauschadens-Freiheits-Potenziale bewährt.

Der Einsatz der feuchtevariablen Dampfbremsen vor pro clima sorgt in bekiesten Dachkonstruktionen gemäß Abb. 11 für hohe Sicherheiten in Holzkirchen. Diese fördern die Bauschadensfreiheit der Bauteile.
Die Bahnen der INTELLO-Familie können für dieses Klima auch in Gründachkonstruktionen für sichere Bauteile sorgen. Die Dicke der Dämmschicht nimmt Einfluss auf die Bauschadensfreiheit. Gemäß den Berechnungsbeispielen sind für Steildächer die Rücktrocknungssicherheiten für die gebräuchlichen Dämmdicken bis 400 mm ausreichend hoch. In Gebirgslagen bis 1.600 m ü. NN verfügen außen diffusionsdichte Steildächer mit einer der INTELLO-Bahnen ein ausreichendes Bauschadens-Freiheits-Potenzial. Bei nicht hinterlüfteten Flachdächern mit Dämmung zwischen den Traghölzern ist es empfehlenswert, die Gesamtdämmung in einen Teil zwischen den Traghölzern und einen Teil oberhalb der Tragkonstruktion aufzuteilen. Für diese Konstruktionen kann die technische Hotline von pro clima objektbezogene Bauteilbeurteilungen erstellen. Richtungsabhängig variable Dampfbremsen verfügen im Vergleich aller Konstruktionen mit der einer Bahn aus der INTELLO-Familie bzw. der DB+ über geringere Bauschadens-Freiheits-Potenziale. Dies liegt darin begründet, dass sie im feuchten Bereich einen erhöhten Diffusionswiderstand aufweisen, der nach DIN 4108-3 als diffusionshemmend (dampfbremsend) bezeichnet wird. Dieser behindert die Austrocknung unvorhergesehen eingedrungener Feuchtigkeitsmengen.
Bezogen auf das Bauschadens-Freiheits-Potenzial liegen die möglichen Rücktrocknungsreserven pro Jahr bezogen auf die betrachteten Konstruktionen jeweils ca. 40 % unterhalb denen mit den pro clima Hochleistungs-Dampfbremsen mit dem INTELLO-Funktionsfilm.

Ermittlung der Gebrauchstauglichkeit

Ermittlung der Gebrauchstauglichkeit für Bauteile nach Abb. 11
26. Gebrauchstauglichkeit Steildach (40°/ Mineralwolle 035 (INTELLO 400 mm; DB+ 200 mm) / Holzkirchen)
26. Gebrauchstauglichkeit Steildach (40°/ Mineralwolle 035 (INTELLO 400 mm; DB+ 200 mm) / Holzkirchen)
27. Gebrauchstauglichkeit Kiesdächer (Mineralwolle 035 (INTELLO 300 mm; DB+ 200 mm) / Holzkirchen)
27. Gebrauchstauglichkeit Kiesdächer (Mineralwolle 035 (INTELLO 300 mm; DB+ 200 mm) / Holzkirchen)
28. Gebrauchstauglichkeit Gründächer (Mineralwolle 035 (INTELLO 200 mm; DB+ 180 mm) / Holzkirchen)
28. Gebrauchstauglichkeit Gründächer (Mineralwolle 035 (INTELLO 200 mm; DB+ 180 mm) / Holzkirchen)

Neben dem Bauschadens-Freiheits-Potenzial ist es weiterhin entscheidend, welche Feuchtigkeitsgehalte sich im Bauteil im Gebrauchszustand einstellen. Bei einer feuchtetechnischen Bemessung wird zunächst ermittelt, welche Schichten im Bauteil einer kritischen Betrachtung unterzogen werden müssen. Im Regelfall sind diese Schichten außen angeordnete Holzschalungen oder Holzwerkstoffplatten (OSB- oder 3-Schicht-Platten). Sind diese identifiziert werden instationäre Berechnungen durchgeführt und das Bauteil im Bemessungsprozess erforderlichenfalls so lange durch eine wachsende Zusatzdämmung oberhalb der Tragkonstruktion ergänzt bis sich die Feuchtegehalte in der oder den kritischen Schichten unterhalb von zulässigen Werten einstellen. Die Gebrauchstauglichkeit einer Konstruktion ist neben der Schichtenfolge von der Lage des geplanten Bauwerkes abhängig. So ist eine Konstruktion im Voralpenland (Holzkirchen) widrigeren Klimabedingungen ausgesetzt als in der norddeutschen Tiefebene. Die Berechnungen zur Gebrauchstauglichkeit werden hier mit WUFI pro durchgeführt.

