Bauschadens-Freiheits-Potenzial

Aus Wissen Wiki
(Weitergeleitet von Bauschadensfreiheit)
Zur Navigation springen Zur Suche springen

Eine Frage der Trocknungsreserven und des intelligenten Feuchtemanagements
Bauschadensfreiheit ist das Ziel jeglicher Bautätigkeit, insbesondere hinsichtlich des langfristigen Bauerhalts.

Das Bauschadens-Freiheits-Potenzial (BSFP) gibt an, wie viel Feuchtigkeit unvorhergesehen durch Undichtheiten, Flankendiffusion, feuchte Baustoffe in eine Konstruktion eindringen kann, ohne einen Bauschaden oder einen Schimmelbefall zu verursachen.

Bauschäden entstehen, wenn die Feuchtigkeitseinträge in eine Konstruktion höher sind als die mögliche Austrocknung aus dem Bauteil heraus. Um Bauschäden zu vermeiden, konzentriert man sich üblicherweise auf die Reduzierung der Feuchtigkeitsbelastung von Bauteilen. Diese lassen sich allerdings nicht vollständig gegen Feuchteeinflüsse schützen.
Die vorhersehbaren Feuchtebelastungen durch Diffusion sind so gut wie nie Ursache für Bauschäden. In der Regel sind es die unvorhergesehenen Feuchtebelastungen, die nicht völlig ausgeschlossen werden können. Um Bauschäden und Schimmel zu vermeiden, sollte daher das Trocknungsvermögen von Feuchtigkeit aus der Konstruktion heraus im Vordergrund stehen. Es werden Konstruktionen hinsichtlich Ihrer möglichen Austrocknungspotenziale vergleichend betrachtet.

Auszug einer von MOLL bauökologische Produkte GmbH initiierten Studie [1]:

Berechnung des Bauschadens-Freiheits-Potenzials (BSFP)

Um die Sicherheiten eines Bauteils bei unvorhergesehenem Feuchteeintrag zu ermitteln, wird folgender Ansatz verwendet:
Zu Beginn der Berechnung wird der Feuchtegehalt in der Wärmedämmebene definiert auf 20 kg Wasser pro m³ Dämmstoff erhöht. Die Berechnung zeigt, wie schnell diese wieder austrocknen kann. Die Trocknungsmenge, die pro Jahr unter der Annahme der erhöhten Anfangsfeuchtigkeit aus der Konstruktion entweichen kann, ist das Bauschadens-Freiheits-Potenzial der Konstruktion. Die Berechnungen erfolgen unter ungünstigen Bedingungen (z. B. Nordseite eines Steildaches), in unterschiedlichen Klimabereichen (z. B. Hochgebirge) und mit unterschiedlichen Dachformen (Steildach, bekiestes oder begrüntes Flachdach). Bauphysikalisch günstigere Konstruktionen bieten entsprechend höhere Sicherheiten.
Weiteres Kriterium für die Funktion einer Konstruktion sind die maximalen Feuchtegehalte, die sich in den Bauteilschichten einstellen. Diese Gebrauchstauglichkeitsuntersuchungen erfolgen ab Abschnitt 3.3 "Ermittlung der Gebrauchstauglichkeit"

Dachkonstruktion

Bauphysikalische Beurteilung von Dachkonstruktionen
11. Aufbau der Dachkonstruktion
1. Aufbau der Dachkonstruktion
Bauteilschichten:

Betrachtete Dachvarianten:
 • Steildach mit 40° Neigung zur Nordseite,
    Eindeckung rote Dachsteine
 • Flachdach mit 5 cm Kiesschicht
 • Gründach mit extensiver Begrünung:
    10 cm Pflanzensubstrat

Alle Konstruktionen sind unverschattet.

Aufbau der Konstruktion

Es handelt sich um eine Konstruktion mit 200 mm Dämmung (Mineralwolle WLG 035). Auf der Ausßenseite verfügt das Bauteil über eine diffusionsdichte Abdichtungsbahn (siehe Abb. 11).

Dampfbremsen: sd-Wert:
  • Dampfbremse
5 m konstant
  • Dampfbremse
0,8 – 35 m richtungsabhängig variabel
0,6 – 4 m, feuchtevariabel
0,25 – >25 m, feuchtevariabel (ETA-18/1146)
Die pro clima INTELLO wird bei den Berechnungen stellvertretend für alle Bahnen aus der INTELLO-Familie verwendet.
Dachvarianten:
  • Steildach mit 40° Neigung zur Nordseite, rote Dachsteine
  • Flachdach mit 5 cm Kiesschicht oberhalb der Abdichtung
  • Gründach mit 10 cm Gründachaufbau oberhalb der Abdichtung
Standorte:
  • Holzkirchen, Deutschland, Höhenlage über NN = 680 m - (NN = Normal Null)
  • Davos, Schweiz, Höhenlage über NN = 1.560 m
Berechnung:
  • Mit Delphin 5.9.3
  • Anfangsfeuchtigkeit in der Wärmedämmung: 4.000 g/m² (= 20 kg/m³)

Verschattungen (z. B. durch Photovoltaik-Anlagen, Gebäudesprünge, hohe Bäume oder Topografie) werden bei den Berechnungen nicht berücksichtigt.


Einflussfaktoren auf die Höhe des Bauschadens-Freiheits-Potenzials

Eine wesentliche Größe für die Bauschadensfreiheit ist die Rückdiffusion im Sommer und damit verbunden die Austrocknung der Konstruktion nach innen. Die Menge der Austrocknung hängt von der Außentemperatur ab, genauer gesagt von der Temperatur an der Außenseite der Wärmedämmung sowie von der Diffusionsoffenheit der Dampfbrems- und Luftdichtungsbahn im Sommerfall. Durch Sonneneinstrahlung (auch diffus) weisen Bauteiloberflächen eine höhere Temperatur auf als die angrenzende Luft. Die Zeitdauer, welche die Wärme von außen benötigt bis sie an der Wärmedämmung ankommt, ist entscheidend.
Bei einem Steildach ist dies schneller der Fall als bei einer bekiesten oder begrünten Flachdachkonstruktion.
Bei einem Steildach hängt die Höhe der Dachoberflächentemperatur ab von der Dachneigung, der Orientierung der Dachflächen (Norden/Süden) und der Farbe der Dacheindeckung bzw. Dachabdichtung (hell/dunkel).
Das Bauschadens-Freiheits-Potenzial wird weiterhin durch die gewählte Dämmschichtdicke beeinflusst. Große Dämmstärken führen im Vergleich zu verringerten Rücktrocknungsmengen, da die Durchwärmung des Bauteils langsamer erfolgt und als Folge die Rücktrocknungszeiträume kürzer werden.

