Luftdichtung: Unterschied zwischen den Versionen

Aus Wissen Wiki
Zur Navigation springen Zur Suche springen
 
(137 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
==Luftdichtung – die entscheidende Größe==
==Luftdichtung – die entscheidende Größe==
'''... dass die Wärmedämmung wirklich dämmt und die [[Konstruktion]] [[Bauschadensfreiheitspotenzial|bauschadensfrei]] bleibt'''
'''... damit die Wärmedämmung wirklich dämmt und die [[Konstruktion]] [[Bauschadensfreiheit|bauschadensfrei]] bleibt'''


Die [[Wärmedämmung]] in einem Gebäude trennt zwei unterschiedliche Klimabereiche: Das Innenraumklima und Außenraumklima. Für die Bedingungen in Europa und Russland bedeutet das: Im Winter ist es innen warm und außen kalt, im Sommer hingegen innen kühler als außen.
Die [[Wärmedämmung]] in einem Gebäude trennt zwei unterschiedliche Klimabereiche: Das Innenraumklima und Außenraumklima. Für die Bedingungen in Europa und Russland bedeutet das: Im Winter ist es innen warm und außen kalt, im Sommer hingegen innen kühler als außen.
Zeile 13: Zeile 13:
==Der ideale Aufbau==
==Der ideale Aufbau==
Die Wirkung aller Wärmedämmungen beruht auf den Lufteinschlüssen im Dämmmaterial ([[Zellulose]]flocken, [[Kork]], [[Schafwolle|Woll-]], [[Mineralfaser]]n oder [[Wärmedämmstoff|andere Materialien]]). Voraussetzung für die dämmende Wirkung dieser Lufteinschlüsse ist deren Schutz vor Luftbewegung. Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:<br />
Die Wirkung aller Wärmedämmungen beruht auf den Lufteinschlüssen im Dämmmaterial ([[Zellulose]]flocken, [[Kork]], [[Schafwolle|Woll-]], [[Mineralfaser]]n oder [[Wärmedämmstoff|andere Materialien]]). Voraussetzung für die dämmende Wirkung dieser Lufteinschlüsse ist deren Schutz vor Luftbewegung. Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:<br />
'''Innen luftdicht - außen winddicht.'''
'''Innen luftdicht - außen winddicht.'''  
<br />


{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|[[Bild:BPhys GD 1 01_WD_offen-01.jpg|left|thumb|200px|'''Dämmung durch unbewegte Luft''' - Ungeschützter Dämmstoff:<br /> Luftbewegung in der Porenstruktur reduziert die Dämmwirkung.]]
|-
|[[Bild:BPhys GD 1 02_WD_umschlossen-01.jpg|left|thumb|200px|'''Geschützter Wärmedämmung:'''<br /> Keine Luftbewegung in der Porenstruktur möglich, <br />volle Dämmwirkung.]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 01_WD_offen-01.jpg|right|250px|'''Dämmung durch unbewegte Luft''' - Ungeschützter Dämmstoff:<br /> Luftbewegung in der Porenstruktur reduziert die Dämmwirkung.]]
|[[Bild:BPhys GD 1 02_WD_umschlossen-01.jpg|right|250px|'''Geschützter Wärmedämmung:'''<br /> Keine Luftbewegung in der Porenstruktur möglich, <br />volle Dämmwirkung.]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Ungeschützter Dämmstoff: <br /> Luftbewegung reduziert Dämmwirkung. || Geschützter Dämmstoff: <br /> Volle Dämmwirkung.
|}
|}
 
<br />
 
<br />
;Ein Beispiel:
;Beispiel Pullover:
Auch die wärmedämmende Wirkung eines Wollpullovers beruht auf unbewegten Lufteinschlüssen in den Fasern: Sobald ein kalter Wind
Auch die wärmedämmende Wirkung eines Wollpullovers beruht auf unbewegten Lufteinschlüssen in den Fasern: Sobald ein kalter Wind
weht, lässt die Dämmwirkung nach. Zieht man eine dünne Windjacke darüber, die selbst keine nennenswerte wärmende Funktion hat, ist die Wirkung wieder hergestellt.
weht, lässt die Dämmwirkung nach. Zieht man eine dünne Windjacke darüber, die selbst keine nennenswerte wärmende Funktion hat, ist die Wirkung wieder hergestellt.
Zeile 27: Zeile 31:


{{Hinweis|Wichtig beim Einbau der Luftdichtung ist die perfekte Ausführung, denn Undichtheiten in der Fläche und an Anschlüssen haben Folgen.}}
{{Hinweis|Wichtig beim Einbau der Luftdichtung ist die perfekte Ausführung, denn Undichtheiten in der Fläche und an Anschlüssen haben Folgen.}}
{|align="right"
{|align="right" width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1"
|[[Bild:BPhys GD 1 32_SOLITEX_WD_voll_Gefach-01.jpg|left|thumb|200px|'''Innen luftdicht, außen winddicht''']]
|-
|}
| [[Bild:BPhys GD 1 32_SOLITEX_WD_voll_Gefach-01.jpg|center|400px]]
|-
| Innen luftdicht, außen winddicht
|}  
Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:<br />
Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:<br />
Außen mit der [[Winddichtung]], z. B. einer diffusionsoffenen [[Unterdeckbahn|Unterdeck]]- oder [[Wandschalungsbahn|Fassadenbahn]], innen mit einer Luftdichtungsebene, z. B. einer [[Dampfbremse]].
Außen mit der [[Winddichtung]], z. B. einer diffusionsoffenen [[Unterdeckbahn|Unterdeck]]- oder [[Wandschalungsbahn|Fassadenbahn]], innen mit einer Luftdichtungsebene, z. B. einer [[Dampfbremse]].
Zeile 37: Zeile 44:


==Mangelhafte Luftdichtung und ihre Folgen==
==Mangelhafte Luftdichtung und ihre Folgen==
===Ökonomie + Ökologie / Wärmeverluste - Klimaerwärmung===
===Lüftungswärmeverlust===
{|align="right"
;Ökonomie + Ökologie / Wärmeverluste / Klimaerwärmung
|[[Bild:BPhys GD 1 05_Heizung_gross-01.jpg|left|thumb|200px|'''Undichte''' Gebäudehülle: <br />Hohe Heizkosten und [[CO2|CO<sub>2</sub>-Emissionen]]]]
{|align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|[[Bild:BPhys GD 1 04_Heizung_klein-01.jpg|left|thumb|200px|'''Dichte''' Gebäudehülle: <br />Geringe Kosten und Klimaschutz]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 05_Heizung_gross-02.jpg|right|250px|'''Undichte''' Gebäudehülle: <br />Hohe Heizkosten und [[CO2|CO<sub>2</sub>-Emissionen]]]]
|[[Bild:BPhys GD 1 04_Heizung_klein-02.jpg|right|250px|'''Dichte''' Gebäudehülle: <br />Geringe Kosten]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" width="180px" | Undicht: Hohe Heizkosten || width="180px" | Dichte: Geringe Kosten
|}
|}
Bereits kleinste Leckagen in der Dampfbremsebene, wie sie z. B. durch mangelnde Verklebung der Bahnenüberlappungen oder -anschlüsse
Bereits kleinste Leckagen in der Dampfbremsebene, wie wie z. B. durch mangelnde Verklebung der Bahnenüberlappungen oder -anschlüsse entstehen, haben weitreichende Folgen. Eine derartige Fehlstelle hat die gleichen Auswirkungen wie eine durchgehende Fuge zwischen Fensterrahmen und Mauerwerk. Niemand würde in diesem Bereich eine Fuge tolerieren. Entsprechend sollten Fugen in der Dampfbremse die gleiche Aufmerksamkeit bekommen.
entstehen, haben weitreichende Folgen. Eine derartige Fehlstelle hat die gleichen Auswirkungen wie eine durchgehende Fuge zwischen
 
Fensterrahmen und Mauerwerk. Niemand würde in diesem Bereich eine Fuge tolerieren. Entsprechend sollten Fugen in der Dampfbremse die
Die durch Undichtheiten entstehenden höheren Heizkosten führen zu einer geringeren Rentabilität der Wärmedämmung für den Bauherrn. Darüber hinaus entsteht eine höhere Emission von [[CO2|CO<sub>2</sub>]], als es bei der Beheizung von luftdichten Gebäuden notwendig wäre. Entsprechend einer Untersuchung des [[Fraunhofer Gesellschaft|Instituts für Bauphysik in Stuttgart]] verschlechtert sich der U-Wert einer Wärmedämmkonstruktion um den Faktor 4,8. (mehr: [[Luftdichtung#Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der Gebäudehülle|siehe unten]]) <br clear="all" />
gleiche Aufmerksamkeit bekommen.
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" id="ganz_oben"
|-
| [[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.3.jpg|center|400px]]
|-
| Nur eine fugenfreie Wärmedämmkonstruktion hat den vollen Dämmwert.
|}
Übertragen auf die Realität bedeutet das, dass für ein Haus mit einer Wohnfläche von 80&nbsp;m², bei dem Leckagen in der Luftdichtung vorhanden sind, eine ebenso große Energiemenge zum Beheizen benötigt wird wie für ein luftdichtes Haus mit ca. 400&nbsp;m² Wohnfläche. Unkontrollierte [[CO2|CO<sub>2</sub>]]-Emissionen fördern das Treibhausklima – die menschliche Zivilisation spürt die Auswirkungen z. B. durch eine steigende Anzahl von Unwetterkatastrophen.
Deshalb ist die Reduzierung der CO<sub>2</sub>-Emissionen anzustreben. Nicht nur durch Verzicht, sondern v. a. durch den Einsatz von intelligenten Lösungen helfen wir der Umwelt.


Die durch Undichtheiten entstehenden höheren Heizkosten führen zu einer geringeren Rentabilität der Wärmedämmung für den Bauherrn. Darüber hinaus entsteht eine höhere Emission von [[CO2|CO<sub>2</sub>]] , als es bei der Beheizung von luftdichten Gebäuden notwendig wäre. Entsprechend einer Untersuchung des Instituts für Bauphysik in Stuttgart verschlechtert sich der U-Wert einer Wärmedämmkonstruktion um den Faktor 4,8. (mehr: [[Luftdichtung#Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der Gebäudehülle|siehe unten]])
<br />
<br clear="all" />
{|align="right"
|[[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.2.jpg|left|thumb|200px|Nur eine fugenfreie Wärmedämmkonstruktion <br />hat den vollen Dämmwert.]]
|}
Übertragen auf die Realität bedeutet das, dass für ein Haus mit einer Wohnfläche von 80&nbsp;m², bei dem Leckagen in der Luftdichtung vorhanden sind, eine ebenso große Energiemenge zum Beheizen benötigt wird wie für ein luftdichtes Haus mit ca. 400&nbsp;m² Wohnfläche. Unkontrollierte [[CO2|CO<sub>2</sub>]]-Emissionen fördern das Treibhausklima – die menschliche Zivilisation spürt die Auswirkungen z. B. durch eine steigende Anzahl von Unwetterkatastrophen. Deshalb ist die Reduzierung der [[CO2|CO<sub>2</sub>]]-Emissionen anzustreben.
Nicht nur durch Verzicht, sondern vor Allem durch den Einsatz von intelligenten Lösungen, helfen wir der Umwelt.


Häuser in Mitteleuropa benötigen nach einer Erhebung aus dem Jahr 2000 im Durchschnitt 22&nbsp;l&nbsp;Öl/m² (220&nbsp;KWh/m²) Wohnfläche für die Raumheizung, ein [[Passivhaus]] braucht nur 1&nbsp;l, ein "[[3 Liter Haus]]", wie der Name schon sagt, 3&nbsp;l&nbsp;Öl/m² – vorausgesetzt die Luftdichtung ist perfekt. Fugen in der Luftdichtungsebene von Gebäuden führen zu einer Vervielfachung des Energiebedarfs je Quadratmeter Wohnfläche.
Häuser in Mitteleuropa benötigen nach einer Erhebung aus dem Jahr 2000 im Durchschnitt 22&nbsp;l&nbsp;Öl/m² (220&nbsp;KWh/m²) Wohnfläche für die Raumheizung, ein [[Passivhaus]] braucht nur 1&nbsp;l, ein "[[3 Liter Haus]]", wie der Name schon sagt, 3&nbsp;l&nbsp;Öl/m² – vorausgesetzt die Luftdichtung ist perfekt. Fugen in der Luftdichtungsebene von Gebäuden führen zu einer Vervielfachung des Energiebedarfs je Quadratmeter Wohnfläche.
<br clear="all" />
<br clear="all" />
==Unangenehmes Raumklima im Sommer==
 
{|align="right"
== Unangenehmes Raumklima im Sommer ==
|[[Bild:BPhys GD 1 11 Dachschn.Sommer warm-01.jpg|left|thumb|200px|Schnelle Aufheizung durch Luftströmung]]
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|}
|-
{|align="right"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 12 Dachschn.Sommer kuehl-02.jpg|center|250px|Kühle Räume bei sommerlicher Hitze]]
|[[Bild:BPhys GD 1 12 Dachschn.Sommer kuehl-01.jpg|left|thumb|200px|Kühle Räume bei sommerlicher Hitze]]
|[[Bild:BPhys GD 1 11 Dachschn.Sommer warm-02.jpg|center|250px|Schnelle Aufheizung durch Luftströmung]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Kühle Räume bei sommerlicher Hitze || Schnelle Aufheizung durch Luftströmung
|}
|}
Für den [[sommerlicher Wärmeschutz|sommerlichen Hitzeschutz]] eines Bauteils wird die [[Phasenverschiebung]] und [[Temperaturamplitudendämpfung|Amplitudendämpfung]] berechnet. Die [[Phasenverschiebung]] beschreibt die Zeit, die die Wärme braucht, um von außen in das Gebäudeinnere zu gelangen. Werte von mehr als 10 Stunden gelten als komfortabel. Die [[Temperaturamplitudendämpfung|Amplitudendämpfung]] stellt dar, wie hoch sich die Temperatur im Gebäudeinneren im Vergleich zu draußen erwärmt.
Der [[sommerlicher Wärmeschutz|sommerlichen Hitzeschutz]] wird charakterisiert durch die Zeitdauer in Stunden, in der die unter der Dacheindeckung herrschende Wärme bis an die Innenseite der Konstruktion gelangt ([[Phasenverschiebung]]), und durch die damit verbundene Steigerung der Innenraumtemperatur in Grad Celsius (°C) im Vergleich zur Außentemperatur ([[Temperaturamplitudendämpfung|Amplitudendämpfung]]).