Verfahren zur Bemessung

Für eine feuchtetechnische Bemessung ist es sinnvoll, Feuchteeinträge durch unvermeidbare Restleckagen (Konvektion) zu berücksichtigen. Dazu bietet WUFI pro die Möglichkeit mithilfe des Luftinfiltrationsmodells den Feuchteeintrag infolge Konvektion in die Wärmedämmebene zu simulieren. Der Maßstab ist der hüllflächenbezogene Luftwechsel q50, der sich nicht wie der n50-Wert auf das Volumen, sondern auf die Außenhülle eines Gebäudes bezieht. Der q50- und der n50-Wert sind bis zu einem A/V-Verhältnis (Hüllfläche zu Volumen des betrachteten Gebäudes) von 0,9 1/m in etwa zahlengleich. Bei kleineren A/V-Verhältnissen sinkt der q50-Wert im Vergleich zum n50-Wert (z. B. A/V = 0,7 1/m: q50-Wert = 2,3 m³/m²·h bei n50 = 3 1/h) (vgl. [9]).

Das Luftinfiltrationsmodell unterscheidet standardmäßig drei Luftdichtigkeitsklassen (A, B, C), welche einem q50-Wert von 1 m³/m²·h (Klasse A), 3 m³/m²·h (Klasse B) und 5 m³/m²·h (Klasse C) entsprechen. Klasse A kann bei vorelementierten Bauteilen bzw. bei geprüfter Luftdichtheit mit Leckageortung, Klasse B bei geprüfter Luftdichtheit und Klasse C bei Konstruktionen mit ungeprüfter Luftdichtheit angenommen werden, um die unvorhergesehene Feuchtelast durch Leckagen zu simulieren.
Für eine maximal sichere Konstruktion sollte bei jedem Bauteil eine Luftdichtheitsprüfung mit Leckageortung durchgeführt werden. Dann kann die Luftdichtigkeitsklasse A für den Nachweis verwendet werden. Die folgenden Untersuchungen und die abgeleiteten Gebrauchstauglichkeiten beziehen sich auf Wärmedämmungen aus Mineral- oder Steinwolle WLG 035.
Die Randbedingungen der Berechnung und die Bewertung der Ergebnisse erfolgt nach den Empfehlungen des WTA-Merkblattes 6-8[10] für die konstruktiven Aspekte (Abschnitt 6.4b).
Aus Gründen der Bauteilsicherheit kann es bereits in der Planungsphase sinnvoll sein, eine Zusatzdämmung oberhalb der ersten Abdichtungsbahn anzuordnen. Auch wenn diese aus bauphysikalischer Sicht nicht erforderlich ist, bietet sie u.a. den Vorteil, dass Feuchtigkeit z. B. durch eine undichte äußere Abdichtung nicht in die Ebene des Holztragwerkes gelangen kann. Dieses bleibt somit geschützt. Grundsätzlich ist eine regelmäßig Begehung (Wartung) aller Konstruktionen empfehlenswert.

Gebrauchstauglichkeit außen diffusionsdichtes Steildach

Für die beispielhafte Ermittlung der Gebrauchstauglichkeit in Holzkirchen wurde die Steildachkonstruktion aus Abb. 11 mit roten engobierten Dachziegeln mit pro clima INTELLO und mit pro clima DB+ betrachtet.
Dazu wurde die Konstruktion mit der INTELLO mit einer Dämmschichtdicke von 400 mm Mineralwolle berechnet. Das Bauteil mit der DB+ verfügt über eine Dämmschichtdicke von 200 mm Mineralwolle. Die Wufi pro Berechnungen erfolgten unter Ansatz der 3 Luftdichtigkeitsklassen und einer Höhe der gedämmten Gebäudehülle von 5 m.
Die maßgebend kritische Schicht in diesen Bauteilen ist die Fichtenschalung unterhalb der Abdichtung. Abb. 26 zeigt die Feuchtegehalte in der 24 mm starken Schalung über einen Zeitraum von 10 Jahren. Auf der sicheren Seite liegend ist es entscheidend, dass in der Fichtenschalung die Feuchtegehalte unterhalb von 20 % liegen (bei Holzwerkstoffplatten liegt die Grenze bei 18 %). Dann ist das Bauteil im Gebrauchszustand funktionsfähig.
Mit der INTELLO weist die Fichtenschalung der Konstruktion bei Berechnungen mit allen 3 Luftdichtigkeitsklassen keine erhöhten Materialfeuchtigkeiten auf – die Gebrauchstauglichkeit ist damit für alle Luftdichtheitsklassen bestätigt. Darüber hinaus sind noch Reserven für weitere unvorhergesehene Feuchtebelastungen vorhanden. Die Verwendung einer DB+ hat in der gleichen Konstruktion höhere rel. Holzfeuchtigkeiten in der Fichtenschalung zur Folge. Bei geprüfter Luftdichtheit mit Leckageortung (LDK A) kann die DB+ in Holzkirchen bis zu einer Dämmschichtdicke von 200 mm Mineralwolle als Luftdichtungs- und Dampfbremsebene eingesetzt werden. Bei den Luftdichtigkeitsklassen B und C werden 20 % Holzfeuchte in der Schalung planmäßig überschritten. Die Färbung der äußeren Ziegeldeckung hat einen erheblichen Einfluss auf die Bauteilerwärmung von außen. Für die Konstruktion mit der DB+ können mattschwarze Dachziegel eine Erhöhung der Mineralwolldämmschicht, bzw. Luftdichtigkeitsklasse B ermöglichen. Dieses muss im Einzelfall gesondert nachgewiesen werden.