Ungünstige Faktoren sind:

  • Dachorientierung nach Norden
  • Große Dachneigung (> 25°)
  • Helle Farbe der Dacheindeckung oder Abdichtungsbahn
  • Flachdachabdichtung diffusionsdicht
  • Kaltes Klima, z. B. im Gebirge
  • Große Dämmschichtdicken
  • Zusätzliche Schichten oberhalb der Abdichtung (Begrünungen, Terrassenbeläge usw.)

Um den Einfluss des Diffusionswiderstandes der Dampfbremsen oder -sperren auf das Bauschadens-Freiheits-Potenzial zu ermitteln, wird in den Berechnungen auf der Außenseite eine diffusionsdichte Abdichtungsbahn (sd-Wert = 300 m) angenommen. Dieser Ansatz kann während der kalten Wintertemperaturen (bei Minusgraden) dazu verwendet werden, um den Einfluss von Vereisungen und damit diffusionsdichter Unterdeck- und Unterspannbahnen auf den Feuchtegehalt innerhalb der Konstruktion zu ermitteln.


Klimadaten Standort Holzkirchen

Holzkirchen liegt südlich von München auf einer Seehöhe von 680 m mit einem kalten, rauen Klima. Für die Klimarandbedingungen wurde aus das Feuchtereferenzjahr des Fraunhofer Instituts für Bauphysik ausgewählt, welches ein besonders feuchtes und kaltes Jahr abbildet. Die links dargestellten Diagramme zeigen die Temperaturverläufe über ein Jahr. Die blaue Linie zeigt die Innen-, die rote die Außentemperaturen (siehe Abb. 12 bis 15).

Jahrestemperaturverläufe Holzkirchen, Höhe: 680 m über NN, Südbayern, Deutschland - Dach: rote Ziegel bzw. Kies
12. Lufttemperaturen
(Feuchtereferenzklima)
12. Lufttemperaturen (Feuchtereferenzklima)
13. Dachoberflächentemperatur
Nordseite, 40° Dachneigung
13. Dachoberflächentemperatur Nordseite, 40° Dachneigung
14. Dachoberflächentemperatur
Südseite, 40° Dachneigung
14. Dachoberflächentemperatur Südseite, 40° Dachneigung
15. Dachoberflächentemperatur
Kiesdach
15. Dachoberflächentemperatur Kiesdach

Unter Berücksichtigung der Globalstrahlung (direkte Sonneneinwirkung plus Streulicht) ergibt sich, verglichen mit der Lufttemperatur, eine z. T. wesentlich höhere Dachoberflächentemperatur. Wenn die Außentemperatur (rot) die Innentemperatur (blau) überschreitet, findet in Konstruktionen mit feuchtevariablen Dampfbremsen eine Austrocknung nach innen statt. Selbst bei nordorientierten Steildächern ist dadurch in Holzkirchen an vielen Tagen im Jahr eine Rückdiffusion möglich, bei Südorientierung bereits im Winter an sonnigen Tagen. Im vorliegenden Berechnungsfall wurde der ungünstigste Fall angenommen: Nordausrichtung der Dachfläche mit 40° Neigung.

Bauschadens-Freiheits-Potenzial Steildach in Holzkirchen, Nordseite, 40° Dachneigung

Berechnung des Bauschadens-Freiheits-Potenzials
Standort Holzkirchen, Dach
Angenommene zusätzl. Feuchtigkeit zu Beginn:
4.000 g/m² Feuchtegehalt der Konstruktion im Trockenzustand
(= Feuchtigkeitsgehalt der Holzschalung bei 15 %): 1.700 g/m²
16. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
16. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
17. Bauschadens-Freiheits-Potenzial Flachdach mit 5 cm Kies
17. Bauschadens-Freiheits-Potenzial Flachdach mit 5 cm Kies
18. Bauschadens-Freiheits-Potenzial Gründach mit 10 cm Aufbau
18. Bauschadens-Freiheits-Potenzial Gründach mit 10 cm Aufbau
19. BSFP mit INTELLO und richtungsabhängig variabler Dampfbremse: verschiedene Dämmdicken
19. BSFP mit INTELLO und richtungsabhängig variabler Dampfbremse: verschiedene Dämmdicken

Die aus der Konstruktion innerhalb eines Jahres austrocknende Feuchtigkeitsmenge in g/m² beschreibt das Bauschadens-Freiheits-Potenzial und definiert damit die Höhe des Schutzes bei unvorhergesehen eingedrungener Feuchtigkeit (z. B. durch Konvektion, Flankendiffusion usw.). Die Berechnungsergebnisse zeigen, dass die PE-Folie (sd-Wert 100 m) keine signifikante Austrocknung der Feuchtigkeit aus der 200 mm starken Dämmschicht ermöglicht. In der Wärmedämmebene ausgefallenes Kondensat kann nicht mehr entweichen. Auch mit einer Dampfbremse mit einem konstanten sd-Wert von 5 m bestehen im Vergleich nur sehr geringe Trocknungsreserven.
Für die richtungsabhängig variable Dampfbremse ergibt sich eine Trocknungsreserve von 1.700 g/m²·Jahr. Diese ist geringer als die der Konstruktion mit der pro clima DB+. Diese verfügt über eine wesentlich höhere Austrocknung und weist erhebliche Sicherheitsreserven von 2.900 g/m²·Jahr auf.
Die Hochleistungs-Dampfbremse INTELLO bietet der Konstruktion das größte Sicherheitspotenzial. Innerhalb eines Jahres kann die Konstruktion gemäß den Delphin-Berechnungen ca. 3.500 g/m² Wasser austrocknen. (siehe Abb. 16).

Bauschadens-Freiheits-Potenzial Flachdächer

Für die Berechnung von Grün- und Kiesdächern stehen eine Reihe verschiedener Materialdatensätze für begrünte Dächer sowie einer für bekieste Konstruktionen zur Verfügung. Diese wurden auf der Grundlage von Messungen an verschiedenen Dachkonstruktionen an mehreren Standorten erstellt. In den Datensätzen wird die zeitliche Veränderung einer begrünten bzw. bekiesten Konstruktion berücksichtigt. So sind z. B. verändernde Effekte aus dem Bewuchs (Verschattung durch Pflanzenbewuchs) im Datensatz enthalten. Damit sind zuverlässige Simulationen der hygrothermischen Verhältnisse in und unter Gründächern bzw. Kiesdächern bei beliebigen Nutzungen in Mitteleuropa möglich.