Dabei wird eine luftdichte Wärmedämmkonstruktion vorausgesetzt, durch die sich die Wärme Pore für Pore vorarbeiten muss.
; Kühle Räume bei sommerlicher Hitze
Für den sommerlichen Hitzeschutz wird die [[Phasenverschiebung]] und die [[Temperaturamplitudendämpfung|Amplitudendämpfung]] berechnet. Dabei wird eine luftdichte Wärmedämmkonstruktion vorausgesetzt. Die Wärme wird relativ träge (je nach Art und Beschaffenheit des Dämmmaterials) nach innen geleitet.
* Die [[Phasenverschiebung]] beschreibt die Zeit, die die Wärme braucht, um von außen in das Gebäudeinnere zu gelangen. Werte von mehr als 10 Stunden gelten als komfortabel.
* Die [[Temperaturamplitudendämpfung|Amplitudendämpfung]] stellt dar, wie hoch sich die Temperatur dann im Gebäudeinneren im Vergleich zu draußen erwärmt.


Fugen in der Luftdichtungsebene führen dazu, dass aufgrund der hohen Temperatur- und damit Druckdifferenz eine Luftströmung
; Schnelle Aufheizung durch Luftströmung
von außen nach innen und damit ein hoher Luftaustausch stattfindet. Die [[Wärmedämmung]] kann nicht mehr zum [[sommerlicher Wärmeschutz|sommerlichen Wärmeschutz]] beitragen und es entsteht ein unangenehmes, zu warmes Raumklima.
Fugen in der Luftdichtungsebene führen dazu, dass aufgrund der hohen Temperatur- und damit Druckdifferenz eine Luftströmung von außen nach innen und damit ein hoher Luftaustausch stattfindet. Die [[Wärmedämmung]] kann nicht mehr zum [[sommerlicher Wärmeschutz|sommerlichen Wärmeschutz]] beitragen und es entsteht ein unangenehmes, zu warmes Raumklima.
<br clear="all" />
<br clear="all" />


==Ungesundes Raumklima im Winter==
<br />
In der Heizperiode sollte die relative Luftfeuchtigkeit in bewohnten Räumen bei behaglichen 40 – 60 % liegen. Ein zu trockenes Raumklima ist gesundheitsschädlich.
 
{|align="right"
== Ungesundes Raumklima im Winter ==
|valign="top"|[[Bild:BPhys GD 1 14 Dachschn. Kaltluft-01.jpg|left|thumb|200px|Trockene Kaltluft dringt durch Fugen ein]]
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"|[[Bild:BPhys GD 1 16 Diagramm LF sinkt-01.jpg|left|thumb|200px|Zu geringe rLF ist nachteilig für die Gesundheit und die Behaglichkeit]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 14 Dachschn. Kaltluft-01.jpg|center|250px|Trockene Kaltluft <br /> dringt durch Fugen ein]]
| [[Bild:BPhys GD 1 16 Diagramm LF sinkt-01.jpg|center|250px|Zu geringe rLF ist nachteilig für die Gesundheit und die Behaglichkeit]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Trockene Kaltluft <br /> dringt durch Fugen ein || Zu geringe Luftfeuchte: <br /> nachteilig für die Gesundheit
|}
|}
Das häufig zu beobachtende Phänomen der trockenen Raumluft im Winter beruht darauf, dass kalte Außenluft durch Fugen ins Haus eindringt. Wird die kalte Luft durch Beheizen erwärmt, reduziert sich ihr relativer Feuchtegehalt.
In der Heizperiode sollte die relative [[Luftfeuchtigkeit]] in bewohnten Räumen bei behaglichen 40 – 60 % liegen. <br /> Ein zu trockenes Raumklima ist gesundheitsschädlich.


Häuser mit einer schlechten Luftdichtung neigen daher im Winter zu einer zu trockenen Raumluft, die sich auch mit [[Luftbefeuchtung|Befeuchtungsgeräten]] kaum erhöhen lässt, da sie immer wieder durch trockene Außenluft ersetzt wird. Die Konsequenz ist ein unbehagliches Raumklima.
; Trockene Kaltluft dringt durch Fugen ein
Das häufig zu beobachtende Phänomen der trockenen Raumluft im Winter beruht darauf, dass kalte Außenluft durch Fugen ins Haus eindringt. Wird die kalte Luft durch Beheizen erwärmt, reduziert sich ihr relativer Feuchtegehalt. <br />
Häuser mit einer schlechten Luftdichtung neigen daher im Winter zu einer zu trockenen Raumluft, die sich auch mit [[Luftbefeuchtung|Befeuchtungsgeräten]] kaum erhöhen lässt. Die Konsequenz ist ein unbehagliches Raumklima.


;Beispiel:
 
10 °C kalte Luft kann bei 80&nbsp;% relaltive [[Luftfeuchtigkeit]] (rLF) maximal 1,7&nbsp;g/m³ Feuchtigkeit  aufnehmen (Normwinterklima außen nach [[DIN 4108]]-3). <br />  
; Zu geringe relative Luftfeuchtigkeit ist nachteilig für die Gesundheit und die Behaglichkeit
Wird diese Luft auf 20&nbsp;°C erwärmt (Normwinterklima innen), sinkt die rel. Luftfeuchtigkeit auf 9,9&nbsp;%. <br />
'''Beispiel''': - 10 °C kalte Luft kann bei 80&nbsp;% relaltiver [[Luftfeuchtigkeit]] (rLF) maximal 1,7&nbsp;g/m³ Feuchtigkeit  aufnehmen (Winter-Außenklima). <br />  
Im praktischen Ergebnis sinkt die relative [[Luftfeuchtigkeit]] der Wohnräume somit mitunter auf unter 30&nbsp;%.  
Wird diese Luft auf 20&nbsp;°C (Winter-Innenklima) erwärmt, sinkt die rel. Luftfeuchtigkeit auf 9,9&nbsp;%.  
<br clear="all" />
<br clear="all" />




* '''Mehr zum Thema''' (z.B. Sättigungswerte, Behaglichkeit, gesundheitliche Aspekte) '''siehe: [[Luftfeuchtigkeit]]'''
* '''Mehr zum Thema''' Sättigungswerte, Behaglichkeit, gesundheitliche Aspekte, siehe: '''[[Luftfeuchtigkeit]]'''
 
 


<!--
<!--
==Definition Luftdichtung und Überblick über die Auswirkungen mangelhafter Luftdichtung==
==Definition Luftdichtung und Überblick über die Auswirkungen mangelhafter Luftdichtung==
Unter Luftdichtung versteht man den Schutz der Wärmedämmung in der [[Hüllfläche|Gebäudehülle]] vor eindringender [[Feuchtigkeit]]. Die Güte der Luftdichtheit bestimmt sich durch die Fugenfreiheit. Je mehr Fugen, bzw. Undichtheiten sich in der inneren [[Hüllfläche|Gebäudehülle]], z.B. der [[Dampfbremse]]  befinden, d.h. je undichter die [[Hüllfläche|Gebäudehülle]] ist, umso schlechter ist die Luftdichtung. Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] haben große bauphysikalische Auswirkungen:  
Unter Luftdichtung versteht man den Schutz der Wärmedämmung in der [[Hüllfläche|Gebäudehülle]] vor eindringender [[Feuchtigkeit]]. Die Güte der Luftdichtheit bestimmt sich durch die Fugenfreiheit. Je mehr Fugen, bzw. Undichtheiten sich in der inneren [[Hüllfläche|Gebäudehülle]], z. B. der [[Dampfbremse]]  befinden, d. h. je undichter die [[Hüllfläche|Gebäudehülle]] ist, umso schlechter ist die Luftdichtung. Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] haben große bauphysikalische Auswirkungen:  


{|align="right"
{|align="right"
|[[Bild:BPhys_GD_1_08_Dachschn.Konvektion-01.jpg|left|thumb|200px|Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] haben große bauphysikalische Auswirkungen]]
|[[Bild:BPhys_GD_1_08_Dachschn.Konvektion-01.jpg|right|thumb|200px|Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] haben große bauphysikalische Auswirkungen]]
|}
|}
Innenraumluft, die durch Undichtheiten in der Dampfbremse nach außen strömt, transportiert viel Wärme und führt dadurch zu einem höheren Heiz[[energiebedarf]]. Auf ihrem Weg durch die Wärmedämmung kühlt die warme Luft ab und kondensiert an den Außenbauteilen. Die ausfallende [[Feuchtigkeit]] wird als [[Tauwasserausfall|Tauwasser]] bezeichnet und kann zu Schimmel führen. Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] verschlechtern den Komfort für die Nutzer erheblich: Im Winter ist das Raumklima zu trocken, im Sommer reduziert sich der [[sommerlicher Wärmeschutz|sommerliche Wärmeschutz]]. Undichtheiten verringern zudem den [[Schallschutz]] der [[Konstruktion]].
Innenraumluft, die durch Undichtheiten in der Dampfbremse nach außen strömt, transportiert viel Wärme und führt dadurch zu einem höheren Heiz[[energiebedarf]]. Auf ihrem Weg durch die Wärmedämmung kühlt die warme Luft ab und kondensiert an den Außenbauteilen. Die ausfallende [[Feuchtigkeit]] wird als [[Tauwasserausfall|Tauwasser]] bezeichnet und kann zu Schimmel führen. Undichtheiten in der inneren [[Hüllfläche|Gebäudehülle]] verschlechtern den Komfort für die Nutzer erheblich: Im Winter ist das Raumklima zu trocken, im Sommer reduziert sich der [[sommerlicher Wärmeschutz|sommerliche Wärmeschutz]]. Undichtheiten verringern zudem den [[Schallschutz]] der [[Konstruktion]].


Mit anderen Worten: <br />
Mit anderen Worten: <br />
Eine gute Luftdichtung ist Voraussetzung dafür, dass die [[Wärmedämmung]] effektiv funktioniert, die [[Konstruktion]] [[Bauschadensfreiheitspotenzial|bauschadensfrei]] bleibt und im Winter wie im Sommer ein angenehmes Wohn- bzw. Arbeitsklima erreicht wird.  
Eine gute Luftdichtung ist Voraussetzung dafür, dass die [[Wärmedämmung]] effektiv funktioniert, die [[Konstruktion]] [[Bauschadensfreiheit|bauschadensfrei]] bleibt und im Winter wie im Sommer ein angenehmes Wohn- bzw. Arbeitsklima erreicht wird.  


Für eine gute Luftdichtung müssen die Überlappungen von [[Dampfbremse]]n mit Klebebändern verklebt und Fugen zu angrenzenden Bauteilen dauerhaft zuverlässig  abgedichtet werden.   
Für eine gute Luftdichtung müssen die Überlappungen von [[Dampfbremse]]n mit Klebebändern verklebt und Fugen zu angrenzenden Bauteilen dauerhaft zuverlässig  abgedichtet werden.   
-->
-->
'''Details und Hintergrundwissen:'''


==Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der [[Hüllfläche|Gebäudehülle]]==
==Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der [[Hüllfläche|Gebäudehülle]]==
Die Auswirkungen der mangelhaften [[Luftdichtheit]] wurden vom Fraunhofer Institut für Bauphysik in Stuttgart, Deutschland, in einer Messstudie 1989 untersucht und in verschiedenen Fachzeitschriften veröffentlicht (z.B. DBZ 12/89, Seite 1639ff):
Die Auswirkungen der mangelhaften [[Luftdichtheit]] wurden vom [[Fraunhofer Gesellschaft|Fraunhofer Institut für Bauphysik]] in Stuttgart, Deutschland, in einer Messstudie 1989 untersucht und in verschiedenen Fachzeitschriften veröffentlicht <ref name="QU1" />:
 
{|align="right"
|[[Bild:BPhys GD 1 06 Konvekt Fuge Waerme-01.jpg|left|thumb|200px|Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor&nbsp;4,8]]
|}


Geprüft wurde die [[Wärmedurchgangskoeffizient|Wärmedämmwirkung]] und der [[Feuchte]]durchgang
Geprüft wurde die [[Wärmedurchgangskoeffizient|Wärmedämmwirkung]] und der [[Baufeuchte|Feuchtedurchgang]] bei einer innen liegenden Dampfbremse zusammen mit einer [[Wärmedämmung]] aus [[Mineralfaser|Mineralwolle]] mit 14&nbsp;cm Dämmstärke (ehemaliger Wärmedämmstandard in Deutschland).<br />
bei einer innen liegenden Dampfbremse zusammen mit einer [[Wärmedämmung]] aus [[Mineralfaser|Mineralwolle]] mit 14 cm Dämmstärke (das war der damalige Wärmedämmstandard in Deutschland).
Als definierte Undichtheit wurden in der Mitte der 1 m² großen Dampfbremsfläche Fugen angelegt: 1&nbsp;m lang und mit unterschiedlich Breiten: 1, 3, 5 und 10&nbsp;mm. Die Fugen befanden sich nur in der Dampfbremse, nicht in der Wärmedämmung.
Als definierte Undichtheit wurden in der Mitte der 1 m² großen Dampfbremsfläche Fugen angelegt: 1 m lang und mit unterschiedlich Breiten: 1, 3, 5 und 10&nbsp;mm. Die Fugen befanden sich nur in der Dampfbremse, nicht in der Wärmedämmung.