Gebrauchstauglichkeit bekiestes Flachdach

Die bekieste Dachkonstruktion wurde wie bei den Steildachkonstruktionen sowohl mit der INTELLO als auch mit der DB+ berechnet. Die Konstruktion mit der INTELLO weist eine Dämmstärke der Mineralwolle von 300 mm, die mit der DB+ von 200 mm auf. Der Feuchtegehalt der Fichtenschalung in diesem Bauteil unterschreitet beim Einsatz der INTELLO den maximal zulässigen Wert von 20 %, so dass für diese Konstruktionen die Gebrauchstauglichkeit bestätigt ist (siehe Abb. 27).
Die Konstruktion mit der DB+ lässt sich für diesen Fall nur für die Luftdichtigkeitsklasse A nachweisen. Die Luftdichtigkeitsklassen B und C führen für den Standort Holzkirchen zu rel. Feuchtegehalten von über 20 % in der äußeren Fichtenschalung. Konstruktionen mit der DB+ lassen sich mit höheren Dämmstärken oder abweichender Luftdichtheitsklasse für das Klima in Holzkirchen nur mit zusätzlichen Aufdachdämmungen realisieren.

Gebrauchstauglichkeit begrüntes Flachdach

Gründachkonstruktionen können mit INTELLO für das Klima in Holzkirchen bei einer Dämmdicke von 200 mm Mineralwolle WLG 035 gemäß Abb. 11 bemessen werden (siehe Abb. 28). Dazu ist es erforderlich, dass die Luftdichtheit überprüft und eine Leckageortung durchgeführt wird (Luftdichtigkeitsklasse A), damit Feuchteeinträge durch Konvektion vermieden werden. Die anderen Luftdichtheitsklassen führen in der Bemessung zu höheren konvektiven Feuchteeinträgen. In der Folge steigt die Feuchtigkeit in der Schalung auf über 20 %. Um dies zu vermeiden kann eine zusätzliche Aufdachdämmung vorgesehen werden.
Der Einsatz einer DB+ ohne Zusatzdämmung oberhalb der ersten äußeren Abdichtungsbahn ist bei den betrachteten Gründächern nicht empfehlenswert.

Schlussfolgerungen Gebrauchstauglichkeit

Die Gebrauchstauglichkeit von außen diffusionsdichten Steildächern (40° Dachneigung), bekiesten oder begrünten Flachdachkonstruktionen wurde für den Standort Holzkirchen bis zu den in den jeweils angegebenen Dämmschichtdicken mit Mineralwolle WLG 035 und Fichtenschalung rechnerisch nachgewiesen.
Abweichende Konstruktionen (höhere Dämmschichtdicken, Holzwerkstoffplatten statt Schalungen, sorptive Dämmstoffe statt Mineralwolle) und andere Lagen (Städte/Orte, Verschattungen) können aus bauphysikalischer Sicht die Anordnung einer zusätzlichen Aufdachdämmung mit zweiter Abdichtungsebene erfordern. Grundsätzlich wirkt sich diese bei allen vollgedämmten Flachdächern positiv auf die Bauteilsicherheit aus, da die doppelte Abdichtung das Tragwerk vor Feuchtigkeitseintritt von außen schützt, sollte eine Leckage in der oberen Abdichtung entstehen. Bei allen Dächern (z. B. Bahnendächer, bekiesten und begrünten Konstruktionen) ist zudem die jährliche Wartung (Inspektion) empfehlenswert, um die Funktion der Dachkonstruktion inklusive aller Abflüsse sicherzustellen.
Grundsätzlich ist es sinnvoll die Gebrauchstauglichkeit von Konstruktionen mit außen diffusionsdichten Bauteilschichten durch einen Bauphysiker überprüfen zu lassen. Bitte wenden Sie sich zur Überprüfung und Bemessung von Bauteilen an die technische Hotline von pro clima.