Bekiestes Flachdach

Das bekieste Flachdach weist geringere Sicherheiten auf als das Steildach, da der Kies über der Abdichtung nur langsam durchwärmt wird. Als Folge stellt sich eine verzögerte Erwärmung der darunter liegenden Bauteilschichten inklusive der Dämmebene ein. Abb. 13 bis 15 zeigen die Temperaturen einer nord- bzw. südorientierten Steildachkonstruktion im Vergleich zu einem bekiesten Flachdach.
Besonders deutlich wird der Unterschied bei dem nach Süden ausgerichteten Steildach. Aber auch das nordorientierte Steildach weist ca. 8-10 °C höhere Spitzentemperaturen als das bekieste Flachdach auf. Wie beim Steildach besteht beim Kiesdach mit PE-Folie keine Austrocknung aufgrund des hohen sd-Wertes von 100 m. Auch die Dampfbremse mit einem konstanten sd-Wert von 5 m bietet keine nennenswerten Rücktrocknungssicherheiten.
Dies ist eine Folge der verringerten Bauteiltemperaturen, welche die Rückdiffusion reduzieren. Bereits bei geringen unvorhergesehenen Feuchtebelastungen ist ein Bauschaden unvermeidbar. Die richtungsabhängig feuchtevariable Dampfbremse bietet eine mögliche Austrocknung von 1.200 g/m²·Jahr.
Die Konstruktion mit der pro clima DB+ verfügt über ein höheres Bauschadens-Freiheits-Potenzial von 1.700 g/m²·Jahr. Obwohl die Oberflächentemperatur des Kiesdachs deutlich reduziert ist, bietet die Hochleistungs-Dampfbremse INTELLO der Konstruktion im Vergleich ein sehr hohes Sicherheitspotenzial. Innerhalb eines Jahres kann das betrachtete Bauteil gemäß den Delphin-Berechnungen ca. 2.200 g/m² Wasser austrocknen (siehe Abb. 17).

Begrüntes Flachdach

Begrünte Flachdachkonstruktionen verhalten sich aufgrund der dicken Substratschicht und den darin gespeicherten Wassermengen nochmals etwas träger als die Variante mit Kiesschüttung. Die Temperaturen auf der Abdichtungsbahn erreichen im Sommer Maximalwerte von 35-40 °C. Trotzdem verfügt die unbeschattete Konstruktion mit 200 mm Dämmstärke und einer INTELLO über ein Bauschadens-Freiheits-Potenzial von 1.200 g/m²·Jahr (siehe Abb. 18).
Das Bauteil verfügt über ausreichende Sicherheiten bei unvorhergesehenem Feuchteeintrag. Hier wird der berücksichtigte Einfluss aus dem Bewuchs (Verschattung) und die dadurch im Datensatz enthaltene Sicherheit deutlich. Die Bauschadens-Freiheits-Potential der DB+ ist zwar nur geringfügig geringer, jedoch ist die INTELLO aufgrund der zügigeren Austrocknung über die Jahre betrachtet für die anspruchsvollen Gründachkonstruktionen die bessere Alternative.
Die richtungsabhängig variable Dampfbremse sowie die Dampfbremse mit einem sd-Wert von 5 m liegen unter 1.000 g/m²·Jahr (siehe Abb. 18) und verfügen demnach über deutlich geringere Rücktrocknungsreserven im Vergleich. Für begrünte Flachdächer ist eine Bahn aus der INTELLO-Familie aufgrund der höheren Reserven die bessere Wahl.

Einfluss der Dämmschichtdicke

In den letzten Jahren hat sich nicht zuletzt durch die regelmäßig steigenden Anforderungen der Energieeinspar-Gesetzgebung die Stärke der eingebauten Dämmschichten erhöht. Konstruktionen mit Dämmdicken von 300 mm oder mehr, die bei konventionellen Gebäuden in der Vergangenheit nur äußerst selten verwendet wurden, treten in immer größerer Anzahl auf. Hoch wärmegedämmte Konstruktionen haben ein reduziertes Bauschadens-Freiheits-Potenzial. Der Hintergrund ist, dass bei steigender Dämmdicke die Durchwärmung des Bauteils zögerlicher verläuft. Dadurch wird der Vorgang der Verdunstung von unvorhergesehenen Feuchteeinträgen verlangsamt. Da die Außenklimabedingungen jedoch identisch bleiben, sinken die Rücktrocknungsmengen auf ein Jahr bezogen.

INTELLO:
Abb. 19 zeigt das Bauschadens-Freiheits-Potenzial der oben vorgestellten Konstruktion mit der INTELLO mit den Dämmstärken 200, 300 und 400 mm.
Bei 200 mm Dämmdicke beträgt das Bauschadens-Freiheits-Potenzial ca. 3.500, bei 300 mm ca. 3.000 und bei 400 mm noch 2.600 g/m²·Jahr.

DB+:
Auch bei der DB+ hat die Dämmdicke einen Einfluss auf das Bauschadens-Freiheits-Potenzial. Die Konstruktion mit der DB+ verfügt bei 200 mm Dämmung über ein Bauschadens-Freiheits-Potenzial von 2.900 g/m²·Jahr, bei 300 mm von 1.900 g/m²·Jahr und bei 400 mm Dämmschichtdicke über ein Bauschadens-Freiheits-Potenzial von 1.600 g/m²·Jahr (ohne Abb.).

Richtungsabhängig variable Dampfbremse:
Im Vergleich mit der INTELLO und der DB+ bietet diese Dampfbremse insgesamt ein geringeres Sicherheitspotential. Bei 200 mm liegt es bei 1.800, bei 300 mm bei 1.700 und bei 400 mm bei 1.600 g/m²·Jahr (siehe Abb. 19). sd-Wert 5 m:
Bei 200 mm Dämmdicke hat die Konstruktion mit der Dampfbremse mit dem konstanten sd-Wert von 5 m bereits ein sehr geringes Bauschadens-Freiheits-Potenzial. Bei höheren Dämmdicken sinkt dieses nochmals. Jedoch sind die Sicherheiten bereits bei geringen Dämmdicken so gering, dass eine Verwendung bei außen diffusionsdichten Bauteilen sowohl bei geringen als auch bei hohen Dämmdicken nicht empfehlenswert ist (ohne Abb.).

Für die INTELLO-Familie und die DB+ gilt demnach:
Auch bei nordorientierten, außen diffusionsdichten Steildachkonstruktionen (DN 40°) mit hohen Dämmdicken und roten Dachziegeln sind Bauteile ausreichend sicher und bieten im Vergleich die größten Bauschadens-Freiheits-Potentiale. Unterstützung bei der feuchtetechnischen Bemessung von Steildächern, Bahnendächern sowie Flachdächern mit zusätzlichen Bauteilschichten oberhalb der Abdichtungsbahn (z. B. Bekiesungen, Begrünungen, Terrassenbelägen) bietet die technische Hotline von pro clima.