Für die Ermittlung der Wärmeverluste wurde eine Temperaturdifferenz von innen 20&nbsp;°C zu außen -10&nbsp;°C hergestellt, für die Ermittlung der Feuchteströme eine Temperaturdifferenz von innen 20&nbsp;°C zu außen 0&nbsp;°C (um eine Vereisung der durchdringenden Wassermenge zu vermeiden).  
Für die Ermittlung der Wärmeverluste wurde eine Temperaturdifferenz von innen 20&nbsp;°C zu außen -10&nbsp;°C hergestellt, für die Ermittlung der Feuchteströme eine Temperaturdifferenz von innen 20&nbsp;°C zu außen 0&nbsp;°C (um eine Vereisung der durchdringenden Wassermenge zu vermeiden).  


Die Druckdifferenzen entsprachen mit 10, 20, 30 und 40&nbsp;Pa denen, die typischerweise auf die [[Hüllfläche|Gebäudehülle]] einwirken können. Druckdifferenzen auf die [[Hüllfläche|Gebäudehülle]] entstehen sowohl thermisch bedingt, also durch den Temperaturunterschied von innen (warm) nach außen (kalt), als auch windbedingt durch Winddruck und Windsog. Eine Druckdifferenz von 20&nbsp;Pa entsteht z.B. bei einem Außenklima von -10&nbsp;°C und Windstärke 3 oder von 0&nbsp;°C und Windstärke&nbsp;4.  
Die Druckdifferenzen entsprachen mit 10, 20, 30 und 40&nbsp;Pa denen, die typischerweise auf die [[Hüllfläche|Gebäudehülle]] einwirken können. Druckdifferenzen auf die [[Hüllfläche|Gebäudehülle]] entstehen sowohl thermisch bedingt, also durch den Temperaturunterschied von innen (warm) nach außen (kalt), als auch windbedingt durch Winddruck und Windsog. Eine Druckdifferenz von 20&nbsp;Pa entsteht z. B. bei einem Außenklima von -10&nbsp;°C und Windstärke 3 oder von 0&nbsp;°C und Windstärke&nbsp;4.  


Zunächst wurden die beiden zu untersuchenden Größen – Wärmedämmwirkung und Feuchtedurchgang – mit der fugenfreien Dampfbremse bei den unterschiedlichen Druckdifferenzen gemessen. Anschließend untersuchte man die [[Konstruktion]] mit den verschiedenen Fugen, jeweils mit allen Druckdifferenzen.  
Zunächst wurden die beiden zu untersuchenden Größen – Wärmedämmwirkung und [[Baufeuchte|Feuchtedurchgang]] – mit der fugenfreien Dampfbremse bei den unterschiedlichen Druckdifferenzen gemessen. Anschließend untersuchte man die [[Konstruktion]] mit den verschiedenen Fugen, jeweils mit allen Druckdifferenzen.  


Vorab sei gesagt: Die Messergebnisse waren alarmierend und schreckten die Fachwelt auf.
Vorab sei gesagt: Die Messergebnisse waren alarmierend und schreckten die Fachwelt auf.


===Luftdichtung – die Voraussetzung, dass die Wärmedämmung wirklich dämmt===
=== Luftdichtung – die Voraussetzung, dass die Wärmedämmung wirklich dämmt ===
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|[[Bild:03_Waermedurchg_d.jpg|left|thumb|200px|Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |  [[Bild:BPhys GD 1 06_Konvekt_Fuge_Waerme-01.3.jpg|right|250px|Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor&nbsp;4,8]]
|[[Bild:BPhys GD 2 Luft 03_Waermedurchg_d.jpg|right|250px|Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor&nbsp;4,8 || Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen
|}
|}
Bei der Untersuchung der Wärmedämmwirkung der 14&nbsp;cm dicken [[Wärmedämmung]] mit der fugenfreien [[Dampfbremse]] bestätigte der gemessene [[Wärmedurchgangskoeffizient|U-Wert]] den rechnerischen von 0,30&nbsp;W/m²K.
Bei der Untersuchung der Wärmedämmwirkung der 14&nbsp;cm dicken [[Wärmedämmung]] mit der fugenfreien [[Dampfbremse]] bestätigte der gemessene [[Wärmedurchgangskoeffizient|U-Wert]] den rechnerischen von 0,30&nbsp;W/m²K.
Zeile 135: Zeile 163:
Schon bei der kleinsten Fugebreite von 1 mm und der Druckdifferenz von 20&nbsp;Pa ergab sich eine Reduzierung der Dämmwirkung um den Faktor&nbsp;4,8. Das heißt, der Dämmwert der 14 cm dicken Wärmedämmung ist mit der geringen Undichtheit nicht mehr 0,30&nbsp;W/m²K, sondern 1,44&nbsp;W/m²K. Fugenbreiten von 3&nbsp;mm ergaben Verschlechterungsfaktoren von 11.  
Schon bei der kleinsten Fugebreite von 1 mm und der Druckdifferenz von 20&nbsp;Pa ergab sich eine Reduzierung der Dämmwirkung um den Faktor&nbsp;4,8. Das heißt, der Dämmwert der 14 cm dicken Wärmedämmung ist mit der geringen Undichtheit nicht mehr 0,30&nbsp;W/m²K, sondern 1,44&nbsp;W/m²K. Fugenbreiten von 3&nbsp;mm ergaben Verschlechterungsfaktoren von 11.  


Fazit: Undichtheiten in der Luftdichtungsebene, z.B. in der Dampfbremse, führen zu einer Reduzierung der Wärmedämmwirkung. Der Heiz[[energiebedarf]] und damit die [[CO2|CO<sub>2</sub>]] Emissionen erhöhen sich um ein Mehrfaches.
Fazit: Undichtheiten in der Luftdichtungsebene, z. B. in der Dampfbremse, führen zu einer Reduzierung der Wärmedämmwirkung. Der Heiz[[energiebedarf]] und damit die [[CO2|CO<sub>2</sub>]] Emissionen erhöhen sich um ein Mehrfaches.
<br clear="all" />
<br clear="all" />


===Luftdichtung – die Voraussetzung für [[Bauschadensfreiheitspotenzial|Bauschadensfreiheit]]===
=== Luftdichtung – die Voraussetzung für [[Bauschadensfreiheit]] ===
Bei der oben erwähnten Studie vom Fraunhofer Institut für Bauphysik wurde neben der Wärmedämmwirkung auch der Feuchteeintrag in die [[Konstruktion]] gemessen. Die Dampfbremse hatte einen Diffusionswiderstand sd von 30&nbsp;m (mvtr von 150&nbsp;MNs/g). Die Messung bestätigte den rechnerischen Feuchteintrag in die [[Konstruktion]] von 0,5&nbsp;g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m (mvtr von 10&nbsp;MNs/g) sind die Feuchtemengen für [[Konstruktion]]en problemlos.  
Bei der oben erwähnten Studie vom [[Fraunhofer Gesellschaft|Fraunhofer Institut für Bauphysik]] wurde neben der Wärmedämmwirkung auch der [[Baufeuchte|Feuchteeintrag]] in die [[Konstruktion]] gemessen. Die [[Dampfbremse]] hatte einen Diffusionswiderstand ([[sd-Wert|s<sub>d</sub>-Wert]]) von 30&nbsp;m (mvtr von 150&nbsp;MNs/g). Die Messung bestätigte den rechnerischen [[Baufeuchte|Feuchteeintrag]] in die [[Konstruktion]] von 0,5&nbsp;g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem [[sd-Wert|s<sub>d</sub>-Wert]] von 2&nbsp;m (mvtr von 10&nbsp;MNs/g) sind die [[Baufeuchte|Feuchtemengen]] für [[Konstruktion]]en problemlos.  
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"| [[Bild:BPhys GD 1 05 Konvekt Fuge Feuchte1-01.jpg|left|thumb|200px|800 g Tauwasser <br /> durch 1 mm Fuge]]
|-
|valign="top"| [[Bild:05_Feuchtedurchg_d.jpg|left|thumb|200px|Abhängigkeit des Feuchteeintrags von der Fugenbreite]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 1 05 Konvekt Fuge Feuchte1-01-3.jpg|right|250px|800 g Tauwasser durch 1 mm Fuge]]
| [[Bild:BPhys GD 2 Luft 05_Feuchtedurchg_d.jpg|right|250px|Abhängigkeit des [[Feuchte]]eintrags von der Fugenbreite]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | 800 g Tauwasser durch 1 mm Fuge || Abhängigkeit des Feuchteeintrags von der Fugenbreite
|}
|}
Im zweiten Versuch wurde der Feuchteeintrag über die Fugen ermittelt. Die Ergebnisse waren alarmierend und erklärten so manchen Bauschaden:
Im zweiten Versuch wurde der [[Baufeuchte|Feuchteeintrag]] über die Fugen ermittelt:
 
Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz (entspr. Windstärke 2-3) betrug der [[Baufeuchte|Feuchtigkeitseintrag]] durch [[Konvektion]] '''800&nbsp;g/m Fuge pro Tag'''. Bei einer Fugenbreite von 3&nbsp;mm waren es 1.700&nbsp;g/m.


Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz betrug der Feuchtigkeitseintrag durch [[Konvektion]] (Luftströmung) 800&nbsp;g/m Fuge pro Tag. Bei der Fugenbreite von 3&nbsp;mm waren es 1700&nbsp;g/m.  
'''Hintergrund:'''<br />
Bei Luftströmungen durch Leckagen konzentriert sich der Feuchteeintrag auf eine kleine Fläche. Dadurch ist dieser um ein Vielfaches höher, als es die Berechnungsergebnisse darstellen können. Durch Konvektion kann durch eine Fuge von 1 mm Breite und 1 m Länge (= 1/1000 m²) eine Feuchtigkeitsmenge von 800 g/m und Tag durch Konvektion in die Wärmedämmkonstruktion gelangen. So viel Feuchtigkeit kann auch die diffusionsoffenste Unterdeckbahn nicht austrocknen lassen.  <br />
Der Antrieb der Konvektion ist der Druckunterschied zwischen dem Inneren eines Gebäudes und der Außenluft. Der Druckunterschied resultiert aus der Windanströmung des Gebäudes von außen und dem Aufsteigen der beheizten Luft innerhalb des bewohnten Raums. <br />
Ab [[WUFI pro|WUFI pro 5.0]] steht für die Berechnung von konvektiven Feuchteeinträgen ein Luftinfiltrationsmodell zur Verfügung. Es kann auf Grundlage eines Austausches mit der Innenraumluft einen konvektiven Feuchteeintrag simulieren. Das setzt voraus, dass die Undichtheit der Konstruktion bekannt ist, denn diese dient dazu, den Feuchtigkeitseintrag zu quantifizieren.
<br clear="all" />
<br clear="all" />


Der Feuchtigkeitseintrag führt an den Außenbauteilen zur Kondensation und bildet einen Wasserfilm, der die Diffusionsfähigkeit des Bauteils reduziert. Bei Frost bildet sich aus dem Wasserfilm eine diffusionsdichte Eisschicht. So kann ein diffusionsoffenes Bauteil auf der Außenseite zu einer diffusionsdichten Sperrschicht werden und zu einem noch höheren [[Tauwasserausfall]] in der [[Konstruktion]] führen.
=== Kondensation - Taupunkt - Tauwassermenge ===
Der [[Baufeuchte|Feuchtigkeitseintrag]] führt an den Außenbauteilen zur Kondensation und bildet einen Wasserfilm, der die Diffusionsfähigkeit des Bauteils reduziert. Bei Frost bildet sich aus dem Wasserfilm eine diffusionsdichte Eisschicht. So kann ein diffusionsoffenes Bauteil auf der Außenseite zu einer diffusionsdichten Sperrschicht werden und zu einem noch höheren [[Tauwasserausfall]] in der [[Konstruktion]] führen.


{|align="right"
{| align="right" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 15px; padding: 5px 5px 5px 5px;" class="rahmenfarbe1"  
|valign="top"| [[Bild:06_maxLF0_d2.jpg|left|thumb|200px|Beim Abkühlen auf 0&nbsp;°C<br />kondensieren 3,85&nbsp;g Wasser]]
| colspan="2" style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;"| '''Feuchtephysik der Luft''' <br /> Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit. <br /> • Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.  <br /> • Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur  <br /> ⇒ es fällt früher Tauwasser aus.
|valign="top"| [[Bild:07_maxLF-10_d.jpg|left|thumb|200px|Beim Abkühlen auf -10&nbsp;°C<br />kondensieren ganze 6,55&nbsp;g Wasser]]
|-
| valign="top" width="400px" style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | '''1. Feuchtephysik der Luft bei 50 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 01-Luftfeuchte.jpg|center|400px|]]
| valign="top" width="400px" | '''2. Feuchtephysik der Luft bei 65 %''' rel. Luftfeuchtigkeit [[Bild:BPhys GD 2Studie 02-Luftfeuchte.jpg|center|400px|]]
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" |Bei einem Innenklima von 20&nbsp;°C / 50&nbsp;% rel. Luftfeuchte wird der Taupunkt bei 8,7&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 5,35&nbsp;g/m³ Luft aus.
| Bei erhöhter Raumluftfeuchtigkeit von 65&nbsp;% rel. Luftfeuchte wird der Taupunkt schon bei 13,2&nbsp;°C erreicht. <br /> Bei -5&nbsp;°C fällt Kondensat von 7,95&nbsp;g/m³ Luft aus.
|}
|}


Der [[Tauwasserausfall]] beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20&nbsp;°C und 50&nbsp;% relativer [[Feuchtigkeit]] bei 9,2&nbsp;°C liegt.
Der [[Tauwasserausfall]] beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20&nbsp;°C und 50&nbsp;% relativer [[Feuchtigkeit]] bei 8,7&nbsp;°C liegt.