Flankendiffusion

2-dimensionale Berechnung der Wärme- und Feuchteströme mit WUFI 2D
29. Konstruktionsaufbau: Einbindende Wand
BPhys GD 2Studie 26 komstruktionsaufbau.jpg

30. Feuchteerhöhung mit einer PE-Folie
      ⇒ Auffeuchtung = Bauschaden
      Feuchtereduzierung mit der INTELLO
      ⇒ Austrocknung = Bauschadensfreiheit
BPhys GD 2Studie 27 Flankendiffusion.jpg

Ansteigender Feuchtegehalt im Bauteil mit
PE-Folie sd-Wert = 100 m konstant
Abnehmender Feuchtegehalt im Bauteil mit
pro clima INTELLO sd-Wert = 0,25 bis > 25 m feuchtevariabel

Für die Ermittlung des Einflusses des Feuchteeintrages über Bauteilflanken wird der Anschluss einer einbindenden Innenwand an eine Wärmedämmkonstruktion betrachtet. Die Konstruktion verfügt auf der Außenseite über eine diffusionsdichte Bitumendachbahn (siehe Abb. 29).
Mauerwerk hat einen geringeren Diffusionswiderstand als die Dampfbrems- und Luftdichtungsebene der angrenzenden Holzbaukonstruktion. Dadurch findet über die Flanke eine stärkere Diffusion von Feuchtigkeit in die Wärmedämmkonstruktion statt, als in den angrenzenden Bereichen mit Dampfbremse.
Für dieses Beispiel wird eine Neubausituation gewählt. Das Mauerwerk und die Putzschicht verfügen über einen dann üblichen Feuchtegehalt vom 30 kg/m³. Der faserförmige Wärmedämmstoff ist trocken eingebaut. Die rel. Holzfeuchtigkeit der Dachschalung liegt bei 15 %.
Als Dampfbrems- und Luftdichtungsebene wird bei einer Variante eine diffusionshemmende PE-Folie (sd-Wert 100 m) eingesetzt, bei einer zweiten die feuchtevariable pro clima INTELLO (sd-Wert 0,25 bis über 25 m).

Ergebnisse der 2-dimensionalen Simulationsberechnung

Wird eine derartige Konstruktion mit dem 2-dimensionalen Berechnungsverfahren für Wärme- und Feuchteströme, welches in WUFI 2D implementiert ist, berechnet, kommt es zu folgendem Ergebnis (siehe Abb. 30):
Nach einem jahreszeitlich bedingten Anstieg des Feuchtegehaltes in beiden Konstruktionen befinden sich beide auf einem annähernd gleich hohen Niveau.
Bei der Variante mit PE-Folie als Luftdichtungs- und Dampfbremsebene ist über den betrachteten Zeitraum von 4 Jahren in jedem Jahr eine deutliche Steigerung des Gesamtwassergehaltes zu beobachten (roter Graph). In dieser Konstruktion kommt es zu einer Akkumulation von Feuchtigkeit in den verwendeten Baustoffen, da keine Rücktrocknung durch die PE-Folie in Richtung Innenraum möglich ist. Die Folge: Schimmelbildung auf dem Holz bzw. beginnende Holzzerstörung.
Bei der Konstruktion mit der Hochleistungs-Dampfbremse INTELLO kann die enthaltene Feuchtigkeit nach innen entweichen. Das Bauteil ist vor Feuchtigkeitsansammlungen geschützt – diese wird zügig in den Innenraum abgegeben (grüner Graph). Dadurch sinkt der Feuchtegehalt stetig über den Betrachtungszeitraum.
Die Konstruktionen mit INTELLO und DB+ verfügen über ein hohes Bauschadens-Freiheits-Potenzial.

Schlussfolgerung bei Flankendiffusion

Feuchteeinträge durch Flankendiffusion bei einer in die Wärmedämmkonstruktion einbindenden Innenwand, wie von Ruhe[5] , Klopfer[6][7] und Künzel[8] beschrieben, können durch INTELLO und DB+ wieder aus dem Bauteil entweichen.
Bei Konstruktionen mit geringem Bauschadens-Freiheits-Potenzial sollten Flankendiffusionsvorgänge konstruktiv vermieden werden.