Klimadaten Standort Davos

Davos liegt auf einer Seehöhe von 1.560 m und zählt zum Hochgebirgsklima. Die nachfolgenden Diagramme zeigen die Temperaturverläufe über ein Jahr betrachtet. Die blaue Linie zeigt die Innentemperatur, die roten Balken die Außentemperaturen. (Siehe Abb. 20 - 23)

Temperaturverläufe Davos, Höhe: 1.560 m über NN, Schweiz - Dach: rote Ziegel/Kies
20. Lufttemperatur
(Davos, kalt)
20. Lufttemperatur (Davos, kalt)
21. Dachoberflächentemperatur
Nordseite, 40° Dachneigung
21. Dachoberflächentemperatur Nordseite, 40° Dachneigung
22. Dachoberflächentemperatur
Südseite, 40° Dachneigung
22. Dachoberflächentemperatur Südseite, 40° Dachneigung
23. Dachoberflächentemperatur
Kiesdach
23. Dachoberflächentemperatur Kiesdach

Betrachtet man die Lufttemperatur in Davos, zeigt sich nur an sehr wenigen Tagen im Jahr eine höhere Außen- als Inneraumtemperatur. Unter Berücksichtigung der Sonnen- und Globalstrahlung stellt sich, verglichen zur Lufttemperatur, eine höhere Dachoberflächentemperatur ein.
In nordorientierten Dächern sind die Temperaturen allerdings wesentlich niedriger als in Holzkirchen. Im Vergleich ist an weniger Tagen im Jahr eine Rückdiffusion möglich. Bei nach Süden geneigten Dächern werden in Davos im Sommer fast die gleichen Temperaturen wie in Holzkirchen erreicht. Die winterlichen Nachttemperaturen sind hochgebirgsspezifisch und liegen wesentlich tiefer.

Bauschadens-Freiheits-Potenzial Steildach in Davos, Nordseite, 40° Dachneigung

Berechnung des Bauschadens-Freiheits-Potenzials
Standort Davos, Dach
Angenommene zusätzl. Feuchtigkeit zu Beginn:
4.000 g/m² Feuchtegehalt der Konstruktion im Trockenzustand
(= Feuchtigkeitsgehalt der Holzschalung bei 15 %): 1.700 g/m²
24. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
24. Bauschadens-Freiheits-Potenzial Steildach, Nordseite, 40° Dachneigung
25. Bauschadens-Freiheits-Potenzial Kiesdach
25. Bauschadens-Freiheits-Potenzial Kiesdach

Für die Berechnung wurde, um die Sonneneinstrahlung zu minimieren, ebenfalls der ungünstigste Fall angenommen, d. h. eine Nordausrichtung des Daches mit 40° Neigung und roter Ziegeldeckung. Die äußerst niedrige Temperatur im Winter führt zu einem hohen Tauwasserausfall, so dass sich sogar die Konstruktion mit der PE-Folie auffeuchtet, auch wenn man annimmt, dass keine unvorhergesehene Feuchtebelastung gegeben ist. Bei einer Dampfbremse mit einem konstanten sd-Wert von 5 m ist kein Bauschadens-Freiheits-Potenzial ablesbar. Die Dampfbremse mit dem richtungsabhängig variablen Diffusionswiderstand ermöglicht nur eine vergleichsweise geringes Bauschadens-Freiheits-Potenzial von 1.300 g/m². Das Bauschadens-Freiheits-Potenzial der Konstruktion mit der DB+ liegt da mit ca. 1.800 g/m² Rücktrocknung darüber.
Die Hochleistungs-Dampfbremse INTELLO bietet eine bauphysikalisch einwandfreie Konstruktion und ein zusätzliches Sicherheitspotenzial.
Innerhalb eines Jahres kann die Konstruktion gemäß den Delphin Berechnungsergebnissen 2.400 g/m² Wasser austrocknen (siehe Abb. 24).

Bauschadens-Freiheits-Potenzial Kiesdach und Gründach

Für das anspruchsvolle Gebirgsklima von Davos sind die Rücktrocknungsreserven mit den aktuellen Kiesdach- und Gründachdatensätzen nicht ausreichend.
Für das Kiesdach bietet die INTELLO zwar eine minimale Reserve von 800 g/m²·Jahr, diese ist jedoch zu gering bemessen (siehe Abb. 25).
Das Bauschadens-Freiheits-Potential mit der richtungsabhängig variablen Dampfbremse liegt mit 500 g/m²·Jahr nochmals darunter. Die DB+ bzw. die Dampfbremse mit dem konstanten sd-Wert von 5 m bieten für dieses Bauteil keine signifikanten Sicherheiten.
Bei der begrünten Dachkonstruktion wiederum sind die Bauschadens-Freiheits-Potentiale für den Standort Davos für alle Konstruktionen geringer. Für diese Bauteile müssen in Gebirgslagen die Traghölzer in Abhängigkeit von einer objektbezogenen Berechnung teilweise oder vollständig überdämmt werden. Bitte sprechen Sie die technische Hotline von pro clima an.

Schlussfolgerungen Bauschadens-Freiheits-Potenzial

Mit den pro clima Dampfbrems- und Luftdichtungsbahnen der INTELLO-Familie und der DB+ können für die mit einer Dämmschichtdicke von 200 mm berechneten Steildachkonstruktionen für Gebäudehöhenlagen bis 700 m ü. NN sehr hohe Bauschadens-Freiheits-Potenziale realisiert werden. Auch bei zusätzlicher Feuchtigkeit durch unvorhergesehene Einflüsse bleiben die Konstruktionen bauschadenfrei.
Flankendiffusion bei einem Ziegelmauerwerk, wie von Ruhe[2], Klopfer[3][4] und Künzel[5] beschrieben, können die INTELLO-Bahnen und die DB+ kompensieren, sollten aber bei großen Höhenlagen durch eine entsprechende Detailplanung vermieden werden. Die pro clima INTELLO und DB+ haben sich in in der langjährigen Anwendung (INTELLO > 20 Jahre, DB+ > 30 Jahre) in vielen Mio. m² in kritischen Konstruktionen durch hohe Bauschadens-Freiheits-Potenziale bewährt.

Der Einsatz der feuchtevariablen Dampfbremsen vor pro clima sorgt in bekiesten Dachkonstruktionen gemäß Abb. 11 für hohe Sicherheiten in Holzkirchen. Diese fördern die Bauschadensfreiheit der Bauteile.
Die Bahnen der INTELLO-Familie können für dieses Klima auch in Gründachkonstruktionen für sichere Bauteile sorgen. Die Dicke der Dämmschicht nimmt Einfluss auf die Bauschadensfreiheit. Gemäß den Berechnungsbeispielen sind für Steildächer die Rücktrocknungssicherheiten für die gebräuchlichen Dämmdicken bis 400 mm ausreichend hoch. In Gebirgslagen bis 1.600 m ü. NN verfügen außen diffusionsdichte Steildächer mit einer der INTELLO-Bahnen ein ausreichendes Bauschadens-Freiheits-Potenzial. Bei nicht hinterlüfteten Flachdächern mit Dämmung zwischen den Traghölzern ist es empfehlenswert, die Gesamtdämmung in einen Teil zwischen den Traghölzern und einen Teil oberhalb der Tragkonstruktion aufzuteilen. Für diese Konstruktionen kann die technische Hotline von pro clima objektbezogene Bauteilbeurteilungen erstellen. Richtungsabhängig variable Dampfbremsen verfügen im Vergleich aller Konstruktionen mit der einer Bahn aus der INTELLO-Familie bzw. der DB+ über geringere Bauschadens-Freiheits-Potenziale. Dies liegt darin begründet, dass sie im feuchten Bereich einen erhöhten Diffusionswiderstand aufweisen, der nach DIN 4108-3 als diffusionshemmend (dampfbremsend) bezeichnet wird. Dieser behindert die Austrocknung unvorhergesehen eingedrungener Feuchtigkeitsmengen.
Bezogen auf das Bauschadens-Freiheits-Potenzial liegen die möglichen Rücktrocknungsreserven pro Jahr bezogen auf die betrachteten Konstruktionen jeweils ca. 40 % unterhalb denen mit den pro clima Hochleistungs-Dampfbremsen mit dem INTELLO-Funktionsfilm.