Aus jedem Kubikmeter Luft, der in eine [[Konstruktion]] eindringt und auf 0&nbsp;°C abkühlt kondensieren 3,85&nbsp;g Wasser, bei Abkühlung auf -10&nbsp;°C Außentemperatur sind es sogar 6,55&nbsp;g Wasser.
Aus jedem Kubikmeter Luft, der in eine [[Konstruktion]] eindringt und auf -5&nbsp;°C abkühlt kondensieren 5,35&nbsp;g Wasser.
 
;Mehr dazu
* [[Tauwasserausfall]]
* Sättigungswerte der Luft siehe: [[Luftfeuchtigkeit]]
<br clear="all" />
<br clear="all" />


Zeile 175: Zeile 221:
Sichtbarer [[Schimmel]] ist erkennbar und kann beseitigt werden. [[Schimmel]] in der [[Konstruktion]] kann jahrelang, unter Umständen jahrzehntelang unerkannt bleiben und zu gravierenden Gesundheitsschädigungen führen.
Sichtbarer [[Schimmel]] ist erkennbar und kann beseitigt werden. [[Schimmel]] in der [[Konstruktion]] kann jahrelang, unter Umständen jahrzehntelang unerkannt bleiben und zu gravierenden Gesundheitsschädigungen führen.


{|align="right"
{|align="right"  width="400px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" id="ganz_oben"  
|[[Bild:08_schimmel_d.jpg|left|thumb|200px|Der schimmelkritische Bereich liegt bei 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C<br /> bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C]]
|-
|}
| [[Bild:BPhys GD 2 Luft 08 schimmel d.jpg|center|400px]]
[[Schimmel]] tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d.h. [[Tauwasserausfall|Tauwasser]] ausfällt, sondern bereits dann, wenn die relative [[Luftfeuchtigkeit]] an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.  
|-
| Der schimmelkritische Bereich liegt <br /> bei <50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C <br /> bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C
|}  
 
[[Schimmel]] tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d. h. [[Tauwasserausfall|Tauwasser]] ausfällt, sondern bereits dann, wenn die relative [[Luftfeuchtigkeit]] an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.  


Die Reduzierung der Oberflächentemperatur auf den Bauteiloberflächen kann durch [[Wärmebrücke]]n oder durch mangelhafte Luftdichtung verursacht werden. [[Wärmebrücke]]n kühlen das Gebäude aus wie Kühlrippen. Bei mangelhafter Luftdichtung dringt kalte Luft von außen ein, hinterströmt die inneren Bauteile (Gipsbauplatten oder Holzverkleidungen) und führt zur Absenkung der Oberflächentemperatur.  
Die Reduzierung der Oberflächentemperatur auf den Bauteiloberflächen kann durch [[Wärmebrücke]]n oder durch mangelhafte Luftdichtung verursacht werden. [[Wärmebrücke]]n kühlen das Gebäude aus wie Kühlrippen. Bei mangelhafter Luftdichtung dringt kalte Luft von außen ein, hinterströmt die inneren Bauteile (Gipsbauplatten oder Holzverkleidungen) und führt zur Absenkung der Oberflächentemperatur.  
Zeile 184: Zeile 234:
Je kälter und je windiger es draußen ist, umso mehr  kühlen die inneren Bauteilschichten aus.
Je kälter und je windiger es draußen ist, umso mehr  kühlen die inneren Bauteilschichten aus.


Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20&nbsp;°C Lufttemperatur hat Luft mit 50&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 9,2&nbsp;°C und Luft mit 65&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 13,2&nbsp;°C. Der schimmelkritische Bereich liegt bei der 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C und bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C.
Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20&nbsp;°C Lufttemperatur hat Luft mit 50&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 8,7&nbsp;°C und Luft mit 65&nbsp;% relativer [[Luftfeuchtigkeit]] einen Taupunkt von 13,2&nbsp;°C. Der schimmelkritische Bereich liegt bei der 50&nbsp;% feuchter Raumluft bei 12,6&nbsp;°C und bei 65&nbsp;% feuchter Raumluft bei 16.5&nbsp;°C.
<br clear="all" />
<br clear="all" />


===[[Thermografie]] zeigt niedrige Oberflächentemperatur durch [[Wärmebrücke]]n und Undichtheiten===
=== Thermografie zeigt niedrige Oberflächentemperatur durch Wärmebrücken und Undichtheiten ===


{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"|[[Bild:09_Balken_color.jpg|left|thumb|150px|Balkendurchdringung in einer Außenwand]]
|- valign="top"
|valign="top"|[[Bild:10_Balken_thermo.jpg|left|thumb|150px|[[Thermografie]] ]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Balkendurchdringung Außenwand || align="center" | Thermografie
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 09_Balken_color.jpg|center|250px|Balkendurchdringung in einer Außenwand]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 10_Balken_thermo.jpg|center|250px|Thermografie]]
|- valign="top"
| colspan="2" | Dachflächenfenster
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 11_DFF_color.jpg|center|250px|]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:BPhys GD 2 Luft 12_DFF_thermo.jpg|center|250px|Thermografie ]]
|- valign="top"
| colspan="2" | Außenecke in einem Dachgeschosszimmer
|-
| [[Bild:BPhys GD 2 Luft 13_Ecke_color.jpg|center|250px|Außenecke in einem Dachgeschosszimmer]]
| [[Bild:BPhys GD 2 Luft 14_Ecke_thermo.jpg|center|250px|Thermografie]]
|}
|}


Zeile 197: Zeile 260:


Die Bilder  zeigen deutlich, wie die kalte Luft an den Bauteilen entlang strömt und die Oberflächen abkühlt.
Die Bilder  zeigen deutlich, wie die kalte Luft an den Bauteilen entlang strömt und die Oberflächen abkühlt.
<br clear="all" />
{|align="right"
|valign="top"|[[Bild:11_DFF_color.jpg|left|thumb|150px|[[Dachflächenfenster]]]]
|valign="top"|[[Bild:12_DFF_thermo.jpg|left|thumb|150px|[[Thermografie]] ]]
| width="20px"|
|valign="top"|[[Bild:13_Ecke_color.jpg|left|thumb|150px|Außenecke in einem Dachgeschosszimmer]]
|valign="top"|[[Bild:14_Ecke_thermo.jpg|left|thumb|150px|[[Thermografie]] ]]
|}
<br clear="all" />
<br clear="all" />


Zeile 214: Zeile 269:
Wenn gar die Wärmedämmung so schlecht ist, dass das Gebäude bei starkem Frost oder starkem Wind nicht ausreichend beheizt werden kann, werden die elementaren Bedürfnisse von Menschen nach Schutz und Wärme nicht mehr befriedigt. Niemand möchte in kalten und zugigen Gebäuden wohnen oder arbeiten. Derart problematische Immobilien lassen sich als erste nicht mehr vermieten oder verkaufen und erfahren einen hohen Wertverlust.
Wenn gar die Wärmedämmung so schlecht ist, dass das Gebäude bei starkem Frost oder starkem Wind nicht ausreichend beheizt werden kann, werden die elementaren Bedürfnisse von Menschen nach Schutz und Wärme nicht mehr befriedigt. Niemand möchte in kalten und zugigen Gebäuden wohnen oder arbeiten. Derart problematische Immobilien lassen sich als erste nicht mehr vermieten oder verkaufen und erfahren einen hohen Wertverlust.


Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z.B. Hurrikans) weiter beschleunigen. Die Investition in eine gute [[Wärmedämmung]], sei es beim Neubau oder beim [[Sanieren|Sanieren/Modernisieren]] ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.
Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z. B. Hurrikans) weiter beschleunigen. Die Investition in eine gute [[Wärmedämmung]], sei es beim Neubau oder beim [[Sanieren|Sanieren/Modernisieren]] ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.


Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen [[Energiebedarf]] besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1&nbsp;°C führt immerhin zu einer Verringerung des Heiz[[energiebedarf]]s, d.h. der Heizkosten um 6&nbsp;%. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die  Wohnraumtemperatur von 22&nbsp;°C auf 20&nbsp;°C zu senken. Die Reduzierung von 20&nbsp;°C auf 10&nbsp;°C, zur Kompensation der  enormen Heizkosten, ist bestimmt nicht erstrebenswert.
Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen [[Energiebedarf]] besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1&nbsp;°C führt immerhin zu einer Verringerung des Heiz[[energiebedarf]]s, d. h. der Heizkosten um 6&nbsp;%. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die  Wohnraumtemperatur von 22&nbsp;°C auf 20&nbsp;°C zu senken. Die Reduzierung von 20&nbsp;°C auf 10&nbsp;°C, zur Kompensation der  enormen Heizkosten, ist bestimmt nicht erstrebenswert.


===Ökologische Konsequenzen===
<!--===Ökologische Konsequenzen===
Wärmedämmungen mit einer schlechten Effizienz führen zu größeren [[CO2|CO<sub>2</sub>]] Emissionen, die das Treibhausklima weiter beschleunigen. Wir können dazu den Begriff Umweltschutz erweitern: Es geht nicht nur darum, dass wir die Umwelt schützen, von der wir leben, die Ressourcen, die Bodenschätze oder die Nahrungsmittel. Es geht mittlerweile auch darum, dass wir uns vor den Auswirkungen des Klimawandels schützen müssen. Die Hurrikans im Herbst 2005 zeigten, zu welcher Zerstörungskraft entfesselte Naturgewalten fähig sind. Hunderttausende Wohnungen wurden zerstört, selbst Industrieanlagen waren monatelang nicht produktionsfähig.  
Wärmedämmungen mit einer schlechten Effizienz führen zu größeren [[CO2|CO<sub>2</sub>]] Emissionen, die das Treibhausklima weiter beschleunigen. Wir können dazu den Begriff Umweltschutz erweitern: Es geht nicht nur darum, dass wir die Umwelt schützen, von der wir leben, die Ressourcen, die Bodenschätze oder die Nahrungsmittel. Es geht mittlerweile auch darum, dass wir uns vor den Auswirkungen des [[Klimawandel]]s schützen müssen. Die Hurrikans im Herbst 2005 zeigten, zu welcher Zerstörungskraft entfesselte Naturgewalten fähig sind. Hunderttausende Wohnungen wurden zerstört, selbst Industrieanlagen waren monatelang nicht produktionsfähig.  


Wirbelstürme, wie Hurricans, Zyklone, Taifune und Tornados saugen warme Luft von unten nach oben und kalte Luft von oben nach unten und sind so das Ventil für den Wärmeausgleich auf der Erde. Weitere Auswirkungen des Treibhausklimas sind ein erhöhter Meeresspiegel, der die Küstenstädte bedroht, verursacht durch das Abtauen der Eisflächen und die Vergrößerung des Wasservolumens bei höheren Wassertemperaturen. Zusätzlich sind mehr Dürren, Überschwemmungen, etc. zu erwarten.
Wirbelstürme, wie Hurricans, Zyklone, Taifune und Tornados saugen warme Luft von unten nach oben und kalte Luft von oben nach unten und sind so das Ventil für den Wärmeausgleich auf der Erde. Weitere Auswirkungen des Treibhausklimas sind ein erhöhter Meeresspiegel, der die Küstenstädte bedroht, verursacht durch das Abtauen der Eisflächen und die Vergrößerung des Wasservolumens bei höheren Wassertemperaturen. Zusätzlich sind mehr Dürren, Überschwemmungen, etc. zu erwarten.


Alles ist preiswerter als das Treibhausklima weiter zu forcieren. Wir brauchen intelligente Lösungen, um die bedrohlichen Entwicklungen aufzuhalten. Die Einsparung von Energie und damit von Treibhausgasen durch luftdichte [[Hüllfläche|Gebäudehülle]] ist eine wichtige Maßnahme auf diesem Weg. In vielen Bereichen sind Lösungen bereits vorhanden, und müssen nun konsequent umgesetzt werden.<br />
Alles ist preiswerter als das Treibhausklima weiter zu forcieren. Wir brauchen intelligente Lösungen, um die bedrohlichen Entwicklungen aufzuhalten. Die Einsparung von Energie und damit von Treibhausgasen durch luftdichte [[Hüllfläche|Gebäudehülle]] ist eine wichtige Maßnahme auf diesem Weg. In vielen Bereichen sind Lösungen bereits vorhanden, und müssen nun konsequent umgesetzt werden.<br />
Eine Aufgabe für unsere Generation.
Eine Aufgabe für unsere Generation. -->


===Der Gebäude[[energiebedarf]] beträgt mehr als 40 % des Gesamt[[energieverbrauch]]s===
===Der Gebäude[[energiebedarf]] beträgt mehr als 40 % des Gesamt[[energieverbrauch]]s===
Zeile 238: Zeile 293:


==Gesetze und Normen in Deutschland==
==Gesetze und Normen in Deutschland==
Die Erkenntnisse über die Auswirkungen der [[Luftdichtheit]]  wurden in Deutschland 1995 (6 Jahre nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3.&nbsp;[[Wärmeschutzverordnung]] über die [[Luftdichtheit]] gesetzlich bindend und führten zur Vornorm der [[DIN 4108]]-7. Im Jahre 2000 folgten die [[Energieeinsparverordnung]] und die [[DIN 4108]]-7.
Die Erkenntnisse über die Auswirkungen der [[Luftdichtheit]]  wurden in Deutschland 1995 (6 J. nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3.&nbsp;[[Wärmeschutzverordnung]] über die [[Luftdichtheit]] gesetzlich bindend und führten zur Vornorm der [[DIN 4108]]-7. Im Jahre 2000 folgten die [[Energieeinsparverordnung]] und die [[DIN 4108]]-7. 2020 das Gebäude-Energie-Gesetz (GEG).


Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000&nbsp;€ sind keine Seltenheit.
Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000&nbsp;€ sind keine Seltenheit.


==Realisierung einer funktionierenden Luftdichtheit==
== Realisierung einer funktionierenden Luftdichtheit ==
{|align="right"
{|align="right" width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|valign="top"| [[Bild:Verarbeitung DB+ Verklebung 01.jpg|left|thumb|200px|Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband]]
|- valign="top"
|valign="top"| [[Bild:Verarbeitung DB+ Drempel 02.jpg|left|thumb|200px|Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber]]
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband || Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb DB+ Verklebung 01.jpg|center|250px|Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb DB+ Drempel 02.jpg|center|250px|Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband || Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb_INTELLO_Verklebung_01.jpg|center|250px|Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband]]
| [[Bild:Pc-gd verarb INTELLO Drempel 01.jpg|center|250px|Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern]]
|}
|}
Um eine funktionierende Luftdichtung zu erreichen, müssen die [[Dampfbremse]]n untereinander mit Klebebändern  verbunden werden. Anschlüsse zu angrenzenden Bauteilen werden mit Luftdichtungsklebern dauerhaft zuverlässig hergestellt.  
Um eine funktionierende Luftdichtung zu erreichen, müssen die [[Dampfbremse]]n untereinander mit Klebebändern  verbunden werden. Anschlüsse zu angrenzenden Bauteilen werden mit Luftdichtungsklebern dauerhaft zuverlässig hergestellt.  
<br clear="all" />
 
===Klebebänder für Überlappungen von Dampfbremsen===
===Klebebänder für Überlappungen von Dampfbremsen===
Klebebänder für die Luftdichtung müssen  
Klebebänder für die Luftdichtung müssen  
* eine hohe Anfangsklebekraft bei normalen Temperaturen
* eine hohe Anfangsklebkraft bei normalen Temperaturen
* eine hohe Anfangsklebekraft bei kalten Temperaturen
* eine hohe Anfangsklebkraft bei kalten Temperaturen
* eine sehr hohe Endklebekraft
* eine sehr hohe Endklebkraft
* eine hohe Schälfestigkeit (AFERA 5001)
* eine hohe Schälfestigkeit (AFERA 5001)
* eine hohe Scherfestigkeit  
* eine hohe Scherfestigkeit  
Zeile 259: Zeile 323:
* eine ausreichende Feuchtefestigkeit  
* eine ausreichende Feuchtefestigkeit  
* eine Dauerhaftigkeit von mehr als 30 Jahren aufweisen.
* eine Dauerhaftigkeit von mehr als 30 Jahren aufweisen.
{|align="right"
Für die Klebkraft ist der Anpressdruck entscheidend. Würde man ein Klebeband einfach nur lose auflegen, würde sich keine feste Verbindung ergeben. Eine hohe Anfangsklebkraft ist wichtig, damit die Klebebänder nach dem Andrücken den Kontakt halten.
|valign="top"| [[Bild:Verarbeitung_INTELLO_Verklebung_01.jpg|left|thumb|200px|Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband]]
|valign="top"| [[Bild:Verarbeitung INTELLO Drempel 01.jpg|left|thumb|200px|Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern]]
|}
Für die Klebekraft ist der Anpressdruck entscheidend. Würde man ein Klebeband einfach nur lose auflegen, würde sich keine feste Verbindung ergeben. Eine hohe Anfangsklebekraft ist wichtig, damit die Klebebänder nach dem Andrücken den Kontakt halten.
 
Eine hohe Anfangsklebekraft bei kalten Temperaturen ist erforderlich, da die  Luftdichtung meist dann erstellt wird, wenn die Heizung noch nicht funktioniert.


Eine sehr hohe Endklebekraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach [[FLIB|FLiB]] eingeteilt in 2 Substratklassen: [[PE]]-Folie und Holz. [[PE]]-Folien sollten eine Oberflächenspannung von mehr als 40&nbsp;mN/m haben. Aber auch [[PE]]-Folien mit nur 30&nbsp;mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d.h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.  
Eine hohe Anfangsklebkraft bei kalten Temperaturen ist erforderlich, da die Luftdichtung meist dann erstellt wird, wenn die Heizung noch nicht funktioniert.
<br clear="all" />
<br clear="all" />
Eine sehr hohe Endklebkraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach [[FLIB|FLiB]] eingeteilt in 2 Substratklassen: [[PE]]-Folie und Holz. [[PE]]-Folien sollten eine Oberflächenspannung von mehr als 40&nbsp;mN/m haben. Aber auch [[PE]]-Folien mit nur 30&nbsp;mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d. h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.


{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|- valign="top"
| Kondensatausfall an gedämmten Dachflächenfenster nach Verputz- und Estricharbeiten
|-
| [[Bild:BPhys GD 2 Luft 25_Intello_Nass_Fenster.jpg|center|250px|Kondensatausfall an gedämmten Dachflächenfensternach Verputz- und Estricharbeiten]]
|}
Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.  
Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.  
{|align="right"
 
|valign="top"| [[Bild:24_Intello_Nass.jpg|left|thumb|200px|Nach Verputz und Estricharbeiten befindet sich sehr viel [[Feuchtigkeit]] im Gebäude]]
|valign="top"| [[Bild:25_Intello_Nass_Fenster.jpg|left|thumb|200px|Kondensatausfall an gedämmten [[Dachflächenfenster]]]]
|}
Eine hohe Wärmefestigkeit gewährleistet, dass das Klebeband auch sicher funktioniert, wenn es höheren Temperaturen ausgesetzt wird. Dies kann in der Bauphase oder an [[Dachflächenfenster]]n der Fall sein.  
Eine hohe Wärmefestigkeit gewährleistet, dass das Klebeband auch sicher funktioniert, wenn es höheren Temperaturen ausgesetzt wird. Dies kann in der Bauphase oder an [[Dachflächenfenster]]n der Fall sein.  


Zeile 282: Zeile 344:
Die '''Dauerhaftigkeit''' ist eine der grundlegenden Eigenschaften der Klebebandverbindung. Gebäude stehen  statistisch gesehen mindestens 30 Jahre, bevor sie umgebaut, saniert oder modernisiert werden. Diese Zyklen können aber auch durchaus länger sein.  Versprödende Bestandteile, wie Harze sollten in Verbindungsmitteln also vermieden werden. Einfache Klebebänder, wie man sie zum Verkleben von Paketen verwendet, verspröden schon nach inigen Jahren. Im Baubereich angewendet würden sie die Luftdichtheit nicht dauerhaft sicherstellen und einfach abfallen.
Die '''Dauerhaftigkeit''' ist eine der grundlegenden Eigenschaften der Klebebandverbindung. Gebäude stehen  statistisch gesehen mindestens 30 Jahre, bevor sie umgebaut, saniert oder modernisiert werden. Diese Zyklen können aber auch durchaus länger sein.  Versprödende Bestandteile, wie Harze sollten in Verbindungsmitteln also vermieden werden. Einfache Klebebänder, wie man sie zum Verkleben von Paketen verwendet, verspröden schon nach inigen Jahren. Im Baubereich angewendet würden sie die Luftdichtheit nicht dauerhaft sicherstellen und einfach abfallen.


===Anschlüsse von Dampfbremsen an angrenzende Bauteile===
=== Anschlüsse von Dampfbremsen an angrenzende Bauteile ===
{|align="right"  width="250px" style="border-style:solid; border-width:1px; margin: 0px 0px 0px 20px;" class="rahmenfarbe1" 
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Anschluss Drempel mit Luftdichtungskleber || Anschluss Drempel im Holzbau
|-
| style="border-right:solid; border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb DB+ Drempel 02.jpg|center|250px|Anschluss [[Drempel]] mit Luftdichtungskleber]]
| style="border-bottom:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:04 ld-db Anschluss-Drempel-Holzbau.png|center|250px|Anschluss Drempel im Holzbau]]
|- valign="top"
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | Anschluss Giebelwand mit Luftdichtungskleber || Anschluss Ortgang auf Putz mit Anschlusskleber
|-
| style="border-right:solid; border-width:1px; border-color:#aaaaaa;" | [[Bild:Pc-gd verarb INTELLO mineralisch 02.jpg|center|250px|Anschluss Giebelwand mit Luftdichtungskleber]]
| [[Bild:05 ld-db Anschluss-Ortgang-auf-Putz-Anschlusskleber.png|center|250px|Anschluss Ortgang auf Putz mit Anschlusskleber]]
|}
 
Die Anschlüsse an angrenzende Bauteile werden mit Luftdichtungsanschlusskleber  hergestellt. Wichtig ist, dass die Dampfbremse mit einer Schlaufe angeschlossen wird, um Bauteilbewegungen schadlos ausgleichen zu können. An die Haltbarkeit von Anschlussklebern werden die gleichen Ansprüche gestellt, wie bei Klebebändern.
Die Anschlüsse an angrenzende Bauteile werden mit Luftdichtungsanschlusskleber  hergestellt. Wichtig ist, dass die Dampfbremse mit einer Schlaufe angeschlossen wird, um Bauteilbewegungen schadlos ausgleichen zu können. An die Haltbarkeit von Anschlussklebern werden die gleichen Ansprüche gestellt, wie bei Klebebändern.
{|align="right"
 
|valign="top"|[[Bild:Verarbeitung DB+ Drempel 02.jpg|left|thumb|200px|Anschluss [[Drempel]] mit Luftdichtungskleber]]
;Siehe auch
|valign="top"|[[Bild:Luftdichtung Bahn Drempel 02.png|left|thumb|150px|Kleber auftragen und [[Dehnschlaufe]] herstellen]]
: '''weitere [[Konstruktionsdetails]]'''
| width="25px"|
|valign="top"|[[Bild:Verarbeitung INTELLO Giebel 04.jpg|left|thumb|200px|Anschluss Giebelwand mit Luftdichtungskleber]]
|valign="top"|[[Bild:Luftdichtung_Bahn_Ortgang_04.png|left|thumb|150px|Kleber auftragen und [[Dehnschlaufe]] herstellen]]
|}
<br clear="all" />
<br clear="all" />


==Dampfbremsen – bestimmend für die Sicherheit gegen Bauschäden==
==Dampfbremsen – bestimmend für die Sicherheit gegen Bauschäden==
Bis in die 90er Jahre glaubte man, dass [[Dampfbremse]]n mit einem hohen [[Diffusionswiderstand]] den besten Schutz  gegen Bauschäden bieten. Heute weiß man, dass  Bahnen mit einem intelligenten Feuchtemanagement optimal dazu geeignet sind, Bauschäden sicher und dauerhaft zu vermeiden. Diese [[Dampfbremsbahn|Dampfbrems-]] und Luftdichtungsbahnen haben einen [[feuchtevariabel|feuchtevariablem]] Diffusionswiderstand und sind in der Lage, ihre Molekularstruktur zu verändern, das heißt: Sie sind im Winter diffusionsdicht und schützen die [[Konstruktion]] sicher vor Feuchteeintrag – im  Sommer hingegen sind sie [[diffusionsoffen]] und ermöglichen maximale Austrocknung.
Bis in die 90er Jahre glaubte man, dass [[Dampfbremse]]n mit einem hohen [[Diffusionswiderstand]] den besten Schutz  gegen Bauschäden bieten. Heute weiß man, dass  Bahnen mit einem intelligenten Feuchtemanagement optimal dazu geeignet sind, Bauschäden sicher und dauerhaft zu vermeiden. Diese [[Dampfbremsbahn|Dampfbrems-]] und Luftdichtungsbahnen haben einen [[Feuchtevariabilität|feuchtevariablem]] Diffusionswiderstand und sind in der Lage, ihre Molekularstruktur zu verändern, das heißt: Sie sind im Winter diffusionsdicht und schützen die [[Konstruktion]] sicher vor [[Baufeuchte|Feuchteeintrag]] – im  Sommer hingegen sind sie [[diffusionsoffen]] und ermöglichen maximale Austrocknung.


==Lösungen für Energieeinsparung, Komforterhöhung und Kostenreduzierung==
==Lösungen für Energieeinsparung, Komforterhöhung und Kostenreduzierung==
Zeile 302: Zeile 373:


==Fazit==
==Fazit==
Die Wärmedämmung ist nur dann effektiv in Bezug auf Energieeinsparung, [[CO2|CO<sub>2</sub>]] Emissionsreduzierung, [[Bauschadensfreiheitspotenzial|Bauschadensfreiheit]] und Wohnkomfort, wenn die [[Hüllfläche|Gebäudehülle]] luftdicht ist. Luftdichtheit ist also die entscheidende Größe für eine Wärmedämmkonstruktion.  Sie wird erreicht, wenn die Überlappungen der [[Dampfbremse]]n mit Klebebändern verklebt und Anschlüsse an angrenzende Bauteile mit Luftdichtungsanschlussklebern hergestellt werden.
Die Wärmedämmung ist nur dann effektiv in Bezug auf Energieeinsparung, [[CO2|CO<sub>2</sub>]] Emissionsreduzierung, [[Bauschadensfreiheit]] und Wohnkomfort, wenn die [[Hüllfläche|Gebäudehülle]] luftdicht ist. Luftdichtheit ist also die entscheidende Größe für eine Wärmedämmkonstruktion.  Sie wird erreicht, wenn die Überlappungen der [[Dampfbremse]]n mit Klebebändern verklebt und Anschlüsse an angrenzende Bauteile mit Luftdichtungsanschlussklebern hergestellt werden.