Wandkonstruktionen

Temperaturverläufe Wand, Putzfassade hell
Holzkirchen
31. Wandtemperatur Nordseite
31. Wandtemperatur Nordseite
32. Wandtemperatur Südseite
32. Wandtemperatur Südseite
Davos
33. Wandtemperatur Nordseite
33. Wandtemperatur Nordseite
34. Wandtemperatur Südseite
34. Wandtemperatur Südseite

Wandkonstruktionen erfahren durch ihre senkrechte Ausrichtung eine geringere Erwärmung durch die Sonne als Dächer. Daher ist das Rücktrocknungspotenzial geringer. Im Regelfall sind Wände im Gegensatz zu Dächern außenseitig nicht diffusionsdicht. Es werden keine Bitumenbahnen verwendet, da im Gegensatz z. B. zu Flachdächern und Gründächern keine hohen Anforderungen an die Wasserdichtheit bestehen.
Die Temperaturen in der Außenwand hängen im Wesentlichen von der Farbe der Fassade ab. Auf hellen Fassaden werden durch die Sonneneinstrahlung niedrigere Temperaturen erreicht als auf dunkleren Fassaden. Die dargestellten Temperaturprofile auf der Außenwand entstehen bei normal hellen Putzfassaden (siehe Abb. 31 bis 34).
Die Hochleistungs-Dampfbremse INTELLO bietet auch bei Wandkonstruktionen ein erhebliches Bauschadens-Freiheits-Potenzial. Berechnungen mit Delphin mit dem Klima von Holzkirchen zeigen für eine nordorientierte Außenwand mit diffusionsdichter Außenbekleidung bei Verwendung von Bahnen mit dem INTELLO Funktionsfilm immer noch ein ausreichendes Sicherheitspotenzial.

Damit sind die Bahnen aus der INTELLO-Familie auch bei Holzwerkstoffplatten wie OSB- oder Spanplatten auf der Außenseite die ideale Lösung für ein hohes Bauschadens-Freiheits-Potenzial. Die Gefahr von Schimmelbildung wird deutlich verringert.

Feuchteschutz ist eine Bemessungsaufgabe. Bitte wenden Sie sich dazu an einen Bauphysiker. pro clima bietet im Rahmen der technischen Hotline die Beurteilung von Bauteilen an.

Konstruktionsempfehlungen

Konstruktionen

Voraussetzung für die Wirkung feuchtevariabler Dampfbremsen
35. Innenseitig dürfen sich nur diffusionsoffene Bauteilschichten befinden, um eine Austrocknung von Feuchtigkeit durch die Rückdiffusion zum Innenraum nicht zu behindern.
BPhys GD 2Studie 35.0 wintersommer.jpg

36. Schutz der Wärmedämmkonstruktion im Neubau und in der Bauphase
BPhys GD 2Studie 32 Diagr Hydrosafe intello db+.png
Der sd-Wert der Bahnen stellt sich auf die unterschiedlichen Umgebungsfeuchten ein.
Ein Hydrosafe-Wert zwischen 1,5 und 2,5 m schützt das Bauteil vor baubedingt erhöhter rel. Luftfeuchtigkeit.
Gleichzeitig sichert er ein hohes Bauschadens-Freiheits-Potenzial von vollgedämmten Holzbaukonstruktionen.

Die bauphysikalischen Untersuchungen mit realen Klimadaten zeigen das enorm große Bauschadens-Freiheits-Potenzial für die Konstruktionen bei Verwendung der Hochleistungs-Dampfbremsen der pro clima INTELLO Familie mit dem besonders großen, in allen Klimabereichen wirksamen feuchtevariablen Diffusionswiderstand und der seit mehr als 25 Jahren bewährten feuchtevariablen Dampfbremse pro clima DB+.
Mit den feuchtevariablen pro clima Dampfbremsen und Luftdichtungsbahnen erreichen die Konstruktionen auch bei erhöhten Feuchtebelastungen eine hohe Sicherheit vor Bauschäden. Bei der Feuchteschutzbemessung können neben den Auswirkungen außen diffusionsdichter Materialien zusätzliche Bauteilschichten oberhalb der Holzbaukonstruktionen, wie z. B. Begrünungen oder Bekiesungen, sowie Verschattungen durch Gebäude, Topografie oder PV-Anlagen usw. berücksichtigt werden.
Bitte wenden Sie sich für eine Bemessung an einen Bauphysiker oder die technische Hotline von pro clima.