Ermittlung der Gebrauchstauglichkeit

Ermittlung der Gebrauchstauglichkeit für Bauteile nach Abb. 11
26. Gebrauchstauglichkeit Steildach (40°/ Mineralwolle 035 (INTELLO 400 mm; DB+ 200 mm) / Holzkirchen)
26. Gebrauchstauglichkeit Steildach (40°/ Mineralwolle 035 (INTELLO 400 mm; DB+ 200 mm) / Holzkirchen)
27. Gebrauchstauglichkeit Kiesdächer (Mineralwolle 035 (INTELLO 300 mm; DB+ 200 mm) / Holzkirchen)
27. Gebrauchstauglichkeit Kiesdächer (Mineralwolle 035 (INTELLO 300 mm; DB+ 200 mm) / Holzkirchen)
28. Gebrauchstauglichkeit Gründächer (Mineralwolle 035 (INTELLO 200 mm; DB+ 180 mm) / Holzkirchen)
28. Gebrauchstauglichkeit Gründächer (Mineralwolle 035 (INTELLO 200 mm; DB+ 180 mm) / Holzkirchen)

Neben dem Bauschadens-Freiheits-Potenzial ist es weiterhin entscheidend, welche Feuchtigkeitsgehalte sich im Bauteil im Gebrauchszustand einstellen. Bei einer feuchtetechnischen Bemessung wird zunächst ermittelt, welche Schichten im Bauteil einer kritischen Betrachtung unterzogen werden müssen. Im Regelfall sind diese Schichten außen angeordnete Holzschalungen oder Holzwerkstoffplatten (OSB- oder 3-Schicht-Platten). Sind diese identifiziert werden instationäre Berechnungen durchgeführt und das Bauteil im Bemessungsprozess erforderlichenfalls so lange durch eine wachsende Zusatzdämmung oberhalb der Tragkonstruktion ergänzt bis sich die Feuchtegehalte in der oder den kritischen Schichten unterhalb von zulässigen Werten einstellen. Die Gebrauchstauglichkeit einer Konstruktion ist neben der Schichtenfolge von der Lage des geplanten Bauwerkes abhängig. So ist eine Konstruktion im Voralpenland (Holzkirchen) widrigeren Klimabedingungen ausgesetzt als in der norddeutschen Tiefebene. Die Berechnungen zur Gebrauchstauglichkeit werden hier mit WUFI pro durchgeführt.

Verfahren zur Bemessung

Für eine feuchtetechnische Bemessung ist es sinnvoll, Feuchteeinträge durch unvermeidbare Restleckagen (Konvektion) zu berücksichtigen. Dazu bietet WUFI pro die Möglichkeit mithilfe des Luftinfiltrationsmodells den Feuchteeintrag infolge Konvektion in die Wärmedämmebene zu simulieren. Der Maßstab ist der hüllflächenbezogene Luftwechsel q50, der sich nicht wie der n50-Wert auf das Volumen, sondern auf die Außenhülle eines Gebäudes bezieht. Der q50- und der n50-Wert sind bis zu einem A/V-Verhältnis (Hüllfläche zu Volumen des betrachteten Gebäudes) von 0,9 1/m in etwa zahlengleich. Bei kleineren A/V-Verhältnissen sinkt der q50-Wert im Vergleich zum n50-Wert (z. B. A/V = 0,7 1/m: q50-Wert = 2,3 m³/m²·h bei n50 = 3 1/h) (vgl. [6]).

Das Luftinfiltrationsmodell unterscheidet standardmäßig drei Luftdichtigkeitsklassen (A, B, C), welche einem q50-Wert von 1 m³/m²·h (Klasse A), 3 m³/m²·h (Klasse B) und 5 m³/m²·h (Klasse C) entsprechen. Klasse A kann bei vorelementierten Bauteilen bzw. bei geprüfter Luftdichtheit mit Leckageortung, Klasse B bei geprüfter Luftdichtheit und Klasse C bei Konstruktionen mit ungeprüfter Luftdichtheit angenommen werden, um die unvorhergesehene Feuchtelast durch Leckagen zu simulieren.
Für eine maximal sichere Konstruktion sollte bei jedem Bauteil eine Luftdichtheitsprüfung mit Leckageortung durchgeführt werden. Dann kann die Luftdichtigkeitsklasse A für den Nachweis verwendet werden. Die folgenden Untersuchungen und die abgeleiteten Gebrauchstauglichkeiten beziehen sich auf Wärmedämmungen aus Mineral- oder Steinwolle WLG 035.
Die Randbedingungen der Berechnung und die Bewertung der Ergebnisse erfolgt nach den Empfehlungen des WTA-Merkblattes 6-8[7] für die konstruktiven Aspekte (Abschnitt 6.4b).
Aus Gründen der Bauteilsicherheit kann es bereits in der Planungsphase sinnvoll sein, eine Zusatzdämmung oberhalb der ersten Abdichtungsbahn anzuordnen. Auch wenn diese aus bauphysikalischer Sicht nicht erforderlich ist, bietet sie u.a. den Vorteil, dass Feuchtigkeit z. B. durch eine undichte äußere Abdichtung nicht in die Ebene des Holztragwerkes gelangen kann. Dieses bleibt somit geschützt. Grundsätzlich ist eine regelmäßig Begehung (Wartung) aller Konstruktionen empfehlenswert.