; Luftdichtheit erfordert einfache Maßnahmen und führt zu einem großen Ergebnis.
; Luftdichtheit erfordert einfache Maßnahmen und führt zu einem großen Ergebnis.
==Einzelnachweis==
<references>
<ref name="QU1">Deutsche Bauzeitung; Heft 12/89, Seite 1639 ff.</ref>
</references>
==pro clima Produkte - Dampfbremsen und Luftdichtung innen==
{{PRODUKTUEBERSICHT_DICHTUNG_INNEN}}
{{NAV Bphys gd1}}


==Siehe auch==
==Siehe auch==
* [[kontrollierte Lüftung]] (mechanische Lüftung)
* [[Komfortlüftung]]
* [[Hinterlüftung]]
* [[Lüftung]]
* [[Lüftung]]
* [[Lüftungsebene]]
* [[Lüftungsebene]]
* [[Wärmedämmung]]
* [[Komfortlüftung]]
* [[kontrollierte Lüftung]] (mechanische Lüftung)
* [[Perforation Luftdichtung]]


==Weblinks==
==Weblinks==
*{{wikipedia2|Luftdichtigkeit}}
*[http://vht-darmstadt.de/luftdichtheit/warum.html Erläuterungen zur Luft- und Winddichtheit] - der [[Versuchsanstalt für Holz- und Trockenbau|VHT Darmstadt]]
*[http://www2.proclima.com/co/DE/de/germany.html pro clima Deutschland]
*[[Fachverband Luftdichtheit im Bauwesen|FLIB - Fachverband Luftdichtheit im Bauwesen e.V.]] - Bundesweite fachliche Dachorganisation
*[http://vht-darmstadt.de/luftdichtheit/warum.html Erläuterungen zur Luft- und Winddichtheit]
*[http://www.flib.net/ Fachverband Luftdichtheit im Bauwesen e.V.] - Bundesweite fachliche Dachorganisation




[[Kategorie:Wohngesundheit]][[Kategorie:Luftdichtung innen| Luftdichtung]][[Kategorie:Bauphysik]][[Kategorie:Baumaterial]][[Kategorie:Glossar]]
[[Kategorie:Wohngesundheit]][[Kategorie:Luftdichtung innen| Luftdichtung]][[Kategorie:Bauphysik]][[Kategorie:Baumaterial]][[Kategorie:Glossar]]

Aktuelle Version vom 17. Oktober 2024, 07:49 Uhr

Luftdichtung – die entscheidende Größe

... damit die Wärmedämmung wirklich dämmt und die Konstruktion bauschadensfrei bleibt

Die Wärmedämmung in einem Gebäude trennt zwei unterschiedliche Klimabereiche: Das Innenraumklima und Außenraumklima. Für die Bedingungen in Europa und Russland bedeutet das: Im Winter ist es innen warm und außen kalt, im Sommer hingegen innen kühler als außen. In beiden Fällen entsteht eine Temperaturdifferenz, welche sich durch Luftströmung auszugleichen versucht. Dabei drängt im Winter die warme Luft aus dem Gebäude durch die Konstruktion ins Freie. Auf ihrem Weg durch die Wärmedämmung kühlt sie jedoch immer mehr ab, je weiter sie nach außen gelangt. Kalte Luft kann weniger Feuchtigkeit aufnehmen als warme so dass die in der warmen Luft mitgeführte gasförmige Feuchtigkeit schließlich als Tauwasser ausfällt. Dieses Tauwasser kann in der Konstruktion zu erheblichen Bauschäden führen. Statisch wirksamen Bauteile können verrotten und ihre Tragfähigkeit verlieren, ebenso fördert die Feuchtigkeit die Entstehung von gesundheitsschädlichem Schimmel.

Die Konsequenzen aus derartigen Bauschäden sind für das Bauwerk und die Gesundheit seiner Nutzer immens - auf der anderen Seite können sie durch sehr einfache Maßnahmen dauerhaft vermieden werden. Bei der Planung und Ausführung der Konstruktion ist lediglich darauf zu achten, dass Feuchtigkeit nicht in schädlichem Ausmaß in die Wärmedämmung eindringen kann, also dass der Luftstrom von innen nach außen begrenzt wird. Dies wird durch die Installation einer luftdichten Bauteilschicht auf der Innenseite der Wärmedämmung erreicht. Entscheidend für ihre Wirksamkeit ist größte Sorgfalt, sowohl bei der Planung als auch bei der Ausführung.

Luftdichtheit bedeutet nicht, dass der Innenraum hermetisch wie mit einer Plastiktüte von der Außenluft abgeschlossen ist. Die Luftdichtungsebene verhindert lediglich die Strömung, also die Konvektion von Luft, der Austausch von innen nach außen per Diffusion findet weiterhin statt.

Der ideale Aufbau

Die Wirkung aller Wärmedämmungen beruht auf den Lufteinschlüssen im Dämmmaterial (Zelluloseflocken, Kork, Woll-, Mineralfasern oder andere Materialien). Voraussetzung für die dämmende Wirkung dieser Lufteinschlüsse ist deren Schutz vor Luftbewegung. Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:
Innen luftdicht - außen winddicht.

Dämmung durch unbewegte Luft - Ungeschützter Dämmstoff: Luftbewegung in der Porenstruktur reduziert die Dämmwirkung.
Geschützter Wärmedämmung: Keine Luftbewegung in der Porenstruktur möglich, volle Dämmwirkung.
Ungeschützter Dämmstoff:
Luftbewegung reduziert Dämmwirkung.
Geschützter Dämmstoff:
Volle Dämmwirkung.



Beispiel Pullover

Auch die wärmedämmende Wirkung eines Wollpullovers beruht auf unbewegten Lufteinschlüssen in den Fasern: Sobald ein kalter Wind weht, lässt die Dämmwirkung nach. Zieht man eine dünne Windjacke darüber, die selbst keine nennenswerte wärmende Funktion hat, ist die Wirkung wieder hergestellt.

Hinweis

Wichtig beim Einbau der Luftdichtung ist die perfekte Ausführung, denn Undichtheiten in der Fläche und an Anschlüssen haben Folgen.

BPhys GD 1 32 SOLITEX WD voll Gefach-01.jpg
Innen luftdicht, außen winddicht

Deshalb ist bei der idealen Dämmkonstruktion der Dämmstoff allseitig abgeschlossen:
Außen mit der Winddichtung, z. B. einer diffusionsoffenen Unterdeck- oder Fassadenbahn, innen mit einer Luftdichtungsebene, z. B. einer Dampfbremse.

Die Winddichtung verhindert, dass die Dämmung von kalter Außenluft durchströmt wird. Die Luftdichtung schützt gegen das Eindringen von feuchter Raumluft und damit vor Tauwasser und Schimmel.

Mangelhafte Luftdichtung und ihre Folgen

Lüftungswärmeverlust

Ökonomie + Ökologie / Wärmeverluste / Klimaerwärmung
Undichte Gebäudehülle: Hohe Heizkosten und CO2-Emissionen
Dichte Gebäudehülle: Geringe Kosten
Undicht: Hohe Heizkosten Dichte: Geringe Kosten

Bereits kleinste Leckagen in der Dampfbremsebene, wie wie z. B. durch mangelnde Verklebung der Bahnenüberlappungen oder -anschlüsse entstehen, haben weitreichende Folgen. Eine derartige Fehlstelle hat die gleichen Auswirkungen wie eine durchgehende Fuge zwischen Fensterrahmen und Mauerwerk. Niemand würde in diesem Bereich eine Fuge tolerieren. Entsprechend sollten Fugen in der Dampfbremse die gleiche Aufmerksamkeit bekommen.

Die durch Undichtheiten entstehenden höheren Heizkosten führen zu einer geringeren Rentabilität der Wärmedämmung für den Bauherrn. Darüber hinaus entsteht eine höhere Emission von CO2, als es bei der Beheizung von luftdichten Gebäuden notwendig wäre. Entsprechend einer Untersuchung des Instituts für Bauphysik in Stuttgart verschlechtert sich der U-Wert einer Wärmedämmkonstruktion um den Faktor 4,8. (mehr: siehe unten)

BPhys GD 1 06 Konvekt Fuge Waerme-01.3.jpg
Nur eine fugenfreie Wärmedämmkonstruktion hat den vollen Dämmwert.

Übertragen auf die Realität bedeutet das, dass für ein Haus mit einer Wohnfläche von 80 m², bei dem Leckagen in der Luftdichtung vorhanden sind, eine ebenso große Energiemenge zum Beheizen benötigt wird wie für ein luftdichtes Haus mit ca. 400 m² Wohnfläche. Unkontrollierte CO2-Emissionen fördern das Treibhausklima – die menschliche Zivilisation spürt die Auswirkungen z. B. durch eine steigende Anzahl von Unwetterkatastrophen. Deshalb ist die Reduzierung der CO2-Emissionen anzustreben. Nicht nur durch Verzicht, sondern v. a. durch den Einsatz von intelligenten Lösungen helfen wir der Umwelt.


Häuser in Mitteleuropa benötigen nach einer Erhebung aus dem Jahr 2000 im Durchschnitt 22 l Öl/m² (220 KWh/m²) Wohnfläche für die Raumheizung, ein Passivhaus braucht nur 1 l, ein "3 Liter Haus", wie der Name schon sagt, 3 l Öl/m² – vorausgesetzt die Luftdichtung ist perfekt. Fugen in der Luftdichtungsebene von Gebäuden führen zu einer Vervielfachung des Energiebedarfs je Quadratmeter Wohnfläche.

Unangenehmes Raumklima im Sommer

Kühle Räume bei sommerlicher Hitze
Schnelle Aufheizung durch Luftströmung
Kühle Räume bei sommerlicher Hitze Schnelle Aufheizung durch Luftströmung

Der sommerlichen Hitzeschutz wird charakterisiert durch die Zeitdauer in Stunden, in der die unter der Dacheindeckung herrschende Wärme bis an die Innenseite der Konstruktion gelangt (Phasenverschiebung), und durch die damit verbundene Steigerung der Innenraumtemperatur in Grad Celsius (°C) im Vergleich zur Außentemperatur (Amplitudendämpfung).

Kühle Räume bei sommerlicher Hitze

Für den sommerlichen Hitzeschutz wird die Phasenverschiebung und die Amplitudendämpfung berechnet. Dabei wird eine luftdichte Wärmedämmkonstruktion vorausgesetzt. Die Wärme wird relativ träge (je nach Art und Beschaffenheit des Dämmmaterials) nach innen geleitet.

  • Die Phasenverschiebung beschreibt die Zeit, die die Wärme braucht, um von außen in das Gebäudeinnere zu gelangen. Werte von mehr als 10 Stunden gelten als komfortabel.
  • Die Amplitudendämpfung stellt dar, wie hoch sich die Temperatur dann im Gebäudeinneren im Vergleich zu draußen erwärmt.


Schnelle Aufheizung durch Luftströmung

Fugen in der Luftdichtungsebene führen dazu, dass aufgrund der hohen Temperatur- und damit Druckdifferenz eine Luftströmung von außen nach innen und damit ein hoher Luftaustausch stattfindet. Die Wärmedämmung kann nicht mehr zum sommerlichen Wärmeschutz beitragen und es entsteht ein unangenehmes, zu warmes Raumklima.


Ungesundes Raumklima im Winter

Trockene Kaltluft dringt durch Fugen ein
Zu geringe rLF ist nachteilig für die Gesundheit und die Behaglichkeit
Trockene Kaltluft
dringt durch Fugen ein
Zu geringe Luftfeuchte:
nachteilig für die Gesundheit

In der Heizperiode sollte die relative Luftfeuchtigkeit in bewohnten Räumen bei behaglichen 40 – 60 % liegen.
Ein zu trockenes Raumklima ist gesundheitsschädlich.

Trockene Kaltluft dringt durch Fugen ein

Das häufig zu beobachtende Phänomen der trockenen Raumluft im Winter beruht darauf, dass kalte Außenluft durch Fugen ins Haus eindringt. Wird die kalte Luft durch Beheizen erwärmt, reduziert sich ihr relativer Feuchtegehalt.
Häuser mit einer schlechten Luftdichtung neigen daher im Winter zu einer zu trockenen Raumluft, die sich auch mit Befeuchtungsgeräten kaum erhöhen lässt. Die Konsequenz ist ein unbehagliches Raumklima.


Zu geringe relative Luftfeuchtigkeit ist nachteilig für die Gesundheit und die Behaglichkeit

Beispiel: - 10 °C kalte Luft kann bei 80 % relaltiver Luftfeuchtigkeit (rLF) maximal 1,7 g/m³ Feuchtigkeit aufnehmen (Winter-Außenklima).
Wird diese Luft auf 20 °C (Winter-Innenklima) erwärmt, sinkt die rel. Luftfeuchtigkeit auf 9,9 %.