Innenseitige Bekleidung

Voraussetzung für die hohen Sicherheitsreserven ist die ungehinderte Austrocknung in den Innenraum. Innenseitig der feuchtevariablen Dampfbremse angeordnete Bekleidungen mit diffusionshemmender Wirkung, wie Holzwerkstoffe (z. B. OSB- oder Mehrschichtplatten), reduzieren die Rücktrocknungsmenge an Feuchtigkeit nach innen und verringern dadurch das Bauschadens-Freiheits-Potenzial.
Vorteilhaft sind diffusionsoffene Materialien, z. B. Profilbrettschalungen, Holzwolle-Leichtbauplatten mit Putz und Gipsbauplatten.

Konstruktionen mit diffusionsdichten Bauteilschichten auf der Außenseite sollten ausschließlich mit diffusionsoffenen Innenbekleidungen kombiniert werden. Dann erhalten die Bauteile maximale Sicherheit vor Bauschäden.

Permanent feuchte Räume

Feuchtevariable Dampfbremsen können nicht in dauerhaft feuchten Klimabedingungen, wie z. B. Schwimmbädern, Spas, Gärtnereien oder Großküchen, verwendet werden.

Neubauten: Trocknungsphase (60/2-Regel).

Durch Einhalten der 60/2-Regel werden Wärmedämmkonstruktionen in Neubauten, welche prinzipbedingt über eine erhöhte Raumluftfeuchtigkeit verfügen, wirksam geschützt. Die Membranen der INTELLO-Familie und DB+ erfüllen diese Anforderung und fördern dadurch das hohe Bauschadens-Freiheits-Potenzial der Bauteile.

Feuchträume in Wohnungen

Während der Bauphase mit baubedingt erhöhten Raumluftfeuchten ist es ganz besonders wichtig, dass feuchtevariable Dampfbremsen einen ausreichend hohen Hydrosafe-Wert aufweisen. Nass- und Feuchträume in Wohngebäuden haben eine temporär erhöhte rel. Feuchtigkeit von 70 %.
Die feuchtevariablen Dampfbremsen mit dem INTELLO-Funktionsfilm und die DB+ bieten durch die Einhaltung der 60/2-Regel – bei 70 % Raumluftfeuchtigkeit und 50 % Feuchtigkeit in der Dämmebene (60 % mittlerer Feuchtigkeit) mit einem sd-Wert größer 2 m – auch für diese Räume optimalen Schutz. Damit ist die Konstruktion auch bei der bau- und wohnbedingten Neubaufeuchtigkeit ausreichend vor Feuchteeintrag aus der Raumluft und dadurch bedingte Schimmelbildung geschützt (siehe Abb. 36).

Bauphase: Hydrosafe- Wert (70/1,5-Regel)

Der INTELLO-Funktionsfilm und die DB+ verfügen über einen Hydrosafe-Wert von über 2,0 m und bieten für das Bauteil in der Bauphase gegen die Feuchtebelastungen hohen Schutz (siehe Abb. 36).
Dadurch verfügen Konstruktionen mit den feuchtevariablen Dampfbremsbahnen auch während der Bauphase über einen guten Schutz vor Schimmelbildung.
Baufeuchte muss zügig und konsequent durch stetiges Dauerlüften abgeführt werden. Bautrockner helfen die Feuchtelast zu verringern.
Die Reduzierung der Feuchtegehalte der feuchte eingebauten Materialien (Mauerwerk, Putz, Estrich, Beton usw.) ist nicht zuletzt deshalb wichtig, da dadurch Neubauschimmel auf Oberflächen verhindert werden kann.

Unterdach / Unterdeckung

Optimal ist die Wahl diffusionsoffener Werkstoffe für die Unterdeckung (z. B. Holzfaserunterdeckplatten oder SOLITEX Unterdeck- oder Unterspannbahnen mit porenfreier Membran), welche eine hohe Austrocknung nach außen ermöglichen.
Konstruktionen mit außenseitig diffusionsdichtem Aufbau, z. B. Bitumenbahnen, Flachdächer und Gründächer sowie Dächer mit Blecheindeckungen, verringern die bauphysikalischen Sicherheiten des Bauteils.
Vollholzschalungen bieten höhere Sicherheiten als Holzwerkstoffplatten (z. B. OSB), da Holz einen feuchtevariablen Diffusionswiderstand hat und kapillar leitend ist.
Die INTELLO-Familie bietet durch die große Feuchtevariabilität ein sehr hohes Sicherheitspotenzial, auch bei Holzwerkstoffen.