Gebrauchstauglichkeit außen diffusionsdichtes Steildach

Für die beispielhafte Ermittlung der Gebrauchstauglichkeit in Holzkirchen wurde die Steildachkonstruktion aus Abb. 11 mit roten engobierten Dachziegeln mit pro clima INTELLO und mit pro clima DB+ betrachtet.
Dazu wurde die Konstruktion mit der INTELLO mit einer Dämmschichtdicke von 400 mm Mineralwolle berechnet. Das Bauteil mit der DB+ verfügt über eine Dämmschichtdicke von 200 mm Mineralwolle. Die Wufi pro Berechnungen erfolgten unter Ansatz der 3 Luftdichtigkeitsklassen und einer Höhe der gedämmten Gebäudehülle von 5 m.
Die maßgebend kritische Schicht in diesen Bauteilen ist die Fichtenschalung unterhalb der Abdichtung. Abb. 26 zeigt die Feuchtegehalte in der 24 mm starken Schalung über einen Zeitraum von 10 Jahren. Auf der sicheren Seite liegend ist es entscheidend, dass in der Fichtenschalung die Feuchtegehalte unterhalb von 20 % liegen (bei Holzwerkstoffplatten liegt die Grenze bei 18 %). Dann ist das Bauteil im Gebrauchszustand funktionsfähig.
Mit der INTELLO weist die Fichtenschalung der Konstruktion bei Berechnungen mit allen 3 Luftdichtigkeitsklassen keine erhöhten Materialfeuchtigkeiten auf – die Gebrauchstauglichkeit ist damit für alle Luftdichtheitsklassen bestätigt. Darüber hinaus sind noch Reserven für weitere unvorhergesehene Feuchtebelastungen vorhanden. Die Verwendung einer DB+ hat in der gleichen Konstruktion höhere rel. Holzfeuchtigkeiten in der Fichtenschalung zur Folge. Bei geprüfter Luftdichtheit mit Leckageortung (LDK A) kann die DB+ in Holzkirchen bis zu einer Dämmschichtdicke von 200 mm Mineralwolle als Luftdichtungs- und Dampfbremsebene eingesetzt werden. Bei den Luftdichtigkeitsklassen B und C werden 20 % Holzfeuchte in der Schalung planmäßig überschritten. Die Färbung der äußeren Ziegeldeckung hat einen erheblichen Einfluss auf die Bauteilerwärmung von außen. Für die Konstruktion mit der DB+ können mattschwarze Dachziegel eine Erhöhung der Mineralwolldämmschicht, bzw. Luftdichtigkeitsklasse B ermöglichen. Dieses muss im Einzelfall gesondert nachgewiesen werden.

Gebrauchstauglichkeit bekiestes Flachdach

Die bekieste Dachkonstruktion wurde wie bei den Steildachkonstruktionen sowohl mit der INTELLO als auch mit der DB+ berechnet. Die Konstruktion mit der INTELLO weist eine Dämmstärke der Mineralwolle von 300 mm, die mit der DB+ von 200 mm auf. Der Feuchtegehalt der Fichtenschalung in diesem Bauteil unterschreitet beim Einsatz der INTELLO den maximal zulässigen Wert von 20 %, so dass für diese Konstruktionen die Gebrauchstauglichkeit bestätigt ist (siehe Abb. 27).
Die Konstruktion mit der DB+ lässt sich für diesen Fall nur für die Luftdichtigkeitsklasse A nachweisen. Die Luftdichtigkeitsklassen B und C führen für den Standort Holzkirchen zu rel. Feuchtegehalten von über 20 % in der äußeren Fichtenschalung. Konstruktionen mit der DB+ lassen sich mit höheren Dämmstärken oder abweichender Luftdichtheitsklasse für das Klima in Holzkirchen nur mit zusätzlichen Aufdachdämmungen realisieren.

Gebrauchstauglichkeit begrüntes Flachdach

Gründachkonstruktionen können mit INTELLO für das Klima in Holzkirchen bei einer Dämmdicke von 200 mm Mineralwolle WLG 035 gemäß Abb. 11 bemessen werden (siehe Abb. 28). Dazu ist es erforderlich, dass die Luftdichtheit überprüft und eine Leckageortung durchgeführt wird (Luftdichtigkeitsklasse A), damit Feuchteeinträge durch Konvektion vermieden werden. Die anderen Luftdichtheitsklassen führen in der Bemessung zu höheren konvektiven Feuchteeinträgen. In der Folge steigt die Feuchtigkeit in der Schalung auf über 20 %. Um dies zu vermeiden kann eine zusätzliche Aufdachdämmung vorgesehen werden.
Der Einsatz einer DB+ ohne Zusatzdämmung oberhalb der ersten äußeren Abdichtungsbahn ist bei den betrachteten Gründächern nicht empfehlenswert.

Schlussfolgerungen Gebrauchstauglichkeit

Die Gebrauchstauglichkeit von außen diffusionsdichten Steildächern (40° Dachneigung), bekiesten oder begrünten Flachdachkonstruktionen wurde für den Standort Holzkirchen bis zu den in den jeweils angegebenen Dämmschichtdicken mit Mineralwolle WLG 035 und Fichtenschalung rechnerisch nachgewiesen.
Abweichende Konstruktionen (höhere Dämmschichtdicken, Holzwerkstoffplatten statt Schalungen, sorptive Dämmstoffe statt Mineralwolle) und andere Lagen (Städte/Orte, Verschattungen) können aus bauphysikalischer Sicht die Anordnung einer zusätzlichen Aufdachdämmung mit zweiter Abdichtungsebene erfordern. Grundsätzlich wirkt sich diese bei allen vollgedämmten Flachdächern positiv auf die Bauteilsicherheit aus, da die doppelte Abdichtung das Tragwerk vor Feuchtigkeitseintritt von außen schützt, sollte eine Leckage in der oberen Abdichtung entstehen. Bei allen Dächern (z. B. Bahnendächer, bekiesten und begrünten Konstruktionen) ist zudem die jährliche Wartung (Inspektion) empfehlenswert, um die Funktion der Dachkonstruktion inklusive aller Abflüsse sicherzustellen.
Grundsätzlich ist es sinnvoll die Gebrauchstauglichkeit von Konstruktionen mit außen diffusionsdichten Bauteilschichten durch einen Bauphysiker überprüfen zu lassen. Bitte wenden Sie sich zur Überprüfung und Bemessung von Bauteilen an die technische Hotline von pro clima.



Flankendiffusion

Flankendiffusion

2-dimensionale Berechnung der Wärme- und Feuchteströme mit WUFI 2D
29. Konstruktionsaufbau: Einbindende Wand
BPhys GD 2Studie 26 komstruktionsaufbau.jpg

30. Feuchteerhöhung mit einer PE-Folie
      ⇒ Auffeuchtung = Bauschaden
      Feuchtereduzierung mit der INTELLO
      ⇒ Austrocknung = Bauschadensfreiheit
BPhys GD 2Studie 27 Flankendiffusion.jpg

Ansteigender Feuchtegehalt im Bauteil mit
PE-Folie sd-Wert = 100 m konstant
Abnehmender Feuchtegehalt im Bauteil mit
pro clima INTELLO sd-Wert = 0,25 bis > 25 m feuchtevariabel