  • Mehr zum Thema Sättigungswerte, Behaglichkeit, gesundheitliche Aspekte, siehe: Luftfeuchtigkeit



Details und Hintergrundwissen:

Versuchsaufbau zur Ermittlung der Auswirkungen von Fugen in der Gebäudehülle

Die Auswirkungen der mangelhaften Luftdichtheit wurden vom Fraunhofer Institut für Bauphysik in Stuttgart, Deutschland, in einer Messstudie 1989 untersucht und in verschiedenen Fachzeitschriften veröffentlicht [1]:

Geprüft wurde die Wärmedämmwirkung und der Feuchtedurchgang bei einer innen liegenden Dampfbremse zusammen mit einer Wärmedämmung aus Mineralwolle mit 14 cm Dämmstärke (ehemaliger Wärmedämmstandard in Deutschland).
Als definierte Undichtheit wurden in der Mitte der 1 m² großen Dampfbremsfläche Fugen angelegt: 1 m lang und mit unterschiedlich Breiten: 1, 3, 5 und 10 mm. Die Fugen befanden sich nur in der Dampfbremse, nicht in der Wärmedämmung.

Für die Ermittlung der Wärmeverluste wurde eine Temperaturdifferenz von innen 20 °C zu außen -10 °C hergestellt, für die Ermittlung der Feuchteströme eine Temperaturdifferenz von innen 20 °C zu außen 0 °C (um eine Vereisung der durchdringenden Wassermenge zu vermeiden).

Die Druckdifferenzen entsprachen mit 10, 20, 30 und 40 Pa denen, die typischerweise auf die Gebäudehülle einwirken können. Druckdifferenzen auf die Gebäudehülle entstehen sowohl thermisch bedingt, also durch den Temperaturunterschied von innen (warm) nach außen (kalt), als auch windbedingt durch Winddruck und Windsog. Eine Druckdifferenz von 20 Pa entsteht z. B. bei einem Außenklima von -10 °C und Windstärke 3 oder von 0 °C und Windstärke 4.

Zunächst wurden die beiden zu untersuchenden Größen – Wärmedämmwirkung und Feuchtedurchgang – mit der fugenfreien Dampfbremse bei den unterschiedlichen Druckdifferenzen gemessen. Anschließend untersuchte man die Konstruktion mit den verschiedenen Fugen, jeweils mit allen Druckdifferenzen.

Vorab sei gesagt: Die Messergebnisse waren alarmierend und schreckten die Fachwelt auf.

Luftdichtung – die Voraussetzung, dass die Wärmedämmung wirklich dämmt

Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor 4,8
Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen
Der Wärmeverlust über eine 1 mm breite Fuge ist enorm: Faktor 4,8 Verschlechterung der Wärmedämmung bei unterschiedlich breiten Fugen

Bei der Untersuchung der Wärmedämmwirkung der 14 cm dicken Wärmedämmung mit der fugenfreien Dampfbremse bestätigte der gemessene U-Wert den rechnerischen von 0,30 W/m²K.

Anschließend wurde die Wärmedämmung mit den unterschiedlich breiten Fugen bei den verschiedenen Druckdifferenzen gemessen.

Schon bei der kleinsten Fugebreite von 1 mm und der Druckdifferenz von 20 Pa ergab sich eine Reduzierung der Dämmwirkung um den Faktor 4,8. Das heißt, der Dämmwert der 14 cm dicken Wärmedämmung ist mit der geringen Undichtheit nicht mehr 0,30 W/m²K, sondern 1,44 W/m²K. Fugenbreiten von 3 mm ergaben Verschlechterungsfaktoren von 11.

Fazit: Undichtheiten in der Luftdichtungsebene, z. B. in der Dampfbremse, führen zu einer Reduzierung der Wärmedämmwirkung. Der Heizenergiebedarf und damit die CO2 Emissionen erhöhen sich um ein Mehrfaches.

Luftdichtung – die Voraussetzung für Bauschadensfreiheit

Bei der oben erwähnten Studie vom Fraunhofer Institut für Bauphysik wurde neben der Wärmedämmwirkung auch der Feuchteeintrag in die Konstruktion gemessen. Die Dampfbremse hatte einen Diffusionswiderstand (sd-Wert) von 30 m (mvtr von 150 MNs/g). Die Messung bestätigte den rechnerischen Feuchteeintrag in die Konstruktion von 0,5 g/m². Auch bei diffusionsoffeneren Dampfbremsen mit einem sd-Wert von 2 m (mvtr von 10 MNs/g) sind die Feuchtemengen für Konstruktionen problemlos.

800 g Tauwasser durch 1 mm Fuge
Abhängigkeit des Feuchteeintrags von der Fugenbreite
800 g Tauwasser durch 1 mm Fuge Abhängigkeit des Feuchteeintrags von der Fugenbreite

Im zweiten Versuch wurde der Feuchteeintrag über die Fugen ermittelt:

Bei der kleinsten Fuge von nur 1 mm Breite und 20 Pa Druckdifferenz (entspr. Windstärke 2-3) betrug der Feuchtigkeitseintrag durch Konvektion 800 g/m Fuge pro Tag. Bei einer Fugenbreite von 3 mm waren es 1.700 g/m.

Hintergrund:
Bei Luftströmungen durch Leckagen konzentriert sich der Feuchteeintrag auf eine kleine Fläche. Dadurch ist dieser um ein Vielfaches höher, als es die Berechnungsergebnisse darstellen können. Durch Konvektion kann durch eine Fuge von 1 mm Breite und 1 m Länge (= 1/1000 m²) eine Feuchtigkeitsmenge von 800 g/m und Tag durch Konvektion in die Wärmedämmkonstruktion gelangen. So viel Feuchtigkeit kann auch die diffusionsoffenste Unterdeckbahn nicht austrocknen lassen.
Der Antrieb der Konvektion ist der Druckunterschied zwischen dem Inneren eines Gebäudes und der Außenluft. Der Druckunterschied resultiert aus der Windanströmung des Gebäudes von außen und dem Aufsteigen der beheizten Luft innerhalb des bewohnten Raums.
Ab WUFI pro 5.0 steht für die Berechnung von konvektiven Feuchteeinträgen ein Luftinfiltrationsmodell zur Verfügung. Es kann auf Grundlage eines Austausches mit der Innenraumluft einen konvektiven Feuchteeintrag simulieren. Das setzt voraus, dass die Undichtheit der Konstruktion bekannt ist, denn diese dient dazu, den Feuchtigkeitseintrag zu quantifizieren.

Kondensation - Taupunkt - Tauwassermenge

Der Feuchtigkeitseintrag führt an den Außenbauteilen zur Kondensation und bildet einen Wasserfilm, der die Diffusionsfähigkeit des Bauteils reduziert. Bei Frost bildet sich aus dem Wasserfilm eine diffusionsdichte Eisschicht. So kann ein diffusionsoffenes Bauteil auf der Außenseite zu einer diffusionsdichten Sperrschicht werden und zu einem noch höheren Tauwasserausfall in der Konstruktion führen.

Feuchtephysik der Luft
Beim Abkühlen der Luft erhöht sich die Luftfeuchtigkeit.
• Bei Unterschreitung der Taupunkttemperatur fällt Tauwasser aus.
• Bei höherer Raumluftfeuchtigkeit erhöht sich die Taupunkttemperatur
⇒ es fällt früher Tauwasser aus.
1. Feuchtephysik der Luft bei 50 % rel. Luftfeuchtigkeit
BPhys GD 2Studie 01-Luftfeuchte.jpg
2. Feuchtephysik der Luft bei 65 % rel. Luftfeuchtigkeit
BPhys GD 2Studie 02-Luftfeuchte.jpg
Bei einem Innenklima von 20 °C / 50 % rel. Luftfeuchte wird der Taupunkt bei 8,7 °C erreicht.
Bei -5 °C fällt Kondensat von 5,35 g/m³ Luft aus.
Bei erhöhter Raumluftfeuchtigkeit von 65 % rel. Luftfeuchte wird der Taupunkt schon bei 13,2 °C erreicht.
Bei -5 °C fällt Kondensat von 7,95 g/m³ Luft aus.

Der Tauwasserausfall beim Abkühlen von Luft beginnt unterhalb des Taupunkts, der bei der „Norm“- Innenraumluft von 20 °C und 50 % relativer Feuchtigkeit bei 8,7 °C liegt.

Aus jedem Kubikmeter Luft, der in eine Konstruktion eindringt und auf -5 °C abkühlt kondensieren 5,35 g Wasser.

Mehr dazu


Folge von Feuchtigkeit in der Konstruktion: Schimmel

Feuchtigkeit in der Konstruktion führt schnell zu Schimmelbildung. Schimmel geht einher mit einer Zerstörung der Bausubstanz. Je nach Wassermenge und Konstruktionsweise kann es schon nach kurzer Zeit, evtl. aber auch erst nach mehreren Jahren zu Bauschäden kommen. Die Konstruktion muss dann aufwendig erneuert werden.

Gravierender als der finanzielle Schaden durch Schimmel ist jedoch die gesundheitliche Gefahr für die Menschen. Man unterscheidet Schimmelsporen und die sogenannten MVOC (microbial volatile organic compounds), die gasförmigen Ausscheidungen von Pilzen. Schimmelsporen gelten als der größte Allergieverursacher. Das Immunsystem kann grundlegend geschädigt werden, z.T. sogar irreparabel. Sporen und vor allem MVOC’s stehen im Verdacht, außerdem ein krebserregendes Potenzial zu haben.

Man weiß, dass man bei angeschimmeltem Brot nicht nur den Schimmelbefall abschneiden, sondern das Brot komplett wegwerfen sollte. Auch andere verschimmelte Nahrungsmittel wie Nüsse sollten gar nicht mehr gegessen werden. Der Magen hat durch seine Säure aber durchaus eine gewisse Abwehrkraft gegen diese Schadstoffe. Anders hingehen ist es, wenn Schimmelsporen und MVOC’s eingeatmet werden. Der Lunge fehlt ein wirkungsvoller Abwehrmechanismus. Sporen und MVOC’s haben ungehinderten Zugang in den Körper.

Die Folgen für die Gesundheit der Bewohner sind in der Regel nicht direkt zuzuordnen, denn der Krankheitsverlauf ist schleichend und diffus. Ein krankes Immunsystem äußert sich in vielfältiger Form.

Ursachen für die Abkühlung von Bauteilinnenoberflächen

Es macht für die Gesundheitsgefährdung keinen Unterschied, ob sich das Schimmelwachstum auf der Oberfläche der inneren Bauteilschichten zeigt oder „unsichtbar“ in der Konstruktion liegt. Der Schimmel innerhalb von Bauteilen ist potentiell sogar gefährlicher, da man ihn von außen nicht erkennt und Krankheiten nicht zuordnen kann.

Sichtbarer Schimmel ist erkennbar und kann beseitigt werden. Schimmel in der Konstruktion kann jahrelang, unter Umständen jahrzehntelang unerkannt bleiben und zu gravierenden Gesundheitsschädigungen führen.

BPhys GD 2 Luft 08 schimmel d.jpg
Der schimmelkritische Bereich liegt
bei <50 % feuchter Raumluft bei 12,6 °C
bei 65 % feuchter Raumluft bei 16.5 °C

Schimmel tritt nicht nur dann auf, wenn der Taupunkt unterschritten wird, d. h. Tauwasser ausfällt, sondern bereits dann, wenn die relative Luftfeuchtigkeit an der Grenzfläche der Bauteiloberfläche dauerhaft über 80 % liegt.

Die Reduzierung der Oberflächentemperatur auf den Bauteiloberflächen kann durch Wärmebrücken oder durch mangelhafte Luftdichtung verursacht werden. Wärmebrücken kühlen das Gebäude aus wie Kühlrippen. Bei mangelhafter Luftdichtung dringt kalte Luft von außen ein, hinterströmt die inneren Bauteile (Gipsbauplatten oder Holzverkleidungen) und führt zur Absenkung der Oberflächentemperatur.

Je kälter und je windiger es draußen ist, umso mehr kühlen die inneren Bauteilschichten aus.

Je feuchter das Raumklima, umso höher die Taupunkt- und die Schimmelgrenztemperatur, bzw. umso schneller das Schimmelwachstum. Berechnet auf 20 °C Lufttemperatur hat Luft mit 50 % relativer Luftfeuchtigkeit einen Taupunkt von 8,7 °C und Luft mit 65 % relativer Luftfeuchtigkeit einen Taupunkt von 13,2 °C. Der schimmelkritische Bereich liegt bei der 50 % feuchter Raumluft bei 12,6 °C und bei 65 % feuchter Raumluft bei 16.5 °C.

Thermografie zeigt niedrige Oberflächentemperatur durch Wärmebrücken und Undichtheiten

Balkendurchdringung Außenwand Thermografie
Balkendurchdringung in einer Außenwand
Thermografie
Dachflächenfenster
BPhys GD 2 Luft 11 DFF color.jpg
Thermografie
Außenecke in einem Dachgeschosszimmer
Außenecke in einem Dachgeschosszimmer
Thermografie

Thermografiekameras zeigen die Oberflächentemperaturen von Bauteilen. Rote und weiße Flächen zeugen von hohen Oberflächentemperaturen. Blaue Flächen entsprechen niedrige Oberflächentemperaturen, an denen kalte Luft eindringt und zur Abkühlung der Bauteiloberflächen führt. Die Scala zeigt die Zuordnung der Temperaturen zur Farbe. Je blauer die Farbe, desto kühler die Oberfläche und um so größer die Gefahr der Schimmelbildung an der Oberfläche oder im Bauteil.

Die Bilder zeigen deutlich, wie die kalte Luft an den Bauteilen entlang strömt und die Oberflächen abkühlt.