Steildachkonstruktionen

In Verbindung mit außen diffusionsoffenen Konstruktionen bestehen derartig hohe Trocknungsreserven, dass es bei Verwendung der Dampfbremsen der INTELLO-Familie sowie der DB+ keine Begrenzung der Höhenlage des Standorts gibt. Auch in Höhenlagen von über 3.000 m sind die Konstruktionen sicher. Bei Steildachkonstruktionen mit außen diffusionsdichten Bauteilschichten wenden Sie sich bitte an den Bauphysiker oder die technische Hotline von pro clima.


Flachdach- und Gründachkonstruktionen

Flachdächer haben außenseitig immer eine Abdichtungsbahn zum Schutz vor Wasser. Diese weisen wenigstens den Diffusionswiderstand einer starken Dampfbremse auf und können aber auch absolut dampfdicht sein (sd-Wert > 1.500 m) wenn es sich um einer Bitumenbahn mit einer Aluminiumeinlage handelt. In jedem Fall reduzieren Sie die mögliche Austrocknung nach außen auf ein Minimum.
Belüftete Konstruktionen sind bei Beachtung von Belüftungshöhen und -längen möglich, sowie durch gewährleisten einer Mindestquerschnittsöffnung an den Zu- und Abluftöffnungen (siehe z. B. DIN 4108-3 und DIN 68800-2). Entscheidend ist jedoch auch, dass sich die beiden Öffnungen »sehen« können, damit die Luftdurchströmung möglichst ungehindert erfolgen kann. Belüftungen durch ein Labyrinth sind in der Regel funktionslos und dadurch bauteilschädlich, da sie Sicherheiten vortäuschen die nicht vorhanden sind.
Belüftungen sorgen allerdings für höhere Bauteilquerschnitte, die erheblichen Einfluss auf die Architektur eines Gebäude nehmen können. Belüftungsquerschnitte müssen detailliert geplant werden und es muss sicher gestellt werden, dass diese funktionieren, da unbelüftete oder mangelhaft belüftete Querschnitte oberhalb gedämmter Flachdachkonstruktionen zu Bauschäden führen können.
Unbelüftete Flachdächer können effizient und sicher mit den INTELLO-Bahnen ausgeführt werden. Diese können auch mit zusätzlichen Bauteilschichten wie Kies, Gründachsubstrat oder Terrassenbelägen oberhalb der Abdichtung geplant und ausgeführt werden.
Hier bieten die INTELLO Hochleistungs-Dampfbremsen durch den feuchtevariablen Diffusionswiderstand hohe Sicherheiten vor Bauschäden bei unvorhergesehenen Feuchtebelastungen. Feuchtigkeit kann in besonders hohem Maße wieder aus Bauteilen austrocknen, ohne das es zu einer schädlichen Auffeuchtung kommt.
Die Feuchteschutzbemessung muss durch einen Bauphysiker oder durch die technische Hotline von pro clima erfolgen.

Steildachkonstruktionen im Hochgebirge

Außen diffusionsdichte Steildachkonstruktionen können im Hochgebirge mit dem INTELLO-Funktionsfilm sicher geplant und ausgeführt werden und haben ein hohes Bauschadens-Freiheits-Potenzial. Entscheidend ist für außen diffusionsdichte Steildachkonstruktionen die Bemessung des Feuchteschutzes durch den Bauphysiker oder die technische Hotline von pro clima.

Wände

Wände in Holzrahmenbauweise mit diffusionsoffenen Schichten außen (siehe pro clima SOLITEX FRONTA Familie, Holzfaserplatten oder MDF-Platten) hinter belüfteten Fassaden können mit DB+ und den Bahnen der INTELLO-Familie in jeder Höhenlage ausgeführt werden.
Für Holzrahmenbau-Wandkonstruktionen mit WDV-Systemen aus Schaumdämmstoffen oder für Innendämmungen von Konstruktionen aus Mauerwerk oder Beton können die feuchtevariablen Dampfbremsen ebenfalls eingesetzt werden. Für die feuchtetechnische Bewertung muss muss ein Bauphysiker beauftragt werden. Die technische Hotline von pro clima kann hier ebenfalls Unterstützung bieten.