Für die Ermittlung des Einflusses des Feuchteeintrages über Bauteilflanken wird der Anschluss einer einbindenden Innenwand an eine Wärmedämmkonstruktion betrachtet. Die Konstruktion verfügt auf der Außenseite über eine diffusionsdichte Bitumendachbahn (siehe Abb. 29).
Mauerwerk hat einen geringeren Diffusionswiderstand als die Dampfbrems- und Luftdichtungsebene der angrenzenden Holzbaukonstruktion. Dadurch findet über die Flanke eine stärkere Diffusion von Feuchtigkeit in die Wärmedämmkonstruktion statt, als in den angrenzenden Bereichen mit Dampfbremse.
Für dieses Beispiel wird eine Neubausituation gewählt. Das Mauerwerk und die Putzschicht verfügen über einen dann üblichen Feuchtegehalt vom 30 kg/m³. Der faserförmige Wärmedämmstoff ist trocken eingebaut. Die rel. Holzfeuchtigkeit der Dachschalung liegt bei 15 %.
Als Dampfbrems- und Luftdichtungsebene wird bei einer Variante eine diffusionshemmende PE-Folie (sd-Wert 100 m) eingesetzt, bei einer zweiten die feuchtevariable pro clima INTELLO (sd-Wert 0,25 bis über 25 m).

Ergebnisse der 2-dimensionalen Simulationsberechnung

Wird eine derartige Konstruktion mit dem 2-dimensionalen Berechnungsverfahren für Wärme- und Feuchteströme, welches in WUFI 2D implementiert ist, berechnet, kommt es zu folgendem Ergebnis (siehe Abb. 30):
Nach einem jahreszeitlich bedingten Anstieg des Feuchtegehaltes in beiden Konstruktionen befinden sich beide auf einem annähernd gleich hohen Niveau.
Bei der Variante mit PE-Folie als Luftdichtungs- und Dampfbremsebene ist über den betrachteten Zeitraum von 4 Jahren in jedem Jahr eine deutliche Steigerung des Gesamtwassergehaltes zu beobachten (roter Graph). In dieser Konstruktion kommt es zu einer Akkumulation von Feuchtigkeit in den verwendeten Baustoffen, da keine Rücktrocknung durch die PE-Folie in Richtung Innenraum möglich ist. Die Folge: Schimmelbildung auf dem Holz bzw. beginnende Holzzerstörung.
Bei der Konstruktion mit der Hochleistungs-Dampfbremse INTELLO kann die enthaltene Feuchtigkeit nach innen entweichen. Das Bauteil ist vor Feuchtigkeitsansammlungen geschützt – diese wird zügig in den Innenraum abgegeben (grüner Graph). Dadurch sinkt der Feuchtegehalt stetig über den Betrachtungszeitraum.
Die Konstruktionen mit INTELLO und DB+ verfügen über ein hohes Bauschadens-Freiheits-Potenzial.

Schlussfolgerung bei Flankendiffusion

Feuchteeinträge durch Flankendiffusion bei einer in die Wärmedämmkonstruktion einbindenden Innenwand, wie von Ruhe[3] , Klopfer[4][5] und Künzel[8] beschrieben, können durch INTELLO und DB+ wieder aus dem Bauteil entweichen.
Bei Konstruktionen mit geringem Bauschadens-Freiheits-Potenzial sollten Flankendiffusionsvorgänge konstruktiv vermieden werden.


Wandkonstruktionen

Temperaturverläufe Wand, Putzfassade hell
Holzkirchen
31. Wandtemperatur Nordseite
31. Wandtemperatur Nordseite
32. Wandtemperatur Südseite
32. Wandtemperatur Südseite
Davos
33. Wandtemperatur Nordseite
33. Wandtemperatur Nordseite
34. Wandtemperatur Südseite
34. Wandtemperatur Südseite

Wandkonstruktionen erfahren durch ihre senkrechte Ausrichtung eine geringere Erwärmung durch die Sonne als Dächer. Daher ist das Rücktrocknungspotenzial geringer. Im Regelfall sind Wände im Gegensatz zu Dächern außenseitig nicht diffusionsdicht. Es werden keine Bitumenbahnen verwendet, da im Gegensatz z. B. zu Flachdächern und Gründächern keine hohen Anforderungen an die Wasserdichtheit bestehen.
Die Temperaturen in der Außenwand hängen im Wesentlichen von der Farbe der Fassade ab. Auf hellen Fassaden werden durch die Sonneneinstrahlung niedrigere Temperaturen erreicht als auf dunkleren Fassaden. Die dargestellten Temperaturprofile auf der Außenwand entstehen bei normal hellen Putzfassaden (siehe Abb. 31 bis 34).
Die Hochleistungs-Dampfbremse INTELLO bietet auch bei Wandkonstruktionen ein erhebliches Bauschadens-Freiheits-Potenzial. Berechnungen mit Delphin mit dem Klima von Holzkirchen zeigen für eine nordorientierte Außenwand mit diffusionsdichter Außenbekleidung bei Verwendung von Bahnen mit dem INTELLO Funktionsfilm immer noch ein ausreichendes Sicherheitspotenzial.

Damit sind die Bahnen aus der INTELLO-Familie auch bei Holzwerkstoffplatten wie OSB- oder Spanplatten auf der Außenseite die ideale Lösung für ein hohes Bauschadens-Freiheits-Potenzial. Die Gefahr von Schimmelbildung wird deutlich verringert.

Feuchteschutz ist eine Bemessungsaufgabe. Bitte wenden Sie sich dazu an einen Bauphysiker. pro clima bietet im Rahmen der technischen Hotline die Beurteilung von Bauteilen an.

Konstruktionen


Fazit

Konstruktionen mit DB+ und den Membranen der INTELLO-Familie weisen in Abhängigkeit von Lage und Konstruktion enorm große Sicherheitsreserven auf und beugen mit intelligentem Feuchtemanagement Bauschäden und Schimmelbildung vor. Selbst bei unvorhergesehenen bzw. in der Baupraxis nicht zu vermeidenden Feuchtbelastungen, verfügen die Konstruktionen dank der hohen Trocknungsreserven durch die feuchtevariablen Diffusionswiderstände über ein sehr hohes Bauschadens-Freiheits-Potenzial.
Die INTELLO Hochleistungs-Dampfbremsen haben eine besonders große, in allen Klimabereichen wirksame Variabilität des Diffusionswiderstandes und bieten damit für Wärmedämmkonstruktionen eine bisher unerreichte Sicherheit. Das gilt bei außen diffusionsoffenen oder auch bei bauphysikalisch anspruchsvollen Konstruktionen wie Flachdächer, Gründächer, Metalleindeckungen sowie Dächer mit diffusionsdichten Vordeckungen gemäß den Vorgaben.

  • Die Leistungsfähigkeit des INTELLO-Funktionsfilms zeigt sich auch bei extremen Klimabedingungen, wie z. B. im Hochgebirge.
  • Die bewährte pro clima DB+ bietet bis zu mittleren Höhenlagen (z. B. in Holzkirchen) hohe Sicherheiten für Steildachkonstruktionen.
  • Entsprechend den Vorgaben der DIN 68800-2, kann mit feuchtevariablen Dampfbremsen auf chemischen Holzschutz verzichtet werden.
  • Zusätzliche Sicherheit bietet pro clima mit einer leistungsstarken, transparenten und fairen Systemgewährleistung.