Ökonomische Konsequenzen

Ökonomisch spart man bei einer fehlerhaften oder gar fehlenden Luftdichtung mit der Wärmedämmung weitaus weniger Energie ein, als man erwartet. Die Rechnung für Heizenergie, sei es Öl, Gas, Elektrizität, Holz, Biomasse, Fernwärme, etc. ist viel höher als vorab kalkuliert. Das führt zu einer schlechten Rentabilität der Investition für die Wärmedämmmaßnahme. Hätte man sein Geld in eine andere Anlage investiert, hätte man einen besseren Ertrag erzielt.

Der Wert der Immobilie ist auch abhängig vom Energieverbrauch. Eine Immobilie mit hohen monatlichen Unterhaltungskosten hat einen geringeren Wert als eine Immobilie mit geringen monatlichen Kosten.

Wenn gar die Wärmedämmung so schlecht ist, dass das Gebäude bei starkem Frost oder starkem Wind nicht ausreichend beheizt werden kann, werden die elementaren Bedürfnisse von Menschen nach Schutz und Wärme nicht mehr befriedigt. Niemand möchte in kalten und zugigen Gebäuden wohnen oder arbeiten. Derart problematische Immobilien lassen sich als erste nicht mehr vermieten oder verkaufen und erfahren einen hohen Wertverlust.

Die Energiekosten haben sich in den letzten Jahren vervielfacht. Und die Verteuerung wird sich in den nächsten Jahren politisch bedingt (Nahost, Iran, Irak), bedarfsbedingt (Expansion in China, etc.) und naturbedingt (Naturkatastrophen, z. B. Hurrikans) weiter beschleunigen. Die Investition in eine gute Wärmedämmung, sei es beim Neubau oder beim Sanieren/Modernisieren ist schon jetzt sehr lohnenswert und wird bei weiter steigenden Energiepreisen noch höhere Renditen abwerfen.

Die Energiekosten werden in Zukunft weiter steigen. Bei einem hohen Energiebedarf besteht die Gefahr, dass die Heizkosten von privaten Haushalten kaum mehr bezahlt werden können. Es ist natürlich denkbar, die Energiekosten durch Reduzierung der Raumtemperatur zu senken. Eine Temperaturreduzierung von 1 °C führt immerhin zu einer Verringerung des Heizenergiebedarfs, d. h. der Heizkosten um 6 %. Aus ökonomischer und ökologische Sicht ist es sicherlich sinnvoll, die Wohnraumtemperatur von 22 °C auf 20 °C zu senken. Die Reduzierung von 20 °C auf 10 °C, zur Kompensation der enormen Heizkosten, ist bestimmt nicht erstrebenswert.


Der Gebäudeenergiebedarf beträgt mehr als 40 % des Gesamtenergieverbrauchs

Über 40 % des jährlichen Weltenergiebedarfs wird zum Heizen und Kühlen von Gebäuden verbraucht und stellt so den größten Energieanteil, noch vor den Verbräuchen für Verkehr und Industrie dar. Mit effektiven Wärmedämmungen lässt sich der Energieverbrauch drastisch reduzieren. Für angenehme Wohnraumtemperaturen auch bei großer Kälte und windigem Außenklima benötigt man bei einem Passivhaus zum Heizen pro m² Wohnfläche nur 10 kWh (entsprechend 1 l Öl oder 10 m³ Gas). Neubauten in Deutschland mit gesetzlich vorgeschriebener luftdichten Gebäudehülle und Wärmedämmdicke verbrauchen ca. 60 kWh (entsprechend 6 l Öl oder 60 m³ Gas).Bei Gebäuden mit schlechter Luftdichtung und den daraus resultierenden Wärmeverlusten über die Fugen, ist ein Energieverbrauch von über 500 kWh (50 l Öl oder 500 m³ Gas) pro m² Wohnfläche keine Seltenheit.

Je kälter oder je windiger das Außenklima ist, umso größer sind die Auswirkungen einer mangelhaften Luftdichtheit für die Wärmedämmung und umso größer ist der Energieverbrauch. In Russland war der Winter 2005/2006 so kalt, dass die benötigten Energiemengen kaum mehr zur Verfügung gestellt werden konnten.

Nicht nur hohe Wärmedämmdicken sind entscheidend für die Energieeinsparung, sondern vor allem eine gute Luftdichtung. – Eine Wärmedämmung mit schlechter Luftdichtung ist in ihrer Wirkung stark reduziert.

Überprüfung der Luftdichtheit

Mit der Blower Door und dem WINCON-Verfahren lassen sich Luftundichtigkeiten der Gebäudehülle aufspüren. Mit der Blower Door lassen sich zusätzlich genaue Volumenströme protokollieren, die auf einem angeschlossenen Laptop und einem automatisiertem Messablauf in einen normgerechten BlowerDoor-Prüfbericht übernommen und ausgewertet werden können.

Gesetze und Normen in Deutschland

Die Erkenntnisse über die Auswirkungen der Luftdichtheit wurden in Deutschland 1995 (6 J. nach Veröffentlichung der Messstudie des Instituts für Bauphysik) mit der 3. Wärmeschutzverordnung über die Luftdichtheit gesetzlich bindend und führten zur Vornorm der DIN 4108-7. Im Jahre 2000 folgten die Energieeinsparverordnung und die DIN 4108-7. 2020 das Gebäude-Energie-Gesetz (GEG).

Während Normen Empfehlungscharakter haben und Mindestanforderungen beschreiben, sind Verordnungen gesetzlich bindend. Wenn die Mindestanforderungen an die Luftdichtheit nicht erreicht wird, muss nachgebessert werden. Das ist in der Regel extrem teuer. Sanierungskosten von mehr als 50.000 € sind keine Seltenheit.

Realisierung einer funktionierenden Luftdichtheit

Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber
Verklebung der Bahnenüberlappungen mit Luftdichtungsklebeband
Anschluss an angrenzende mineralische Bauteile mit Luftdichtungskleber
Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern
Verklebung einer Folienbahnenüberlappungen mit Luftdichtungsklebeband
Anschluss an gehobeltes Holz oder an Holzwerkstoffplatten mit Klebebändern

Um eine funktionierende Luftdichtung zu erreichen, müssen die Dampfbremsen untereinander mit Klebebändern verbunden werden. Anschlüsse zu angrenzenden Bauteilen werden mit Luftdichtungsklebern dauerhaft zuverlässig hergestellt.

Klebebänder für Überlappungen von Dampfbremsen

Klebebänder für die Luftdichtung müssen

  • eine hohe Anfangsklebkraft bei normalen Temperaturen
  • eine hohe Anfangsklebkraft bei kalten Temperaturen
  • eine sehr hohe Endklebkraft
  • eine hohe Schälfestigkeit (AFERA 5001)
  • eine hohe Scherfestigkeit
  • eine hohe Wärmefestigkeit
  • eine ausreichende Feuchtefestigkeit
  • eine Dauerhaftigkeit von mehr als 30 Jahren aufweisen.

Für die Klebkraft ist der Anpressdruck entscheidend. Würde man ein Klebeband einfach nur lose auflegen, würde sich keine feste Verbindung ergeben. Eine hohe Anfangsklebkraft ist wichtig, damit die Klebebänder nach dem Andrücken den Kontakt halten.

Eine hohe Anfangsklebkraft bei kalten Temperaturen ist erforderlich, da die Luftdichtung meist dann erstellt wird, wenn die Heizung noch nicht funktioniert.
Eine sehr hohe Endklebkraft ist nötig, damit die Verbindung auch dann sicher ist, wenn Spannungen auf die Verklebung wirken. Hierbei ist der Untergrund von besonderer Bedeutung. Untergründe werden nach FLiB eingeteilt in 2 Substratklassen: PE-Folie und Holz. PE-Folien sollten eine Oberflächenspannung von mehr als 40 mN/m haben. Aber auch PE-Folien mit nur 30 mN/m müssen sich noch sicher verkleben lassen. Holz sollte glatt, d. h. gehobelt oder geschliffen sein. Auf sägerauem Holz hat ein Klebeband keine gute Haftungsmöglichkeit.

Kondensatausfall an gedämmten Dachflächenfenster nach Verputz- und Estricharbeiten
Kondensatausfall an gedämmten Dachflächenfensternach Verputz- und Estricharbeiten

Neben der Schälhaftung bei 180° (der typischen Klebebandkenngröße) und der Schälhaftung bei 90° ist vor allem eine hohe Scherkraft erforderlich. Sie drückt aus, wie gut sich das Klebeband mit dem Untergrund „verschweißt“.

Eine hohe Wärmefestigkeit gewährleistet, dass das Klebeband auch sicher funktioniert, wenn es höheren Temperaturen ausgesetzt wird. Dies kann in der Bauphase oder an Dachflächenfenstern der Fall sein.

Die Feuchtefestigkeit ist vor allem in der Bauphase wichtig. Nach Verputz und Estricharbeiten befindet sich sehr viel Feuchtigkeit im Gebäude. Klebebänder müssen auch unter diesen Bedingungen zuverlässig halten.

Die Dauerhaftigkeit ist eine der grundlegenden Eigenschaften der Klebebandverbindung. Gebäude stehen statistisch gesehen mindestens 30 Jahre, bevor sie umgebaut, saniert oder modernisiert werden. Diese Zyklen können aber auch durchaus länger sein. Versprödende Bestandteile, wie Harze sollten in Verbindungsmitteln also vermieden werden. Einfache Klebebänder, wie man sie zum Verkleben von Paketen verwendet, verspröden schon nach inigen Jahren. Im Baubereich angewendet würden sie die Luftdichtheit nicht dauerhaft sicherstellen und einfach abfallen.

Anschlüsse von Dampfbremsen an angrenzende Bauteile

Anschluss Drempel mit Luftdichtungskleber Anschluss Drempel im Holzbau
Anschluss Drempel mit Luftdichtungskleber
Anschluss Drempel im Holzbau
Anschluss Giebelwand mit Luftdichtungskleber Anschluss Ortgang auf Putz mit Anschlusskleber
Anschluss Giebelwand mit Luftdichtungskleber
Anschluss Ortgang auf Putz mit Anschlusskleber

Die Anschlüsse an angrenzende Bauteile werden mit Luftdichtungsanschlusskleber hergestellt. Wichtig ist, dass die Dampfbremse mit einer Schlaufe angeschlossen wird, um Bauteilbewegungen schadlos ausgleichen zu können. An die Haltbarkeit von Anschlussklebern werden die gleichen Ansprüche gestellt, wie bei Klebebändern.

Siehe auch
weitere Konstruktionsdetails


Dampfbremsen – bestimmend für die Sicherheit gegen Bauschäden

Bis in die 90er Jahre glaubte man, dass Dampfbremsen mit einem hohen Diffusionswiderstand den besten Schutz gegen Bauschäden bieten. Heute weiß man, dass Bahnen mit einem intelligenten Feuchtemanagement optimal dazu geeignet sind, Bauschäden sicher und dauerhaft zu vermeiden. Diese Dampfbrems- und Luftdichtungsbahnen haben einen feuchtevariablem Diffusionswiderstand und sind in der Lage, ihre Molekularstruktur zu verändern, das heißt: Sie sind im Winter diffusionsdicht und schützen die Konstruktion sicher vor Feuchteeintrag – im Sommer hingegen sind sie diffusionsoffen und ermöglichen maximale Austrocknung.

Lösungen für Energieeinsparung, Komforterhöhung und Kostenreduzierung

Der Baubereich ist weltweit der Sektor mit dem größten Ressourcenbedarf. Wir verbrauchen in unseren Volkswirtschaften zur Herstellung von Gebäuden die größten Mengen Primärenergie – das gleiche gilt für die Energiemenge bei der Nutzung. Wenn es uns beim Bauen gelingt, intelligente Lösungen umzusetzen, wenn es uns gelingt, uns bewusst mit den Baukonstruktionen und ihrer Bauphysik zu beschäftigen, können wir wie in keinem anderen Bereich unserer Gesellschaft Energie sparen und so die CO2 Emissionen und die Kosten für den Unterhalt der Gebäude reduzieren - und das ganze bei optimalem Komfort in Wohnungen und Arbeitsstätten.

Fazit

Die Wärmedämmung ist nur dann effektiv in Bezug auf Energieeinsparung, CO2 Emissionsreduzierung, Bauschadensfreiheit und Wohnkomfort, wenn die Gebäudehülle luftdicht ist. Luftdichtheit ist also die entscheidende Größe für eine Wärmedämmkonstruktion. Sie wird erreicht, wenn die Überlappungen der Dampfbremsen mit Klebebändern verklebt und Anschlüsse an angrenzende Bauteile mit Luftdichtungsanschlussklebern hergestellt werden.

Luftdichtheit erfordert einfache Maßnahmen und führt zu einem großen Ergebnis.


Einzelnachweis

  1. Deutsche Bauzeitung; Heft 12/89, Seite 1639 ff.


pro clima Produkte - Dampfbremsen und Luftdichtung innen

Neubau und Ausbau
Dampfbrems- und Luftdichtungsbahnen

  • INTELLO - Hydrosafe Hochleistungs-Dampfbremsen
  • INTELLO PLUS - ... armiert, für alle faserförmigen Dämmstoffe
  • INTELLO X - Allround Hydrosafe Hochleistungs-Dampfbremsen
  • INTELLO X PLUS - ... armiert, für alle faserförmigen Dämmstoffe
  • DB+ - Hydrosafe Dampfbremsen aus Baupappe, armiert

Aufdach

  • DA - Dampfbremsen für Aufdachdämmung
  • DA connect - ... mit Selbstklebezonen

Anschluss-Streifen

Sanierung

Rieselschutz

  • RB - Rieselschutzbahnen




Siehe auch

Weblinks