TECHNIK-HOTLINE

Bei abweichenden Randbedingungen kontaktieren Sie bitte:
Tel: +49 (0) 62 02 - 27 82.45
Email: technik@proclima.de


Qualitätssicherung

Die Luftdichtheit der Konstruktionen wird idealerweise direkt nach Fertigstellung der Luftdichtungsebene baubegleitend überprüft.
Wird eine Leckageortung durchgeführt können Fehlstellen leicht aufgefunden und nachgearbeitet werden. Damit werden Bauteile besonders sicher.
Die Überprüfung kann z. B. mit einer Blower-Door schon während der Bauphase bei provisorisch abgedichteten Gebäuden (Türen, Fenster usw.) erfolgen.
Die Schlussmessung mit Bestimmung des n50-Werte erfolgt dann nach Fertigstellung des Gebäudes ebenfalls mit der BlowerDoor. Eine möglichst gute Luftdichtheit ist die Voraussetzung für ein behagliches Klima, geringe Energieverlusten sowie einer hohen Sicherheit vor Schäden infolge Durchfeuchtung durch Konvektion.

Fazit

Konstruktionen mit DB+ und den Membranen der INTELLO-Familie weisen in Abhängigkeit von Lage und Konstruktion enorm große Sicherheitsreserven auf und beugen mit intelligentem Feuchtemanagement Bauschäden und Schimmelbildung vor. Selbst bei unvorhergesehenen bzw. in der Baupraxis nicht zu vermeidenden Feuchtbelastungen, verfügen die Konstruktionen dank der hohen Trocknungsreserven durch die feuchtevariablen Diffusionswiderstände über ein sehr hohes Bauschadens-Freiheits-Potenzial.
Die INTELLO Hochleistungs-Dampfbremsen haben eine besonders große, in allen Klimabereichen wirksame Variabilität des Diffusionswiderstandes und bieten damit für Wärmedämmkonstruktionen eine bisher unerreichte Sicherheit. Das gilt bei außen diffusionsoffenen oder auch bei bauphysikalisch anspruchsvollen Konstruktionen wie Flachdächer, Gründächer, Metalleindeckungen sowie Dächer mit diffusionsdichten Vordeckungen gemäß den Vorgaben.

  • Die Leistungsfähigkeit des INTELLO-Funktionsfilms zeigt sich auch bei extremen Klimabedingungen, wie z. B. im Hochgebirge.
  • Die bewährte pro clima DB+ bietet bis zu mittleren Höhenlagen (z. B. in Holzkirchen) hohe Sicherheiten für Steildachkonstruktionen.
  • Entsprechend den Vorgaben der DIN 68800-2, kann mit feuchtevariablen Dampfbremsen auf chemischen Holzschutz verzichtet werden.
  • Zusätzliche Sicherheit bietet pro clima mit einer leistungsstarken, transparenten und fairen Systemgewährleistung.

Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein ohne dass ein Bauschaden entsteht.

Die intelligente Funktionsweise von allen Bahnen der INTELLO-Familie und der DB+ unterstützt diese Sicherheitsregel und ermöglicht die Realisation von besonders sicheren Konstruktionen.


Einzelnachweise

  1. 1,0 1,1 Konsenspapier des 2. Internationalen Holz[Bau]Physik-Kongresses: 10./11.02.2011 Leipzig
  2. TenWolde, A. et al.: ”Air pressures in wood frame walls, proceedings thermal VII.” Ashrae Publication Atlanta, 1999
  3. IBP Mitteilungen 355: „Dampfdiffusionsberechnung nach Glaser – quo vadis?
  4. 4,0 4,1 Deutsche Bauzeitung; Heft 12/89, Seite 1639 ff.
  5. 5,0 5,1 5,2 DAB 1995; Heft 8, Seite 1479
  6. 6,0 6,1 6,2 Klopfer, Heinz; Bauschäden-Sammlung,Band 11, Günter Zimmermann (Hrsg.), Stuttgart: Fraunhofer IRB Verlag, 1997
  7. 7,0 7,1 7,2 Klopfer, Heinz; ARCONIS: Wissen zum Planen und Bauen und zum Baumarkt: Flankenübertragung bei der Wasserdampfdiffusion; Heft 1/1997, Seite 8–10
  8. 8,0 8,1 H.M. Künzel; Tauwasserschäden im Dach aufgrund von Diffusion durch angrenzendes Mauerwerk; wksb 41/1996; Heft 37, Seite 34 – 36
  9. Robert Borsch-Laaks: Bauphysik für Fortgeschrittene – Bemessungsregeln für Flachdächer; Holzbau – die neue quadriga; Verlag Kastner; Wolnzach; 05/2011
  10. WTA-Merkblatt 6-8: Feuchtetechnische Bewertung von Holzbauteilen – Vereinfachte Nachweise und Simulation; Fraunhofer IRB-Verlag; 08/2016

Download dieser Studie

Pc 00 WISSEN 2012 03.2 Studie.png
PDF, 20 Seiten, DIN A4: Download