Je höher die Trocknungsreserve einer Konstruktion ist, umso höher kann die unvorhergesehene Feuchtebelastung sein ohne dass ein Bauschaden entsteht.

Die intelligente Funktionsweise von allen Bahnen der INTELLO-Familie und der DB+ unterstützt diese Sicherheitsregel und ermöglicht die Realisation von besonders sicheren Konstruktionen.


Bewertung der Feuchtigkeitseinflüsse. Definition des Bauschadensfreiheitskriteriums

Auszug einer von MOLL bauökologische Produkte GmbH initiierten Sanierungs-Studie [9]:

Feuchteeinwirkung auf eine
Dämmkonstruktion im Winter
Feuchteeintrag in die Dämmung
durch Leckagen
Über eine Dampfbrems- und Luftdichtungsebene mit einem sd-Werten von 3 m gelangen lediglich 5 g Wasser pro m² am Tag in die Konstruktion.
Über eine 1 mm breite Fuge sind Feuchteeinträge von bis zu 800 g Wasser pro m² am Tag möglich.
Schimmelpilze wachsen
auch unter ungünstigen
Umgebungsbedingungen
Sedlbauer und Krus [10] geben für das Erreichen von Wachstumsbedingungen für fast alle im Baubereich relevanten Schimmelpilze ein rel. Luftfeuchtigkeit von 80 % an. Der optimale Bereich liegt je nach Spezies bei 90 bis 96 % rel. Luftfeuchtigkeit.

Die in den Abbildungen beschriebenen Feuchtigkeitseinträge können innerhalb von Bauteilen zu einer erhöhten rel. Luftfeuchtigkeit bis hin zur Kondensatbildung führen. In Kombination mit einer ausreichend hohen Temperatur an der Stelle des erhöhten Feuchtegehaltes kann es bei ausreichend langer Einwirkung und einer geeigneten Nahrungsquelle zur Auskeimung von Schimmelpilzsporen kommen. Schimmelpilze gelten als so genannte „Erstkolonisierer“, da sie auch „unter biologisch ungünstigen Umgebungsbedingungen“ [10] gedeihen können.

Sedlbauer und Krus [10] geben für das Erreichen von Wachstumsbedingungen für fast alle im Baubereich relevanten Schimmelpilze eine rel. Luftfeuchtigkeit von 80 % an. Der optimale Bereich liegt je nach Spezies bei 90 bis 96 % rel. Luftfeuchtigkeit. Die in den Zeiträumen erhöhter Feuchtegehalte vorhandene Temperatur muss für die Auskeimung der Sporen, bzw. für das Wachstum des Pilzes im Bereich zwischen 0 und 50°C liegen. Die ideale Wachstumstemperatur liegt bei etwa 30 °C.

Bei dieser Temperatur können auf Mineralwolle ab einer rel. Luftfeuchtigkeit von 92 % Schimmelpilze auskeimen und wachsen. Ist die Temperatur geringer, sind erhöhte rel. Luftfeuchten für die Besiedelung erforderlich.
„Verunreinigungen durch Staub, Fingerabdrücke und Luftverschmutzung (Küche, Rückstände beim Duschen usw.) oder Ausdünstungen des Menschen“ reichen aus, um auf weniger geeigneten Untergründen die Voraussetzungen für einen Bewuchs mit Schimmelpilzen zu verbessern. Diese Randbedingungen haben einen Einfluss auf die Höhe der erforderlichen rel. Luftfeuchtigkeit bzw. Temperatur, die für das Auskeimen erforderlich ist. Temperaturen unterliegen im Tag-Nacht-Wechsel Schwankungen, die dazu führen können, dass zeitweise keine Bedingungen für das Schimmelpilzwachstum vorliegen. In [10] wird nach Zöld angegeben, dass bei Temperaturen unter 20 °C Schimmelpilzgefährdung vorliegt, wenn über 5 Tage an mehr als 12 Stunden eine rel. Luftfeuchtigkeit oberhalb von 75 % in der Konstruktion herrscht. Das Kriterium für eine durch mögliches Schimmelpilzwachstum gefährdete Konstruktion kann wie folgt definiert werden:

  1. Temperatur im Tagesmittel über 0 °C
  2. Rel. Luftfeuchtigkeit im Tagesmittel dauerhaft über 90 %
  3. Temperatur und rel. Luftfeuchte müssen über lange Zeit in diesem Bereich vorhanden sein.


Berechnung des Bauschadens-Freiheits-Potenzials bei der Sub-and-Top-Lösung

- Siehe: Bauphysik Sanierungs-Studie, Abs.: Sub-and-Top- Vergleich des Bauschadens-Freiheits-Potenzials

Einzelnachweise

  1. Moll bauökologische Produkte GmbH, Bauphysik-Studie - Link zum Absatz; PDF: Download
  2. Deutsche Bauzeitung; Heft 12/89, Seite 1639 ff.
  3. 3,0 3,1 DAB 1995; Heft 8, Seite 1479
  4. 4,0 4,1 Klopfer, Heinz; Bauschäden-Sammlung, Band 11, Günter Zimmermann (Hrsg.), Stuttgart: Fraunhofer IRB Verlag, 1997
  5. 5,0 5,1 Klopfer, Heinz; ARCONIS: Wissen zum Planen und Bauen und zum Baumarkt: Flankenübertragung bei der Wasserdampfdiffusion; Heft 1/1997, Seite 8–10
  6. Robert Borsch-Laaks: Bauphysik für Fortgeschrittene – Bemessungsregeln für Flachdächer; Holzbau – die neue quadriga; Verlag Kastner; Wolnzach; 05/2011
  7. WTA-Merkblatt 6-8: Feuchtetechnische Bewertung von Holzbauteilen – Vereinfachte Nachweise und Simulation; Fraunhofer IRB-Verlag; 08/2016
  8. H.M. Künzel; Tauwasserschäden im Dach aufgrund von Diffusion durchangrenzendes Mauerwerk; wksb 41/1996; Heft 37, Seite 34 – 36
  9. Moll bauökologische Produkte GmbH: WISSEN 2012/13 - Sanierungs-Studie: „Lösungen für die Luftdichtheit bei energietechnischen Sanierungen von Dachkonstruktionen“ , 2012, S. 89
  10. 10,0 10,1 10,2 10,3 Tagung Schimmelpilze im Wohnbereich: Schimmelpilz aus bauphysikalischer Sicht - Beurteilung durch aw-Werte oder Isoplethensysteme?, Klaus Sedlbauer, Martin Krus, Fraunhofer IBP, Holzkirchen, 26.06.2002